Statistics and data analysis for financial engineering:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2011
|
Schriftenreihe: | Springer texts in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XXII, 638 S. graph. Darst. |
ISBN: | 9781441977861 9781441977878 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036754361 | ||
003 | DE-604 | ||
005 | 20150316 | ||
007 | t | ||
008 | 101103s2011 d||| |||| 00||| eng d | ||
015 | |a 10,N36 |2 dnb | ||
016 | 7 | |a 1006409920 |2 DE-101 | |
020 | |a 9781441977861 |c GB. : ca. EUR 80.20 (freier Pr.), ca. sfr 106.50 (freier Pr.) |9 978-1-441-97786-1 | ||
020 | |a 9781441977878 |9 978-1-4419-7787-8 | ||
024 | 3 | |a 9781441977861 | |
028 | 5 | 2 | |a 80024199 |
035 | |a (OCoLC)699635324 | ||
035 | |a (DE-599)DNB1006409920 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-N2 |a DE-19 |a DE-945 |a DE-384 |a DE-523 |a DE-20 |a DE-83 |a DE-861 | ||
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
084 | |a QK 600 |0 (DE-625)141666: |2 rvk | ||
084 | |a QP 890 |0 (DE-625)141965: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
084 | |a 330 |2 sdnb | ||
100 | 1 | |a Ruppert, David |d 1948- |e Verfasser |0 (DE-588)133112209 |4 aut | |
245 | 1 | 0 | |a Statistics and data analysis for financial engineering |c David Ruppert |
264 | 1 | |a New York [u.a.] |b Springer |c 2011 | |
300 | |a XXII, 638 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer texts in statistics | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Financial Engineering |0 (DE-588)4208404-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Financial Engineering |0 (DE-588)4208404-0 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 2 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |C b |5 DE-604 | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3530431&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020671561&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-020671561 |
Datensatz im Suchindex
_version_ | 1805094899567034368 |
---|---|
adam_text |
Contents
Notation.
XXI
1
Introduction
. 1
1.1 Bibliographie Notes. 3
1.2
References
. 4
2
Returns.
5
2.1
Introduction
. 5
2.1.1
Net Returns
. 5
2.1.2
Gross Returns
. 6
2.1.3
Log Returns
. 6
2.1.4
Adjustment for Dividends
. 7
2.2
The Random Walk Model
. 8
2.2.1
Random Walks
. 8
2.2.2
Geometric Random Walks
. 8
2.2.3
Are Log Prices
a
Lognormal
Geometric Random Walk?
9
2.3
Bibliographic Notes
. 10
2.4
References
. 10
2.5
R
Lab
. 11
2.5.1
Data Analysis
. 11
2.5.2
Simulations
. 12
2.6
Exercises
. 14
3
Fixed Income Securities
. 17
3.1
Introduction
. 17
3.2
Zero-Coupon Bonds
. 18
3.2.1
Price and Returns Fluctuate with the Interest Rate
. 18
3.3
Coupon Bonds
. 19
3.3.1
A General Formula
. 20
3.4
Yield to Maturity
. 21
3.4.1
General Method for Yield to Maturity
. 22
Contents
3.4.2 Spot Rates . 23
3.5
Term Structure
. 24
3.5.1
Introduction: Interest Rates Depend Upon Maturity
. 24
3.5.2
Describing the Term Structure
. 24
3.6
Continuous Compounding
. 29
3.7
Continuous Forward Rates
. 30
3.8
Sensitivity of Price to Yield
. 32
3.8.1
Duration of a Coupon Bond
. 32
3.9
Bibliographic Notes
. 33
3.10
References
. 34
3.11
R
Lab
. 34
3.11.1
Computing Yield to Maturity
. 34
3.11.2
Graphing Yield Curves
. 36
3.12
Exercises
. 36
Exploratory Data Analysis
. 41
4.1
Introduction
. 41
4.2
Histograms and Kernel Density Estimation
. 43
4.3
Order Statistics, the Sample CDF, and Sample Quantiles
. 48
4.3.1
The Central Limit Theorem for Sample Quantiles
. 49
4.3.2
Normal Probability Plots
. 50
4.3.3
Half-Normal Plots
. 54
4.3.4
Quantile-Quantile Plots
. 57
4.4
Tests of Normality
. 59
4.5
Boxplots
