Molecular electronics: an introduction to theory and experiment
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
2010
|
Schriftenreihe: | World Scientific series in nanoscience and nanotechnology
1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 703 S. graph. Darst. |
ISBN: | 9789814282581 9814282588 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV036729779 | ||
003 | DE-604 | ||
005 | 20230630 | ||
007 | t | ||
008 | 101020s2010 d||| |||| 00||| eng d | ||
020 | |a 9789814282581 |9 978-981-4282-58-1 | ||
020 | |a 9814282588 |9 981-4282-58-8 | ||
035 | |a (OCoLC)699598407 | ||
035 | |a (DE-599)BVBBV036729779 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-20 |a DE-29T |a DE-19 |a DE-703 | ||
084 | |a UM 6000 |0 (DE-625)145903: |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
100 | 1 | |a Cuevas, Juan Carlos |e Verfasser |4 aut | |
245 | 1 | 0 | |a Molecular electronics |b an introduction to theory and experiment |c Juan Carlos Cuevas ; Elke Scheer |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 2010 | |
300 | |a XIX, 703 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a World Scientific series in nanoscience and nanotechnology |v 1 | |
650 | 0 | 7 | |a Molekularelektronik |0 (DE-588)4170394-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanoelektronik |0 (DE-588)4732034-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Molekularelektronik |0 (DE-588)4170394-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nanoelektronik |0 (DE-588)4732034-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Scheer, Elke |e Verfasser |4 aut | |
830 | 0 | |a World Scientific series in nanoscience and nanotechnology |v 1 |w (DE-604)BV036729741 |9 1 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020647481&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020647481 |
Datensatz im Suchindex
_version_ | 1804143382419734528 |
---|---|
adam_text | Contents
Preface
vii
Acknowledgments
ix
Brief history of the field and experimental
techniques
1
1.
The birth of molecular electronics
3
1.1
Why molecular electronics?
................. 5
1.2
A brief history of molecular electronics
........... 6
1.3
Scope and structure of the book
.............. 14
2.
Fabrication of metallic atomic-size contacts
19
2.1
Introduction
.......................... 19
2.2
Techniques involving the scanning electron microscope
(STM)
............................. 19
2.3
Methods using atomic force microscopes (AFM)
..... 21
2.4
Contacts between macroscopic wires
............ 22
2.5
Transmission electron microscope
.............. 23
2.6
Mechanically controllable break-junctions (MCBJ)
.... 24
2.7
Electromigration technique
................. 31
2.8
Electrochemical methods
................... 35
2.9
Recent developments
..................... 37
2.10
Electronic transport measurements
............. 38
2.11
Exercises
........................... 43
xii
Molecular Electronics:
An Introduction
to Theory and Experiment
3.
Contacting single molecules: Experimental techniques
45
3.1
Introduction
.......................... 45
3.2
Molecules for molecular electronics
............. 46
3.2.1
Hydrocarbons
.................... 47
3.2.2
All carbon materials
................. 50
3.2.3 DNA
and
DNA
derivatives
............. 51
3.2.4
Metal-molecule contacts: anchoring groups
.... 52
3.2.5
Conclusions: molecular functionalities
....... 52
3.3
Deposition of molecules
................... 53
3.4
Contacting single molecules
................. 55
3.4.1
Electromigration technique
............. 56
3.4.2
Molecular contacts using the transmission electron
microscope
...................... 58
3.4.3
Gold nanoparticle dumbbells
............ 59
3.4.4
Scanning probe techniques
............. 60
3.4.5
Mechanically controllable break-junctions (MCBJs)
64
3.5
Contacting molecular ensembles
............... 66
3.5.1
Nanopores
...................... 66
3.5.2
Shadow masks
.................... 68
3.5.3
Conductive polymer electrodes
........... 69
3.5.4 Microtransfer
printing
................ 70
3.5.5
Gold nanoparticle arrays
.............. 71
3.6
Exercises
........................... 73
Theoretical background
75
4.
The scattering approach to phase-coherent transport in
nanocontacts
77
4.1
Introduction
.......................... 77
4.2
Prom mesoscopic conductors to atomic-scale junctions
. . 79
4.3
Conductance is transmission: Heuristic derivation of the
Landauer
formula
....................... 81
4.4
Penetration of a potential barrier: Tunnel effect
...... 83
4.5
The scattering matrix
.................... 88
4.5.1
Definition and properties of the scattering matrix
88
4.5.2
Combining scattering matrices
........... 91
4.6
Multichannel
Landauer
formula
............... 92
Contents xiii
4.6.1 Conductance
quantization in 2DEG:
Landauer
formula at work
................... 97
4.7
Shot noise
........................... 99
4.8
Thermal transport and thermoelectric phenomena
.... 104
4.9
Limitations of the scattering approach
........... 106
4.10
Exercises
........................... 107
5.
