Lab-on-a-chip: techniques, circuits, and biomedical applications
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston, MA [u.a.]
Artech House
2010
|
Schriftenreihe: | Artech House integrated microsystems series
|
Schlagworte: | |
Beschreibung: | Includes bibliographic references and index 1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip for Neuronal Activity Detection -- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications -- 6.7. Flip-Chip Integration -- References -- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- 7.1. Design Flow -- 7.2. Actuation -- 7.3. Electrostatic Simulation -- 7.4. Sensing -- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET) -- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- 7.7. DeFET Theory of Operation -- 7.8. Modeling the DeFET -- 7.8.1. A Simple DC Model -- 7.8.2. SPICE DC Equivalent Circuit -- 7.8.3. AC Equivalent Circuit -- 7.9. The Effect of the DeFET on the Applied Electric Field Profile -- References -- 8. Prototyping and Experimental Analysis -- 8.1. Testing the DeFET -- 8.1.1. The DC Response -- 8.1.2. The AC (Frequency) Response -- 8.1.3. Other Features of the DeFET -- 8.2. Noise Analysis -- 8.2.1. Noise Sources -- 8.2.2. Noise Measurements -- 8.3. The Effect of Temperature and Light on DeFET Performance -- 8.4. Testing the Electric Field Imager -- 8.4.1. The Response of the Imager Under Different Environments -- 8.4.2. Testing the Imager with Biocells -- 8.5. Packaging the Lab-on-a-Chip -- References -- 9. Readout Circuits for Lab-on-a-Chip -- 9.1. Current-Mode Circuits -- 9.2. Operational Floating Current Conveyor (OFCC) -- 9.2.1. A Simple Model -- 9.2.2. OFCC with Feedback -- 9.3. Current-Mode Instrumentation Amplifier -- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC -- 9.4. Experimental and Simulation Results of the Proposed CMIA -- 9.4.1. The Differential Gain Measurements -- 9.4.2. Common-Mode Rejection Ratio Measurements -- 9.4.3. Other Features of the Proposed CMIA -- 9.4.4. Noise Results -- 9.5. Comparison Between Different CMIAs -- 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications -- 10.1. Introduction -- 10.2. CMWB Based on Operational Floating Current Conveyor -- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor -- 10.4. Experimental and Simulation Results -- 10.4.1. The Differential Measurements -- 10.4.2. Common-Mode Measurements -- 10.5. Discussion -- References -- 11. Current-Mode Readout Circuits for the pH Sensor -- 11.1. Introduction -- 11.2. Differential ISFET-Based pH Sensor -- 11.2.1. ISFET-Based pH Sensor -- 11.2.2. Differential ISFET Sensor -- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor -- 11.3.1. Simulation Results -- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- 11.4.1. Simulation Results -- References |
Beschreibung: | XV, 220 S. Ill., graph. Darst. |
ISBN: | 1596934182 9781596934184 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036781033 | ||
003 | DE-604 | ||
005 | 20120209 | ||
007 | t | ||
008 | 101117s2010 ad|| |||| 00||| eng d | ||
015 | |a GBB0A6262 |2 dnb | ||
020 | |a 1596934182 |9 1-59693-418-2 | ||
020 | |a 9781596934184 |9 978-1-59693-418-4 | ||
035 | |a (OCoLC)705974967 | ||
035 | |a (DE-599)BVBBV036781033 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-898 | ||
084 | |a ZN 3750 |0 (DE-625)157334: |2 rvk | ||
100 | 1 | |a Ghallab, Yehya H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lab-on-a-chip |b techniques, circuits, and biomedical applications |c Yehya H. Ghallab ; Wael Badawy |
264 | 1 | |a Boston, MA [u.a.] |b Artech House |c 2010 | |
300 | |a XV, 220 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Artech House integrated microsystems series | |
500 | |a Includes bibliographic references and index | ||
500 | |a 1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- | ||
500 | |a 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- | ||
500 | |a 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip for Neuronal Activity Detection -- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications -- 6.7. Flip-Chip Integration -- References -- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- 7.1. Design Flow -- 7.2. Actuation -- 7.3. Electrostatic Simulation -- 7.4. Sensing -- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET) -- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- 7.7. DeFET Theory of Operation -- 7.8. Modeling the DeFET -- 7.8.1. A Simple DC Model -- 7.8.2. SPICE DC Equivalent Circuit -- 7.8.3. AC Equivalent Circuit -- 7.9. The Effect of the DeFET on the Applied Electric Field Profile -- References -- 8. Prototyping and Experimental Analysis -- 8.1. Testing the DeFET -- 8.1.1. The DC Response -- 8.1.2. The AC (Frequency) Response -- 8.1.3. Other Features of the DeFET -- 8.2. Noise Analysis -- | ||
