Introduction to nanoelectronic single-electron circuit design:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Pan Stanford Publ.
2010
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 301 S. graph. Darst. |
ISBN: | 9814241938 9789814241939 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036773122 | ||
003 | DE-604 | ||
005 | 20110208 | ||
007 | t | ||
008 | 101112s2010 d||| |||| 00||| eng d | ||
020 | |a 9814241938 |9 981-424193-8 | ||
020 | |a 9789814241939 |9 978-981-424193-9 | ||
035 | |a (OCoLC)705965548 | ||
035 | |a (DE-599)BVBBV036773122 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
084 | |a ZN 4900 |0 (DE-625)157417: |2 rvk | ||
100 | 1 | |a Hoekstra, Jaap |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to nanoelectronic single-electron circuit design |c Jaap Hoekstra |
264 | 1 | |a Singapore |b Pan Stanford Publ. |c 2010 | |
300 | |a XV, 301 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Integrierte Schaltung |0 (DE-588)4027242-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Einelektronen-Tunneleffekt |0 (DE-588)4297542-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanoelektronik |0 (DE-588)4732034-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanoelektronik |0 (DE-588)4732034-5 |D s |
689 | 0 | 1 | |a Einelektronen-Tunneleffekt |0 (DE-588)4297542-6 |D s |
689 | 0 | 2 | |a Integrierte Schaltung |0 (DE-588)4027242-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020689937&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020689937 |
Datensatz im Suchindex
_version_ | 1804143444966244352 |
---|---|
adam_text | Contents
Preface
v
1.
Introduction
1
1.1
Scope
............................. 1
1.1.1
Nanoelectronic circuit design issues
........ 2
1.1.2
Levels in modeling, a top-down approach
..... 3
1.1.3
Overview of tunneling capacitor circuit models
. 5
1.1.4
Important quantum mechanical phenomena
. ... 8
1.2
Electron Tunneling
..................... 9
1.2.1
Pree
electrons
.................... 9
1.2.2
Tunneling
...................... 10
1.2.3
Hot electrons
.................... 11
1.2.4
Tunneling time and transition time
........ 12
1.3
Tunneling Capacitors and Island Charges
......... 12
1.3.1
Two-junction circuit in Coulomb blockade
.... 14
1.4
Energy in Simple Capacitor Circuits, Bounded and
Unbounded Currents
..................... 16
1.4.1
Switching circuits: energy in a resistive circuit
. . 17
1.4.2
Charging a capacitor: bounded current
...... 20
1.4.3
Charging a capacitor: unbounded current
.... 21
1.4.4
Energy calculation with the generalized
delta-function
.................... 23
1.5
Operational Temperature
.................. 25
1.6
Research Questions
..................... 27
Problems and Exercises
....................... 28
2.
Tunneling Experiments in Nanoelectronics
29
χ
Introduction to Nanoelectronic Single-Electron Circuit Design
2.1
Tunneling in the Tunnel Diode
............... 29
2.1.1
Energy-band diagram for the
ρ — η
diode
.... 30
2.1.2
Experiments of Esaki on the (tunnel) diode
... 36
2.1.3
Nonlinear voltage-current characteristic of the
tunnel diode
..................... 37
2.1.4
Tunnel current
................... 42
2.1.5
Energy paradox
................... 44
2.1.6
Equivalent circuit
.................. 45
2.1.7
Resonant tunneling diode
............. 46
2.2
Tunneling Capacitor
..................... 48
2.2.1
Tunneling between plates and the hot electron
. . 48
2.2.2
Tunnel capacitor and electron-box
........ 53
2.2.3
Single-electron tunneling transistor and Coulomb
blockade
....................... 54
2.2.4
Array of tunnel junctions and Coulomb oscillations
56
2.2.5
Single-electron tunneling junction and Coulomb
blockade
....................... 57
Problems and Exercises
....................... 57
3.
Current in Electrodynamics and Circuit Theory
59
3.1
Charges in Electrodynamics
................ 59
3.2
Conservation of Charge and Continuity Equation
.... 62
3.3
Electromagnetics Field Equations in Vacuum
...... 63
3.4
Equations in the Presence of Charges and Currents
.... 65
3.5
Conservation of Energy and Poynting s Theorem
..... 67
3.6
Steady-State and Constant Currents
............ 70
3.6.1
KirchhofFs current law
............... 71
3.6.2
Vector potential A
................. 71
3.6.3
Ohm s law
...................... 72
3.6.4
KirchhofFs voltage law
............... 73
3.7
Time-Dependent Current Flow
............... 75
3.8
Towards Circuit Theory
................... 77
Problems and Exercises
....................... 78
4.