. 61
4.6
Data Transformation
. 62
4.7
The Geometry of Transformations
. 66
4.8
Transformation Kernel Density Estimation
. 70
4.9
Bibliographic Notes
. 73
4.10
References
. 73
4.11
R
Lab
. 74
4.11.1
European Stock Indices
. 74
4.12
Exercises
. 77
Modeling Univariate Distributions
. 79
5.1
Introduction
. 79
5.2
Parametric Models and Parsimony
. 79
5.3
Location, Scale, and Shape Parameters
. 80
5.4
Skewness, Kurtosis, and Moments
. 81
5.4.1
The Jarque-Bera test
. 86
5.4.2
Moments
. 86
5.5
Heavy-Tailed Distributions
. 87
5.5.1
Exponential and Polynomial Tails
. 87
5.5.2
f-Distributions
. 88
5.5.3
Mixture Models
. 90
Contents xi
5.6
Generalized Error Distributions
. 93
5.7
Creating Skewed from Symmetric Distributions
. 95
5.8
Quantile-Based Location, Scale, and Shape Parameters
. 97
5.9
Maximum Likelihood Estimation
. 98
5.10
Fisher Information and the Central Limit Theorem for the
MLE
. 98
5.11
Likelihood Ratio Tests
.101
5.12
AIC and
BIC
.102
5.13
Validation Data and Cross-Validation
.103
5.14
Fitting Distributions by Maximum Likelihood
.106
5.15
Profile Likelihood
.115
5.16
Robust Estimation
.117
5.17
Transformation Kernel Density Estimation with a Parametric
Transformation
.119
5.18
Bibliographic Notes
.122
5.19
References
.122
5.20
R
Lab
.123
5.20.1
Earnings Data
.123
5.20.2 DAX
Returns
.125
5.21
Exercises
.126
Resampling
.131
6.1
Introduction
.131
6.2
Bootstrap Estimates of Bias, Standard Deviation, and
MSE
. 132
6.2.1
Bootstrapping the MLE of the ¿-Distribution
.133
6.3
Bootstrap Confidence Intervals
.136
6.3.1
Normal Approximation Interval
.136
6.3.2
Bootstrap-ť
Intervals
.137
6.3.3
Basic Bootstrap Interval
.139
6.3.4
Percentile Confidence Intervals
.140
6.4
Bibliographic Notes
.144
6.5
References
.145
6.6
R
Lab
.145
6.6.1
BMW Returns
.145
6.7
Exercises
.147
Multivariate Statistical Models
.149
7.1
Introduction
.149
7.2
Covariance and Correlation Matrices
.149
7.3
Linear Functions of Random Variables
.151
7.3.1
Two or More Linear Combinations of Random Variablesl53
7.3.2
Independence and Variances of Sums
.154
7.4
Scatterplot Matrices
.155
7.5
The Multivariate Normal Distribution
.156
7.6
The Multivariate t-Distribution
.157
Contents
7.6.1
Using the ¿-Distribution in Portfolio Analysis
.160
7.7
Fitting the Multivariate ¿-Distribution by Maximum Likelihood
160
7.8
Elliptically Contoured Densities
.162
7.9
The Multivariate Skewed ¿-Distributions
.164
7.10
The Fisher Information Matrix
.166
7.11
Bootstrapping Multivariate Data
.167
7.12
Bibliographic Notes
.169
7.13
References
.169
7.14
R
Lab
.169
7.14.1
Equity Returns
.169
7.14.2
Simulating Multivariate ¿-Distributions
.171
7.14.3
Fitting a Bivariate ¿-Distribution
.172
7.15
Exercises
.173
Copulas
.175
8.1
Introduction
.175
8.2
Special Copulas
.177
8.3
Gaussian and ¿-Copulas
.177
8.4
Archimedean Copulas
.178
8.4.1
Frank Copula
.178
8.4.2
Clayton Copula
.180
8.4.3
Gumbel Copula
.181
8.5
Rank Correlation
.182
8.5.1
Kendall's
Tau.183
8.5.2
Spearman's Correlation Coefficient
.184
8.6
Tail Dependence
.185
8.7
Calibrating Copulas
.187
8.7.1
Maximum Likelihood
.188
8.7.2
Pseudo-Maximum Likelihood
.188
8.7.3
Calibrating Meta-Gaussian and Meta-i-Distributions
. 189
8.8
Bibliographic Notes
.193
8.9
References
.195
8.10
Problems
.195
8.11
R
Lab
.195
8.11.1
Simulating Copulas
.195
8.11.2
Fitting Copulas to Returns Data
.197
8.12
Exercises
.200
Time Series Models: Basics
.201
9.1
Time Series Data
.201
9.2
Stationary Processes
.201
9.2.1
White Noise
.205
9.2.2
Predicting White Noise
.205
9.3
Estimating Parameters of a Stationary Process
.206
9.3.1
ACF Plots and the Ljung-Box Test
.206
Contents xiii
9.4 AR(1)
Processes .