Introduction to Green s function techniques for systems
in equilibrium 111
5.1
The
Schrödinger
and
Heisenberg
pictures
......... 112
5.2
Green s functions of a noninteracting electron system
. . . 113
5.3
Application to tight-binding Hamiltonians
......... 118
5.3.1
Example
1:
A hydrogen molecule
......... 118
5.3.2
Example
2:
Semi-infinite linear chain
....... 122
5.3.3
Example
3:
A single level coupled to electrodes
. 124
5.4
Green s functions in time domain
.............. 128
5.4.1
The
Lehmann
representation
............ 131
5.4.2
Relation to
observables
............... 134
5.4.3
Equation of motion method
............ 136
5.5
Exercises
........................... 139
6.
Green s functions and Feynman diagrams
143
6.1
The interaction picture
.................... 144
6.2
The time-evolution, operator
................. 146
6.3
Perturbative expansion of causal Green s functions
.... 148
6.4
Wick s theorem
........................ 149
6.5
Feynman diagrams
...................... 151
6.5.1
Feynman diagrams for the electron-electron inter¬
action
......................... 152
6.5.2
Feynman diagrams for an external potential
. . . 157
6.6
Feynman diagrams in energy space
............. 158
6.7
Electronic self-energy and Dyson s equation
........ 162
6.8
Self-consistent diagrammatic theory: The Hartree-Fock
approximation
........................ 167
6.9
The Anderson model and the Kondo effect
......... 170
6.9.1
Friedel sum rule
................... 171
6.9.2
Perturbative analysis
................ 173
6.10
Final remarks
......................... 175
xiv
Molecular Electronics:
An Introduction
to Theory and Experiment
6.11
Exercises
........ . .................. 176
7.
Nonequilibrium
Green s functions formalism
179
7.1
The Keldysh formalism
................... 180
7.2
Diagrammatic expansion in the Keldysh formalism
.... 184
7.3
Basic relations and equations in the Keldysh formalism
. 186
7.3.1
Relations between the Green s functions
..... 186
7.3.2
The triangular representation
........... 187
7.3.3
Unperturbed Keldysh-Green s functions
...... 189
7.3.4
Some comments on the notation
.......... 191
7.4
Application of Keldysh formalism to simple transport
problems
............................ 191
7.4.1
Electrical current through a metallic atomic contact
193
7.4.2
Shot noise in an atomic contact
.......... 199
7.4.3
Current through a resonant level
.......... 200
7.5
Exercises
........................... 202
8.
Formulas of the electrical current: Exploiting the Keldysh
formalism
205
8.1
Elastic current: Microscopic derivation of the
Landauer
formula
............................ 205
8.1.1
An example: back to the resonant tunneling model
211
8.1.2 Nonorthogonal
basis sets
.............. 212
8.1.3
Spin-dependent elastic transport
.......... 213
8.2
Current through an interacting atomic-scale junction
. . . 215
8.2.1
Electron-phonon interaction in the resonant tun¬
neling model
..................... 217
8.2.2
The Meir-Wingreen formula
............ 222
8.3
Time-dependent transport in nanoscale junctions
..... 224
8.3.1
Photon-assisted resonant tunneling
........ 231
8.4
Exercises
........................... 233
9.
Electronic structure I: Tight-binding approach
237
9.1
Basics of the tight-binding approach
............ 237
9.2
The extended Hiickel method
................ 241
9.3
Matrix elements in solid state approaches
......... 242
9.3.1
Two-center matrix elements
. . .......... 244
9.4
Slater-Koster two-center approximation
.......... 246
Contents xv
9.5
Some
illustrative
examples
.................. 247
9.5.1
Example
1:
A benzene molecule
.......... 248
9.5.2
Example
2:
Energy bands in line, square and cubic
Bravais
lattices
.................... 250
9.5.3
Example
3:
Energy bands of graphene
...... 252
9.6
The NRL tight-binding method
............... 253
9.7
The tight-binding approach in molecular electronics
. . . 257
9.7.1
Some comments on the practical implementation
of the tight-binding approach
............ 258
9.7.2
Tight-binding simulations of atomic-scale trans¬
port junctions
.................... 259
9.8
Exercises
........................... 260
10.