Free Electrons in Quantum Mechanics
79
4.1
Particles, Fields, Wave Packets, and Uncertainty Relations
79
4.2
Schrödinger s
Equation
................... 82
4.2.1
Time-independent
Schrödinger
equation
..... 83
Contents xi
4.3
Free Electrons
........................ 84
4.3.1
Electron as a particle
................ 84
4.3.2
Electron as a wave
................. 85
4.3.3
A beam of free electrons
.............. 87
4.3.4
Electron as a wave packet
............. 88
4.3.5
Phase- and group velocity
............. 88
4.4
Free Electrons Meeting a Boundary
............ 89
4.4.1
Step potential:
E
<
Eo
............... 90
4.4.2
Step potential:
E
>
Eo
............... 93
4.5
Electrons in Potential Wells
................ 94
4.5.1
Infinite well: standing waves
............ 94
4.5.2
Finite well: periodic boundary conditions
.... 97
4.5.3
Quantization of energy
............... 98
4.5.4
Free-electron model
................. 99
4.5.5
Quantum cellular automata (QCAs)
....... 101
Problems and Exercises
....................... 102
5.
Current and Tunnel Current in Quantum Physics
105
5.1
Electrical Conductivity in Metals
............. 105
5.1.1
Drude
model
.................... 106
5.1.2
Electrical conductivity in quantum mechanics
. . 109
5.2
Current in Quantum Physics
................
Ill
5.2.1
Current density in quantum physics
....... 112
5.2.2
Current of free electrons
.............. 113
5.2.3
Purely real waves
.................. 114
5.3
Tunneling and Tunnel Current
............... 114
5.3.1
Tunneling through a rectangular barrier
..... 114
5.3.2
Tunnel current
................... 118
5.4
Shrinking Dimensions and Quantized Conductance
.... 119
5.4.1
Two-dimensions
................... 119
5.4.2
One-dimension and the quantum wire
...... 120
5.4.3
Ballistic Transport and the
Landauer
formula
. . 121
Problems and Exercises
....................... 123
6.
Energy in Circuit Theory
125
6.1
Lumped Circuits
....................... 125
6.1.1 Kirchhoff
s laws
................... 125
6.1.2
Circuit elements
.................. 126
xii
Introduction
to Nanoelectronic Single-Electron
Circuit Design
6.1.3
Energy considerations:
passive and active
elements
131
6.1.4
Linear elements and superposition
........ 133
6.1.5
Affine
linear and nonlinear elements
....... 136
6.2
Circuit Theorems
...................... 139
6.2.1
Tellegen s theorem
................. 139
6.2.2
Thévenin
and Norton equivalents
......... 143
Problems and Exercises
....................... 145
7.
Energy in the Switched Two-Capacitor Circuit
149
7.1
Problem Statement
..................... 149
7.2
Continuity Property in Linear Networks
.......... 150
7.2.1
Continuity property of bounded capacitor currents
151
7.3
Unbounded Currents
..................... 152
7.3.1
Voltages in circuits with unbounded currents
. . 152
7.4
Zero Initial Capacitor Voltage (Zero State)
........ 152
7.4.1
p-Operator notation
................. 152
7.4.2
Impedance and admittance operators of
the capacitor
..................... 154
7.4.3
Generalized functions
................ 155
7.5
Initial Charge Models
.................... 155
7.6
Solution A: Bounded Currents
............... 159
7.7
Solution B: Unbounded Currents
.............. 159
7.7.1
Energy generation and absorption in circuits with
unbounded currents
................. 160
7.7.2
Energy conservation
................. 161
7.8
Unbounded or Bounded Currents Through Circuits
.... 162
Problems and Exercises
....................... 162
8.