208
9.4.1
Properties of a stationary AR(1) Process
.209
9.4.2
Convergence to the Stationary Distribution
.211
9.4.3
Nonstationary AR(1) Processes
.211
9.5
Estimation of AR(1) Processes
.212
9.5.1
Residuals and Model Checking
.213
9.5.2
Maximum Likelihood and Conditional Least-Squares
. 217
9.6
AR(p) Models
.218
9.7
Moving Average (MA) Processes
.222
9.7.1
MA(1) Processes
.223
9.7.2
General MA Processes
.223
9.8
ARMA
Processes
.225
9.8.1
The Backwards Operator
.225
9.8.2
The
ARMA Modei.
225
9.8.3
ARMA(1,1) Processes
.226
9.8.4
Estimation of
ARMA
Parameters
.227
9.8.5
The Differencing Operator
.227
9.9
ARIMA Processes
.228
9.9.1
Drifts in ARIMA Processes
.232
9.10
Unit Root Tests
.233
9.10.1
How Do Unit Root Tests Work?
.235
9.11
Automatic Selection of an ARIMA Model
.236
9.12
Forecasting
.237
9.12.1
Forecast Errors and Prediction Intervals
.239
9.12.2
Computing Forecast Limits by Simulation
.241
9.13
Partial Autocorrelation Coefficients
.245
9.14
Bibliographic Notes
.247
9.15
References
.248
9.16
R
Lab
.248
9.16.1
Т
-bill Rates
.248
9.16.2
Forecasting
.251
9.17
Exercises
.251
10
Time Series Models: Further Topics
.257
10.1
Seasonal ARIMA Models
.257
10.1.1
Seasonal and nonseasonal differencing
.258
10.1.2
Multiplicative ARIMA Models
.259
10.2
Box
-Сох
Transformation for Time Series
.262
10.3
Multivariate Time Series
.264
10.3.1
The cross-correlation function
.264
10.3.2
Multivariate White Noise
.265
10.3.3
Multivariate
ARMA
processes
.266
10.3.4
Prediction Using Multivariate
AR
Models
.268
10.4
Long-Memory Processes
.270
10.4.1
The Need for Long-Memory Stationary Models
.270
xiv Contents
10.4.2
Fractional Differencing
.270
10.4.3
FARIMA Processes
.272
10.5
Bootstrapping Time Series
.276
10.6
Bibliographic Notes
.277
10.7
References
.277
10.8
R
Lab
.277
10.8.1
Seasonal ARIMA Models
.277
10.8.2
VAR
Models
.278
10.8.3
Long-Memory Processes
.279
10.8.4
Model-Based Bootstrapping of an ARIMA Process
_280
10.9
Exercises
.282
11
Portfolio Theory
.285
11.1
Trading Off Expected Return and Risk
.285
11.2
One Risky Asset and One Risk-Free Asset
.285
11.2.1
Estimating E{R) and aR
.287
11.3
Two Risky Assets
.287
11.3.1
Risk Versus Expected Return
.287
11.4
Combining Two Risky Assets with a Risk-Free Asset
.289
11.4.1
Tangency Portfolio with Two Risky Assets
.289
11.4.2
Combining the Tangency Portfolio with the Risk-Free
Asset
.291
11.4.3
Effect of p12
.292
11.5
Selling Short
.293
11.6
Risk-Efficient. Portfolios with
N