500 | |a 8.2.1. Noise Sources -- 8.2.2. Noise Measurements -- 8.3. The Effect of Temperature and Light on DeFET Performance -- 8.4. Testing the Electric Field Imager -- 8.4.1. The Response of the Imager Under Different Environments -- 8.4.2. Testing the Imager with Biocells -- 8.5. Packaging the Lab-on-a-Chip -- References -- 9. Readout Circuits for Lab-on-a-Chip -- 9.1. Current-Mode Circuits -- 9.2. Operational Floating Current Conveyor (OFCC) -- 9.2.1. A Simple Model -- 9.2.2. OFCC with Feedback -- 9.3. Current-Mode Instrumentation Amplifier -- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC -- 9.4. Experimental and Simulation Results of the Proposed CMIA -- 9.4.1. The Differential Gain Measurements -- 9.4.2. Common-Mode Rejection Ratio Measurements -- 9.4.3. Other Features of the Proposed CMIA -- 9.4.4. Noise Results -- 9.5. Comparison Between Different CMIAs -- | ||
500 | |a 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications -- 10.1. Introduction -- 10.2. CMWB Based on Operational Floating Current Conveyor -- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor -- 10.4. Experimental and Simulation Results -- 10.4.1. The Differential Measurements -- 10.4.2. Common-Mode Measurements -- 10.5. Discussion -- References -- 11. Current-Mode Readout Circuits for the pH Sensor -- 11.1. Introduction -- 11.2. Differential ISFET-Based pH Sensor -- 11.2.1. ISFET-Based pH Sensor -- 11.2.2. Differential ISFET Sensor -- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor -- 11.3.1. Simulation Results -- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- 11.4.1. Simulation Results -- References | ||
650 | 4 | |a Lab-On-A-Chip Devices | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Biosensing Techniques | |
650 | 4 | |a Microchemistry | |
650 | 4 | |a Microchip Analytical Procedures | |
650 | 4 | |a Microtechnology | |
650 | 4 | |a Microelectromechanical systems | |
650 | 4 | |a Chemical laboratories / Electronic equipment | |
650 | 4 | |a Biomedical engineering | |
650 | 0 | 7 | |a Lab on a Chip |0 (DE-588)7610677-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lab on a Chip |0 (DE-588)7610677-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Badawy, Wael |e Verfasser |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-020697680 |
Datensatz im Suchindex
_version_ | 1804143456477511680 |
---|---|
any_adam_object | |
author | Ghallab, Yehya H. Badawy, Wael |
author_facet | Ghallab, Yehya H. Badawy, Wael |
author_role | aut aut |
author_sort | Ghallab, Yehya H. |
author_variant | y h g yh yhg w b wb |
building | Verbundindex |
bvnumber | BV036781033 |
classification_rvk | ZN 3750 |
ctrlnum | (OCoLC)705974967 (DE-599)BVBBV036781033 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06397nam a2200529 c 4500</leader><controlfield tag="001">BV036781033</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120209 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101117s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB0A6262</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1596934182</subfield><subfield code="9">1-59693-418-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781596934184</subfield><subfield code="9">978-1-59693-418-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705974967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036781033</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3750</subfield><subfield code="0">(DE-625)157334:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghallab, Yehya H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lab-on-a-chip</subfield><subfield code="b">techniques, circuits, and biomedical applications</subfield><subfield code="c">Yehya H. Ghallab ; Wael Badawy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA [u.a.]</subfield><subfield code="b">Artech House</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 220 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Artech House integrated microsystems series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographic references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip for Neuronal Activity Detection -- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications -- 6.7. Flip-Chip Integration -- References -- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- 7.1. Design Flow -- 7.2. Actuation -- 7.3. Electrostatic Simulation -- 7.4. Sensing -- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET) -- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- 7.7. DeFET Theory of Operation -- 7.8. Modeling the DeFET -- 7.8.1. A Simple DC Model -- 7.8.2. SPICE DC Equivalent Circuit -- 7.8.3. AC Equivalent Circuit -- 7.9. The Effect of the DeFET on the Applied Electric Field Profile -- References -- 8. Prototyping and Experimental Analysis -- 8.1. Testing the DeFET -- 8.1.1. The DC Response -- 8.1.2. The AC (Frequency) Response -- 8.1.3. Other Features of the DeFET -- 8.2. Noise Analysis -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8.2.1. Noise Sources -- 8.2.2. Noise Measurements -- 8.3. The Effect of Temperature and Light on DeFET Performance -- 8.4. Testing