Impulse Circuit Model for Single-Electron Tunneling
—
Zero Tunneling Time
165
8.1
SET Junction Excited by an Ideal Current Source
—
Zero
Tunneling Time
........................ 167
8.1.1
Coulomb oscillations
................ 167
8.1.2
Tunneling of a single electron modeled by an
impulsive current
.................. 167
8.1.3
Energy is conserved: critical voltage
........ 171
8.2
SET Junction Excited by an Ideal Voltage Source
..... 173
8.2.1
Critical voltage
................... 174
8.3
Basic Assumptions
...................... 174
Contents xiii
8.3.1
During tunneling the equivalent circuit will have
an impulsive component
.............. 175
8.3.2
In SET circuits energy is conserved
........ 176
8.3.3
Tunneling through the barrier is nondissipative
. 176
8.3.4
Tunneling is possible when a reservoir filled with
electrons is facing empty energy levels
....... 177
8.3.5
In metals conduction electrons move on the
Fermi-level
...................... 177
8.4
Conditions for Tunneling
.................. 178
8.4.1
Resistive behavior
.................. 179
8.4.2
Hot-electron model at the positive side
...... 180
8.4.3
Filling empty states at the negative side
..... 180
8.4.4
Transition time
................... 182
8.4.5
Capacitive
behavior
................ 182
8.4.6
An extended hot-electron model
.......... 182
8.5
Tunnel Condition: Mathematical Formulation
...... 184
Problems and Exercises
....................... 185
9.
Impulse Circuit Model for Single-Electron Tunneling
—
Nonzero Tunneling Times
187
9.1
SET Junction Excited by an Ideal Current Source
—
Nonzero Tunneling Time
.................. 187
9.2
SET Junction Excited by
a
Nonideal
Current or Voltage
Source
............................ 192
9.3
Tunneling of Many Electrons, Stochastic Tunneling, and
Resistive Behavior
...................... 196
9.3.1
The probability that a single electron tunnels in a
time interval
Δτ
................... 197
9.3.2
Tunnel junction excited by an ideal voltage source:
many electrons
.................... 200
9.3.3
Tunnel junction excited by a current source:
stochastic behavior
................. 203
Problems and Exercises
....................... 204
10.
Generalizing the Theory to Multi-Junction Circuits
207
10.1
How Much Energy is Needed to Tunnel onto a Metallic
Island?
............................. 208
xiv
Introduction to Nanoelectronic Single-Electron Circuit Design
10.2
Electron Box Excited by an Ideal Current Source, Zero
Tunneling Time
........................ 210
10.2.1
Energy considerations: bounded currents
..... 211
10.3
Electron Box Excited by an Ideal Voltage Source
..... 211
10.3.1
Energy considerations: unbounded currents
.... 213
10.4
Electron Box Excited by a Current Source, Nonzero
Tunneling Time
........................ 214
10.5
Initial Island Charges and Random Background Charges
. 215
Problems and Exercises
....................... 216
11.
Single-Electron Tunneling Circuit Examples
217
11.1
Electron-Box
......................... 217
11.1.1
Excited by an ideal constant current source
.... 218
11.1.2
Excited by a real constant current source
..... 219
11.1.3
Excited by an ideal constant voltage source
. . . 219
11.2
Double Junction Structure
.................. 221
11.3
SET Transistor
........................ 223
11.4
Three Junction Structure
.................. 227
11.4.1
Using superposition to calculate the slopes in the
state diagram of the SET transistor
........ 228
11.4.2
State diagram of the general three
junction structure
.................. 229
11.5
SET Inverter
......................... 234
Problems and Exercises
....................... 235
12.
Circuit Design Methodologies
237
12.1
Introduction and Challenges
................. 237
12.1.1
Information and signals
............... 238
12.1.2
Uncertainties and inaccuracies
........... 238
12.1.3
The interconnection problem
............ 239
12.1.4
Managing the complexity in the design process
. . 240
12.2
Nanoelectronic Design Issues
................ 240
12.2.1
Coping with uncertainty and inaccuracy
..... 240
12.2.2
Coping with the interconnection problem
..... 245
12.2.3
Coping with the design-complexity problem
. . . 246
12.3
SET Circuit Design Issues
.................. 246
12.3.1
Signal amplification
................. 246
12.3.2
Biasing
........................ 248
12.3.3
Coupling
....................... 248
Contents xv
12.4 Circuit Simulation...................... 251
12.5 Random
Background
Charges................
255
12.5.1
Put the information in the amplitude or frequency
component of the signal
............... 256
12.5.2
Use compensation (circuits) to control the charge
among the islands
.................. 256
12.5.3
Use redundancy on a higher level (system level)
. 257
12.6
An outlook to System Design: Fuzzy Logic and Neural
Networks
........................... 257
12.6.1
Fuzzy logic
...................... 258
12.6.2
Neural networks
................... 258
12.6.3
SET Perceptron examples
............. 262
Problems and Exercises
....................... 266
13.