Risky Assets
.294
11.7
Resampling and Efficient Portfolios
.299
11.8
Bibliographic Notes
.305
11.9
References
.305
11.10
R
Lab
.306
11.10.1
Efficient Equity Portfolios
.306
11.11
Exercises
.307
12
Regression: Basics
.309
12.1
Introduction
.309
12.2
Straight-Line Regression
.310
12.2.1
Least-Squares Estimation
.310
12.2.2
Variance of
βχ
.314
12.3
Multiple Linear Regression
.315
12.3.1
Standard Errors,
í-
Values, and p-Values
.317
12.4
Analysis of Variance, Sums of Squares, and R2
.318
12.4.1
AOV Table
.318
12.4.2
Degrees of Freedom (DF)
.320
12.4.3
Mean Sums of Squares (MS) and F-Tests
.321
12.4.4
Adjusted R2
.323
12.5
Model Selection
.323
Contents
xv
12.6
Collinearity and Variance Inflation
.325
12.7
Partial Residual Plots
.332
12.8
Centering the Predictors
.334
12.9
Orthogonal Polynomials
.334
12.10
Bibliographic Notes
.335
12.11
References
.335
12.12
R
Lab
.335
12.12.1
U.S.
Macroeconomic
Variables
.335
12.13
Exercises
.338
13
Regression: Troubleshooting
.341
13.1
Regression Diagnostics
.341
13.1.1
Leverages
.343
13.1.2
Residuals
.344
13.1.3
Cook's
D
.346
13.2
Checking Model Assumptions
.348
13.2.1
Nonnormality
.349
13.2.2
Nonconstant Variance
.351
13.2.3
Nonlinearity
.351
13.2.4
Residual Correlation and Spurious Regressions
.354
13.3
Bibliographic Notes
.361
13.4
References
.361
13.5
R
Lab
.361
13.5.1
Current Population Survey Data
.361
13.6
Exercises
.364
14
Regression: Advanced Topics
.369
14.1
Linear Regression with
ARMA
Errors
.369
14.2
The Theory Behind Linear Regression
.373
14.2.1
The Effect of Correlated Noise and Heteroskedasticity
. 374
14.2.2
Maximum Likelihood Estimation for Regression
.374
14.3
Nonlinear Regression
.376
14.4
Estimating Forward Rates from Zero-Coupon Bond Prices
. 381
14.5
Transform-Both-Sides Regression
.386
14.5.1
How TBS Works
.388
14.6
Transforming Only the Response
.389
14.7
Binary Regression
.390
14.8
Linearizing a Nonlinear Model
.396
14.9
Robust Regression
.397
14.10
Regression and Best Linear Prediction
.401
14.10.1
Best Linear Prediction
.401
14.10.2
Prediction Error in Best Linear Prediction
.402
14.10.3
Regression Is Empirical Best Linear Prediction
.402
14.10.4
Multivariate Linear Prediction
.403
14.11
Regression Hedging
.403
xvi Contents
14.12 Bibliographie Notes.405
14.13
References
.405
14.14
R
Lab.406
14.14.1 Regression
with
ARMA
Noise
.406
14.14.2
Nonlinear Regression
.406
14.14.3
Response Transformations
.409
14.14.4
Binary Regression: Who Owns an Air Conditioner?