the Electric Field Imager -- 8.4.1. The Response of the Imager Under Different Environments -- 8.4.2. Testing the Imager with Biocells -- 8.5. Packaging the Lab-on-a-Chip -- References -- 9. Readout Circuits for Lab-on-a-Chip -- 9.1. Current-Mode Circuits -- 9.2. Operational Floating Current Conveyor (OFCC) -- 9.2.1. A Simple Model -- 9.2.2. OFCC with Feedback -- 9.3. Current-Mode Instrumentation Amplifier -- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC -- 9.4. Experimental and Simulation Results of the Proposed CMIA -- 9.4.1. The Differential Gain Measurements -- 9.4.2. Common-Mode Rejection Ratio Measurements -- 9.4.3. Other Features of the Proposed CMIA -- 9.4.4. Noise Results -- 9.5. Comparison Between Different CMIAs -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications -- 10.1. Introduction -- 10.2. CMWB Based on Operational Floating Current Conveyor -- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor -- 10.4. Experimental and Simulation Results -- 10.4.1. The Differential Measurements -- 10.4.2. Common-Mode Measurements -- 10.5. Discussion -- References -- 11. Current-Mode Readout Circuits for the pH Sensor -- 11.1. Introduction -- 11.2. Differential ISFET-Based pH Sensor -- 11.2.1. ISFET-Based pH Sensor -- 11.2.2. Differential ISFET Sensor -- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor -- 11.3.1. Simulation Results -- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- 11.4.1. Simulation Results -- References</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lab-On-A-Chip Devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosensing Techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microchemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microchip Analytical Procedures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microtechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microelectromechanical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical laboratories / Electronic equipment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lab on a Chip</subfield><subfield code="0">(DE-588)7610677-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lab on a Chip</subfield><subfield code="0">(DE-588)7610677-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Badawy, Wael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020697680</subfield></datafield></record></collection> |
id | DE-604.BV036781033 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:47:57Z |
institution | BVB |
isbn | 1596934182 9781596934184 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020697680 |
oclc_num | 705974967 |
open_access_boolean | |
owner | DE-29T DE-898 DE-BY-UBR |
owner_facet | DE-29T DE-898 DE-BY-UBR |
physical | XV, 220 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Artech House |
record_format | marc |
series2 | Artech House integrated microsystems series |
spelling | Ghallab, Yehya H. Verfasser aut Lab-on-a-chip techniques, circuits, and biomedical applications Yehya H. Ghallab ; Wael Badawy Boston, MA [u.a.] Artech House 2010 XV, 220 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Artech House integrated microsystems series Includes bibliographic references and index 1. Introduction to Lab-on-a-Chip -- 1.1. History -- 1.2. Parts and Components of Lab-on-a-Chip -- 1.2.1. Electric and Magnetic Actuators -- 1.2.2. Electrical Sensors -- 1.2.3. Thermal Sensors -- 1.2.4. Optical Sensors -- 1.2.5. Microfluidic Chambers -- 1.3. Applications of Lab-on-a-Chip -- 1.4. Advantages and Disadvantages of Lab-on-a-Chip -- References -- 2. Cell Structure, Properties, and Models -- 2.1. Cell Structure -- 2.1.1. Prokaryotic Cells -- 2.1.2. Eukaryotic Cells -- 2.1.3. Cell Components -- 2.2. Electromechanics of Particles -- 2.2.1. Single-Layer Model -- 2.2.2. Double-Layer Model -- 2.3. Electrogenic Cells -- 2.3.1. Neurons -- 2.3.2. Gated Ion Channels -- 2.3.3. Action Potential -- References -- 3. Cell Manipulator Fields -- 3.1. Electric Field -- 3.1.1. Uniform Electric Field (Electrophoresis) -- 3.1.2. Nonuniform Electric Field (Dielectrophoresis) -- 3.2. Magnetic Field -- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis) -- 3.2.2. Magnetophoresis Force (MAP Force) -- References -- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals -- 4.1. Semiconductor Properties -- 4.2. Intrinsic Semiconductors -- 4.3. Extrinsic Semiconductor -- 4.3.1. N-Type Doping -- 4.3.2. P-Type Doping -- 4.4. MOS Device Physics -- 4.5. MOS Characteristics -- 4.5.1. Modes of Operation -- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device -- 4.6.1. Advantages of CMOS Technology -- References -- 5. Sensing Techniques for Lab-on-a-Chip -- 5.1. Optical Technique -- 5.2. Fluorescent Labeling Technique -- 5.3. Impedance Sensing Technique -- 5.4. Magnetic Field Sensing Technique -- 5.5. CMOS AC Electrokinetic Microparticle Analysis System -- 5.5.1. Bioanalysis Platform -- 5.5.2. Experimental Tests -- References -- 6. CMOS-Based