More Potential Applications and Challenges
267
13.1
Logic Circuits
......................... 267
13.1.1
Electron-box logic
.................. 268
13.1.2
Memory elements
.................. 277
13.2
Analog Functionality
..................... 279
13.2.1
Voltage controlled variable capacitor
........ 279
13.2.2
Charge detection
................... 280
13.2.3
Electron pump in metrology
............ 281
Problems and Exercises
....................... 281
Epilogue
283
Bibliography
289
Index
293
|
any_adam_object | 1 |
author | Hoekstra, Jaap |
author_facet | Hoekstra, Jaap |
author_role | aut |
author_sort | Hoekstra, Jaap |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV036773122 |
classification_rvk | ZN 4900 |
ctrlnum | (OCoLC)705965548 (DE-599)BVBBV036773122 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01499nam a2200373 c 4500</leader><controlfield tag="001">BV036773122</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110208 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101112s2010 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814241938</subfield><subfield code="9">981-424193-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814241939</subfield><subfield code="9">978-981-424193-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705965548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036773122</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4900</subfield><subfield code="0">(DE-625)157417:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoekstra, Jaap</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to nanoelectronic single-electron circuit design</subfield><subfield code="c">Jaap Hoekstra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Pan Stanford Publ.</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 301 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrierte Schaltung</subfield><subfield code="0">(DE-588)4027242-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Einelektronen-Tunneleffekt</subfield><subfield code="0">(DE-588)4297542-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanoelektronik</subfield><subfield code="0">(DE-588)4732034-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanoelektronik</subfield><subfield code="0">(DE-588)4732034-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Einelektronen-Tunneleffekt</subfield><subfield code="0">(DE-588)4297542-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Integrierte Schaltung</subfield><subfield code="0">(DE-588)4027242-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020689937&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020689937</subfield></datafield></record></collection> |
id | DE-604.BV036773122 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:47:46Z |
institution | BVB |
isbn | 9814241938 9789814241939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020689937 |
oclc_num | 705965548 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XV, 301 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Pan Stanford Publ. |
record_format | marc |
spelling | Hoekstra, Jaap Verfasser aut Introduction to nanoelectronic single-electron circuit design Jaap Hoekstra Singapore Pan Stanford Publ. 2010 XV, 301 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Integrierte Schaltung (DE-588)4027242-4 gnd rswk-swf Einelektronen-Tunneleffekt (DE-588)4297542-6 gnd rswk-swf Nanoelektronik (DE-588)4732034-5 gnd rswk-swf Nanoelektronik (DE-588)4732034-5 s Einelektronen-Tunneleffekt (DE-588)4297542-6 s Integrierte Schaltung (DE-588)4027242-4 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020689937&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hoekstra, Jaap Introduction to nanoelectronic single-electron circuit design Integrierte Schaltung (DE-588)4027242-4 gnd Einelektronen-Tunneleffekt (DE-588)4297542-6 gnd Nanoelektronik (DE-588)4732034-5 gnd |
subject_GND | (DE-588)4027242-4 (DE-588)4297542-6 (DE-588)4732034-5 |
title | Introduction to nanoelectronic single-electron circuit design |
title_auth | Introduction to nanoelectronic single-electron circuit design |
title_exact_search | Introduction to nanoelectronic single-electron circuit design |
title_full | Introduction to nanoelectronic single-electron circuit design Jaap Hoekstra |
title_fullStr | Introduction to nanoelectronic single-electron circuit design Jaap Hoekstra |
title_full_unstemmed | Introduction to nanoelectronic single-electron circuit design Jaap Hoekstra |
title_short | Introduction to nanoelectronic single-electron circuit design |
title_sort | introduction to nanoelectronic single electron circuit design |
topic | Integrierte Schaltung (DE-588)4027242-4 gnd Einelektronen-Tunneleffekt (DE-588)4297542-6 gnd Nanoelektronik (DE-588)4732034-5 gnd |
topic_facet | Integrierte Schaltung Einelektronen-Tunneleffekt Nanoelektronik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020689937&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hoekstrajaap introductiontonanoelectronicsingleelectroncircuitdesign |