. 410
14.15
Exercises
.410
15
Cointegration
.413
15.1
Introduction
.413
15.2
Vector Error Correction Models
.415
15.3
Trading Strategies
.419
15.4
Bibliographic Notes
.419
15.5
References
.419
15.6
R
Lab
.420
15.6.1
Cointegration
Analysis of Midcap Prices
.420
15.6.2
Cointegration
Analysis of Yields
. 421
15.6.3
Simulation
.421
15.7
Exercises
.422
16
The Capital Asset Pricing Model
.423
16.1
Introduction to the CAPM
.423
16.2
The Capital Market Line (CML)
.424
16.3
Betas and the Security Market Line
.426
16.3.1
Examples of Betas
.428
16.3.2
Comparison of the CML with the SML
.428
16.4
The Security Characteristic Line
.429
16.4.1
Reducing Unique Risk by Diversification
.430
16.4.2
Are the Assumptions Sensible?
.432
16.5
Some More Portfolio Theory
.432
16.5.1
Contributions to the Market Portfolio's Risk
.432
16.5.2
Derivation of the SML
.433
16.6
Estimation of Beta and Testing the CAPM
.434
16.6.1
Estimation Using Regression
.434
16.6.2
Testing the CAPM
.436
16.6.3
Interpretation of Alpha
.437
16.7
Using the CAPM in Portfolio Analysis
.437
16.8
Bibliographic Notes
.437
16.9
References
.438
16.10
R
Lab
.438
16.11
Exercises
.440
Contents xvii
17
Factor
Models and Principal
Components
.443
17.1 Dimension
Reduction
.443
17.2 Principal
Components Analysis
.443
17.3
Factor Models
.453
17.4
Fitting Factor Models by Time Series Regression
.454
17.4.1
Fama
and French Three-Factor Model
.455
17.4.2
Estimating Expectations and Covariances of Asset
Returns
.460
17.5
Cross-Sectional Factor Models
.463
17.6
Statistical Factor Models
.466
17.6.1
Varimax Rotation of the Factors
.469
17.7
Bibliographic Notes
.470
17.8
References
.470
17.9
R
Lab
.471
17.9.1
PCA
.471
17.9.2
Fitting Factor Models by Time Series Regression
.473
17.9.3
Statistical Factor Models
.475
17.10
Exercises
.475
18
GARCH Models
.477
18.1
Introduction
.477
18.2
Estimating Conditional Means and Variances
.478
18.3
ARCHCl) Processes
.479
18.4
The AR(1)/ARCH(1) Model
.481
18.5
ARCH(p) Models
.482
18.6
ARIMAT
,
d,
qA)/GARCE(pG, qa) Models
.483
18.6.1
Residuals for
АШМА(рА,
d,
qA)/GARCE(pG, qG)
Models
.484
18.7
GARCH Processes Have Heavy Tails
.484
18.8
Fitting ARMA/GARCH Models
.484
18.9
GARCH Models as
ARMA
Models
.488
18.10
GARCHCU) Processes
.489
18.11
APARCH Models
.491
18.12
Regression with ARMA/GARCH Errors
.494
18.13
Forecasting ARMA/GARCH Processes
.497
18.14
Bibliographic Notes
.498
18.15
References
.499
18.16
R
Lab
.500
18.16.1
Fitting GARCH Models
.500
18.17
Exercises
.501
19
Risk Management
.505
19.1
The Need for Risk Management
.505
19.2
Estimating VaR and
ES
with One Asset
.506
19.2.1
Nonparametric Estimation of VaR and
ES.507
xviii Contents
19.2.2
Parametric
Estimation
of
VaR and ES
.508
19.3
Confidence
Intervals
for VaR and ES
Using the Bootstrap
. 511
19.4
Estimating VaR and
ES
Using ARMA/GARCH Models
.512
19.5
Estimating VaR and
ES
for a Portfolio of Assets
.514
19.6
Estimation of VaR Assuming Polynomial Tails
.516
19.6.1
Estimating the Tail Index
.518
19.7
Pareto Distributions
.522
19.8
Choosing the Horizon and Confidence Level
.523
19.9
VaR and Diversification
.524
19.10
Bibliographic Notes
.526
19.11
References
.526
19.12
R
Lab
.527
19.12.1
VaR Using a Multivariate-i Model
.527
19.13
Exercies
.528
20