Lab-on-a-Chip -- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization -- 6.2. Actuation -- 6.3. Impedance Sensing -- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation -- 6.5. CMOS Lab-on-a-Chip for Neuronal Activity Detection -- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications -- 6.7. Flip-Chip Integration -- References -- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection -- 7.1. Design Flow -- 7.2. Actuation -- 7.3. Electrostatic Simulation -- 7.4. Sensing -- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET) -- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET) -- 7.7. DeFET Theory of Operation -- 7.8. Modeling the DeFET -- 7.8.1. A Simple DC Model -- 7.8.2. SPICE DC Equivalent Circuit -- 7.8.3. AC Equivalent Circuit -- 7.9. The Effect of the DeFET on the Applied Electric Field Profile -- References -- 8. Prototyping and Experimental Analysis -- 8.1. Testing the DeFET -- 8.1.1. The DC Response -- 8.1.2. The AC (Frequency) Response -- 8.1.3. Other Features of the DeFET -- 8.2. Noise Analysis -- 8.2.1. Noise Sources -- 8.2.2. Noise Measurements -- 8.3. The Effect of Temperature and Light on DeFET Performance -- 8.4. Testing the Electric Field Imager -- 8.4.1. The Response of the Imager Under Different Environments -- 8.4.2. Testing the Imager with Biocells -- 8.5. Packaging the Lab-on-a-Chip -- References -- 9. Readout Circuits for Lab-on-a-Chip -- 9.1. Current-Mode Circuits -- 9.2. Operational Floating Current Conveyor (OFCC) -- 9.2.1. A Simple Model -- 9.2.2. OFCC with Feedback -- 9.3. Current-Mode Instrumentation Amplifier -- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII -- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC -- 9.4. Experimental and Simulation Results of the Proposed CMIA -- 9.4.1. The Differential Gain Measurements -- 9.4.2. Common-Mode Rejection Ratio Measurements -- 9.4.3. Other Features of the Proposed CMIA -- 9.4.4. Noise Results -- 9.5. Comparison Between Different CMIAs -- 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip -- References -- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications -- 10.1. Introduction -- 10.2. CMWB Based on Operational Floating Current Conveyor -- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor -- 10.4. Experimental and Simulation Results -- 10.4.1. The Differential Measurements -- 10.4.2. Common-Mode Measurements -- 10.5. Discussion -- References -- 11. Current-Mode Readout Circuits for the pH Sensor -- 11.1. Introduction -- 11.2. Differential ISFET-Based pH Sensor -- 11.2.1. ISFET-Based pH Sensor -- 11.2.2. Differential ISFET Sensor -- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor -- 11.3.1. Simulation Results -- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors -- 11.4.1. Simulation Results -- References Lab-On-A-Chip Devices Nanotechnology Biosensing Techniques Microchemistry Microchip Analytical Procedures Microtechnology Microelectromechanical systems Chemical laboratories / Electronic equipment Biomedical engineering Lab on a Chip (DE-588)7610677-9 gnd rswk-swf Lab on a Chip (DE-588)7610677-9 s DE-604 Badawy, Wael Verfasser aut |
spellingShingle | Ghallab, Yehya H. Badawy, Wael Lab-on-a-chip techniques, circuits, and biomedical applications Lab-On-A-Chip Devices Nanotechnology Biosensing Techniques Microchemistry Microchip Analytical Procedures Microtechnology Microelectromechanical systems Chemical laboratories / Electronic equipment Biomedical engineering Lab on a Chip (DE-588)7610677-9 gnd |
subject_GND | (DE-588)7610677-9 |
title | Lab-on-a-chip techniques, circuits, and biomedical applications |
title_auth | Lab-on-a-chip techniques, circuits, and biomedical applications |
title_exact_search | Lab-on-a-chip techniques, circuits, and biomedical applications |
title_full | Lab-on-a-chip techniques, circuits, and biomedical applications Yehya H. Ghallab ; Wael Badawy |
title_fullStr | Lab-on-a-chip techniques, circuits, and biomedical applications Yehya H. Ghallab ; Wael Badawy |
title_full_unstemmed | Lab-on-a-chip techniques, circuits, and biomedical applications Yehya H. Ghallab ; Wael Badawy |
title_short | Lab-on-a-chip |
title_sort | lab on a chip techniques circuits and biomedical applications |
title_sub | techniques, circuits, and biomedical applications |
topic | Lab-On-A-Chip Devices Nanotechnology Biosensing Techniques Microchemistry Microchip Analytical Procedures Microtechnology Microelectromechanical systems Chemical laboratories / Electronic equipment Biomedical engineering Lab on a Chip (DE-588)7610677-9 gnd |
topic_facet | Lab-On-A-Chip Devices Nanotechnology Biosensing Techniques Microchemistry Microchip Analytical Procedures Microtechnology Microelectromechanical systems Chemical laboratories / Electronic equipment Biomedical engineering Lab on a Chip |
work_keys_str_mv | AT ghallabyehyah labonachiptechniquescircuitsandbiomedicalapplications AT badawywael labonachiptechniquescircuitsandbiomedicalapplications |