Electronic structure II: Density functional theory
263
10.1
Elementary quantum mechanics
............... 264
10.1.1
The
Schrödinger
equation
.............. 264
10.1.2
The variational principle for the ground state
. . 265
10.1.3
The Hartree-Fock approximation
.......... 266
10.2
Early density functional theories
.............. 268
10.3
The Hohenberg-Kohn theorems
............... 269
10.4
The Kohn-Sham approach
.................. 271
10.5
The exchange-correlation functionals
............ 273
10.5.1
LDA approximation
................. 273
10.5.2
The generalized gradient approximation
...... 275
10.5.3
Hybrid functionals
.................. 277
10.6
The basic machinery of DFT
................ 277
10.6.1
The LCAO
Ansatz in
the Kohn-Sham equations
. 278
10.6.2
Basis sets
....................... 280
10.7
DFT performance
...................... 282
10.8
DFT in molecular electronics
................ 284
10.8.1
Combining DFT with NEGF techniques
..... 285
10.8.2
Pluses and minuses of DFT-NEGF-based methods
291
10.9
Exercises
........................... 292
Metallic atomic-size contacts
293
11.
The conductance of a single atom
295
11.1 Landauer
approach to conductance: brief reminder
.... 296
xvi
Molecular Electronics: An Introduction to Theory and Experiment
11.2
Conductance of atomic-scale contacts
........... 297
11.3
Conductance histograms
................... 300
11.4
Determining the conduction channels
............ 304
11.5
The chemical nature of the conduction channels of one-
atom contacts
......................... 308
11.6
Some further issues
...................... 316
11.7
Conductance fluctuations
.................. 319
11.8
Atomic chains: Parity oscillations in the conductance
. . . 322
11.9
Concluding remarks
..................... 331
11.10
Exercises
........................... 332
12.
Spin-dependent transport in ferromagnetic atomic
contacts
335
12.1
Conductance of ferromagnetic atomic contacts
...... 336
12.2 Magnetoresistance
of ferromagnetic atomic contacts
. . . 343
12.3 Anisotropie magnetoresistance
in atomic contacts
..... 347
12.4
Concluding remarks and open problems
.......... 353
Transport through molecular junctions
355
13.
Coherent transport through molecular junctions I: Basic
concepts
357
13.1
Identifying the transport mechanism in single-molecule
junctions
........................... 359
13.2
Some lessons from the resonant tunneling model
..... 364
13.2.1
Shape of the I-V curves .
.............. 366
13.2.2
Molecular contacts as tunnel junctions
...... 368
13.2.3
Temperature dependence of the current
...... 369
13.2.4
Symmetry of the I-V curves
............. 371
13.2.5
The resonant tunneling model at work
...... 373
13.3
A two-level model
...................... 374
13.4
Length dependence of the conductance
........... 377
13.5
Rule of conjugation in Tr-electron systems
......... 381
13.6
Fano
resonances
.......:............... 382
13.7
Negative differential resistance
............... 385
13.8
Final remarks
......................... 388
13.9
Exercises
........................... 389
Contents xvii
14.
Coherent transport through molecular junctions II:
Test-bed molecules 39I
14.1
Coherent transport through some test-bed molecules
. . . 392
14.1.1
Benzenedithiol: how everything started
......392
14.1.2
Conductance of alkanedithiol molecular junctions:
A reference system
................. 395
14.1.3
The smallest molecular junction: Hydrogen
bridges
........................ 401
14.1.4
Highly conductive benzene junctions
........ 405
14.2
Metal-molecule contact: The role of anchoring groups
. . 408
14.3
Tuning chemically the conductance: The role of
side-groups
.......................... 412
14.4
Controlled STM-based single-molecule experiments
.... 416
14.5
Conclusions and open problems
............... 420
15.
Single-molecule transistors: Coulomb blockade and
Kondo physics
423
15.1
Introduction
.......................... 423
15.2
Charging effects in transport through nanoscale devices
. 425
15.3
Single-molecule three-terminal devices
........... 429
15.4
Coulomb blockade theory: Constant interaction model
. . 432
15.4.1
Formulation of the problem
............. 432
15.4.2
Periodicity of the Coulomb blockade oscillations
. 435
15.4.3
Qualitative discussion of the transport
characteristics
.................... 436
15.4.4
Amplitudes and
Une
shapes: Rate equations
. . . 439
15.5
Towards a theory of Coulomb blockade in molecular tran¬
sistors
............................. 445
15.5.1
Many-body master equations
............447
15.5.2
A simple example: The Anderson model
.....449
15.6
Intermediate coupling: Cotunneling and Kondo effect
. . 451
15.6.1
Elastic and inelastic cotunneling
.......... 451
15.6.2
Kondo effect
..................... 453
15.7
Single-molecule transistors: Experimental results
..... 456
15.8
Exercises
........................... 468
16.