Bayesian Data Analysis and MCMC
.531
20.1
Introduction
.531
20.2
Bayes's Theorem
.532
20.3
Prior and Posterior Distributions
.534
20.4
Conjugate Priors
.536
20.5
Central Limit Theorem for the Posterior
.543
20.6
Posterior Intervals
.543
20.7
Markov Chain Monte Carlo
.545
20.7.1
Gibbs Sampling
.546
20.7.2
Other Monte Carlo Samplers
.547
20.7.3
Analysis of MCMC Output
.548
20.7.4
WinBUGS
.549
20.7.5
Monitoring MCMC Convergence and Mixing
.551
20.7.6
DIC and po for Model Comparisons
.556
20.8
Hierarchical Priors
.558
20.9
Bayesian Estimation of a Covariance Matrix
.562
20.9.1
Estimating a Multivariate Gaussian Covariance Matrix
562
20.9.2
Estimating a multivariate-i Scale Matrix
.564
20.9.3
Non-conjugate Priors for the Covariate Matrix
.566
20.10
Sampling a Stationary Process
.566
20.11
Bibliographic Notes
.567
20.12
References
.569
20.13
R
Lab
.570
20.13.1
Fitting
a
ί
-Distrìbution
by MCMC
.570
20.13.2 AR
Models
.574
20.13.3
MA Models
.575
20.13.4
ARMA
Models
.577
20.14
Exercises
.577
Contents xix
21 Nonparametric Regression
and Splines
.579
21.1
Introduction.
579
21.2
Local Polynomial Regression
.581
21.2.1
Lowess and Loess
.584
21.3
Linear Smoothers
.584
21.3.1
The Smoother Matrix and the Effective Degrees of
Freedom
.585
21.3.2
AIC and GCV
.585
21.4
Polynomial Splines
.586
21.4.1
Linear Splines with One Knot
.586
21.4.2
Linear Splines with Many Knots
.587
21.4.3
Quadratic Splines
.588
21.4.4
pth Degree Splines
.589
21.4.5
Other Spline Bases
.589
21.5
Penalized Splines
.589
21.5.1
Selecting the Amount of Penalization
.591
21.6
Bibliographic Notes
.593
21.7
References
.593
21.8
R
Lab
.594
21.8.1
Additive Model for Wages, Education, and Experience
594
21.8.2
An Extended CKLS model for the Short Rate
.595
21.9
Exercises
.596
A Facts from Probability, Statistics, and Algebra
.597
A.I Introduction
.597
A.2 Probability Distributions
.597
A.
2.1
Cumulative Distribution Functions
.597
A.2.2 Quantiles and Percentiles
.597
A.2.3 Symmetry and Modes
.598
A.2.4 Support of a Distribution
.598
A.3 When Do Expected Values and Variances Exist?
.598
A.4
Monotonie
Functions
.599
A.5 The Minimum, Maximum, Infinum, and Supremum of a Set
. 599
A.6 Functions of Random Variables
.600
A.7 Random Samples
.601
A.8 The Binomial Distribution
.601
A.9 Some Common Continuous Distributions
.602
A.9.1 Uniform Distributions
.602
A.9.2 Transformation by the CDF and Inverse CDF
.602
A.9.3 Normal Distributions
.603
A.9.4 The
Lognormal
Distribution
.603
A.
9.5
Exponential and Double-Exponential Distributions
-----604
A.9.6 Gamma and Inverse-Gamma Distributions
.605
A.9.7 Beta Distributions
.606
A.9.8 Pareto Distributions
.606
xx Contents
АЛО
Sampling a
Normal Distribution.607
A.10.1 Chi-Squared
Distributions.
607
A.10.2 F-distributions
.607
A.ll
Law of Large Numbers and the Central Limit Theorem for
the Sample Mean
.608
A.
12
Bivariate Distributions
.608
A.13 Correlation and Covariance
.609
A.
13.1
Normal Distributions: Conditional Expectations and
Variance
.612
A.
14
Multivariate Distributions
.613
A.14.1 Conditional Densities
.613
A.
15
Stochastic Processes
.614
A.16 Estimation
.614
A.16.1 Introduction
.614
A.16.2 Standard Errors
.615
A.17 Confidence Intervals
.615
A.17.1 Confidence Interval for the Mean
.615
A.
17.2
Confidence Intervals for the Variance and Standard
Deviation
.616
A.17.3 Confidence Intervals Based on Standard Errors
.617
A.18 Hypothesis Testing
.617
A.
18.1
Hypotheses, Types of Errors, and Rejection Regions
. 617
A.18.2 p-Values
.618
A.18.3 Two-Sample i-Tests
.618
A.
18.4
Statistical Versus Practical Significance
.620
A.19 Prediction
.620
A.20 Facts About Vectors and Matrices
.621
A.21 Roots of Polynomials and Complex Numbers
.621
A.22 Bibliographic Notes
.622
A.23 References
.622
Index
.623 |
any_adam_object | 1 |
author | Ruppert, David 1948- |
author_GND | (DE-588)133112209 |
author_facet | Ruppert, David 1948- |
author_role | aut |
author_sort | Ruppert, David 1948- |
author_variant | d r dr |
building | Verbundindex |
bvnumber | BV036754361 |
classification_rvk | QH 234 QK 600 QP 890 SK 980 |
ctrlnum | (OCoLC)699635324 (DE-599)DNB1006409920 |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV036754361</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150316</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101103s2011 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N36</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1006409920</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441977861</subfield><subfield code="c">GB. : ca. EUR 80.20 (freier Pr.), ca. sfr 106.50 (freier Pr.)</subfield><subfield code="9">978-1-441-97786-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441977878</subfield><subfield code="9">978-1-4419-7787-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781441977861</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">80024199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699635324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1006409920</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-861</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 600</subfield><subfield code="0">(DE-625)141666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 890</subfield><subfield code="0">(DE-625)141965:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruppert, David</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133112209</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistics and data analysis for financial engineering</subfield><subfield code="c">David Ruppert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 638 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer texts in statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Financial Engineering</subfield><subfield code="0">(DE-588)4208404-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Financial Engineering</subfield><subfield code="0">(DE-588)4208404-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3530431&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020671561&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020671561</subfield></datafield></record></collection> |
id | DE-604.BV036754361 |
illustrated | Illustrated |
indexdate | 2024-07-20T10:50:44Z |
institution | BVB |
isbn | 9781441977861 9781441977878 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020671561 |
oclc_num | 699635324 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-N2 DE-19 DE-BY-UBM DE-945 DE-384 DE-523 DE-20 DE-83 DE-861 |
owner_facet | DE-355 DE-BY-UBR DE-N2 DE-19 DE-BY-UBM DE-945 DE-384 DE-523 DE-20 DE-83 DE-861 |
physical | XXII, 638 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series2 | Springer texts in statistics |
spelling | Ruppert, David 1948- Verfasser (DE-588)133112209 aut Statistics and data analysis for financial engineering David Ruppert New York [u.a.] Springer 2011 XXII, 638 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer texts in statistics Datenanalyse (DE-588)4123037-1 gnd rswk-swf Financial Engineering (DE-588)4208404-0 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Financial Engineering (DE-588)4208404-0 s Statistik (DE-588)4056995-0 s Datenanalyse (DE-588)4123037-1 s b DE-604 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3530431&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020671561&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ruppert, David 1948- Statistics and data analysis for financial engineering Datenanalyse (DE-588)4123037-1 gnd Financial Engineering (DE-588)4208404-0 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4208404-0 (DE-588)4056995-0 |
title | Statistics and data analysis for financial engineering |
title_auth | Statistics and data analysis for financial engineering |
title_exact_search | Statistics and data analysis for financial engineering |
title_full | Statistics and data analysis for financial engineering David Ruppert |
title_fullStr | Statistics and data analysis for financial engineering David Ruppert |
title_full_unstemmed | Statistics and data analysis for financial engineering David Ruppert |
title_short | Statistics and data analysis for financial engineering |
title_sort | statistics and data analysis for financial engineering |
topic | Datenanalyse (DE-588)4123037-1 gnd Financial Engineering (DE-588)4208404-0 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Datenanalyse Financial Engineering Statistik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3530431&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020671561&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ruppertdavid statisticsanddataanalysisforfinancialengineering |