Vibrationally-indnced inelastic current I: Experiment
473
16.1
Introduction
.......................... 473
xviii
Molecular Electronics:
An Introduction to Theory and Experiment
16.2
Inelastic electron tunneling spectroscopy
(IETS)
..... 475
16.3
Highly conductive junctions: Point-contact spectroscopy
(PCS)
............................. 483
16.4
Crossover between PCS and
IETS
............. 490
16.5
Resonant inelastic electron tunneling spectroscopy
(METS)
............................ 493
16.6
Summary of vibrational signatures
............. 499
17.
Vibrationally-induced inelastic current II: Theory
501
17.1
Weak electron-phonon coupling regime
........... 501
17.1.1
Single-phonon model
................ 502
17.1.2 Ab initio
description of inelastic currents
..... 512
17.2
Intermediate electron-phonon coupling regime
....... 520
17.3
Strong electron-phonon coupling regime
.......... 524
17.3.1
Coulomb blockade regime
.............. 524
17.3.2
Interplay of Kondo physics and vibronic effects
. . 532
17.4
Concluding remarks and open problems
.......... 534
17.5
Exercises
........................... 535
18.
The hopping regime and transport through
DNA
molecules
537
18.1
Signatures of the hopping regime
.............. 538
18.2
Hopping transport in molecular junctions: Experimental
examples
........................... 541
18.3
DNA-based molecular junctions
............... 546
18.4
Exercises
........................... 552
19.
Beyond electrical conductance: Shot noise and thermal
transport
553
19.1
Shot noise in atomic and molecular junctions
....... 554
19.2
Heating and heat conduction
................ 560
19.2.1
General considerations
............... 561
19.2.2
Thermal conductance
................ 562
19.2.3
Heating and junction temperature
......... 565
19.3
Thermoelectricity in molecular junctions
.......... 569
20.
Optical properties of current-carrying molecular
junctions
579
Contents xix
20.1
Surface-enhanced Raman spectroscopy of molecular
junctions
........................... 580
20.2
Transport mechanisms in irradiated molecular junctions
. 583
20.3
Theory of photon-assisted tunneling
............ 585
20.3.1
Basic theory
..................... 586
20.3.2
Theory of PAT in atomic contacts
......... 590
20.3.3
Theory of PAT in molecular junctions
....... 592
20.4
Experiments on radiation-induced transport in atomic and
molecular junctions
...................... 594
20.5
Resonant current amplification and other transport phe¬
nomena in ac driven molecular junctions
.......... 601
20.6
Fluorescence from current-carrying molecular junctions
. 604
20.7
Molecular optoelectronic devices
.............. 608
20.8
Final remarks
......................... 613
20.9
Exercises
........................... 614
21.
What is missing in this book?
617
Appendixes
621
Appendix A Second Quantization
623
A.I Harmonic oscillator and phonons
.............. 624
A.
1.1
Review of simple harmonic oscillator quantization
624
A.1.2 ID harmonic chain
................. 626
A.2 Second quantization for
fermions
.............. 628
A.
2.1
Many-body wave function in second quantization
628
A.2.2 Creation and annihilation operators
........ 630
A.2.3 Operators in second quantization
......... 632
A.2.4 Some special Hamiltonians
............. 634
A.3 Second quantization for bosons
............... 637
A.4 Exercises
........................... 638
Bibliography
639
Index
699
|
any_adam_object | 1 |
author | Cuevas, Juan Carlos Scheer, Elke |
author_facet | Cuevas, Juan Carlos Scheer, Elke |
author_role | aut aut |
author_sort | Cuevas, Juan Carlos |
author_variant | j c c jc jcc e s es |
building | Verbundindex |
bvnumber | BV036729779 |
classification_rvk | UM 6000 ZN 3700 |
ctrlnum | (OCoLC)699598407 (DE-599)BVBBV036729779 |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01709nam a2200409 cb4500</leader><controlfield tag="001">BV036729779</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230630 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101020s2010 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814282581</subfield><subfield code="9">978-981-4282-58-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814282588</subfield><subfield code="9">981-4282-58-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699598407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036729779</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 6000</subfield><subfield code="0">(DE-625)145903:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cuevas, Juan Carlos</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular electronics</subfield><subfield code="b">an introduction to theory and experiment</subfield><subfield code="c">Juan Carlos Cuevas ; Elke Scheer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 703 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">World Scientific series in nanoscience and nanotechnology</subfield><subfield code="v">1</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekularelektronik</subfield><subfield code="0">(DE-588)4170394-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanoelektronik</subfield><subfield code="0">(DE-588)4732034-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekularelektronik</subfield><subfield code="0">(DE-588)4170394-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nanoelektronik</subfield><subfield code="0">(DE-588)4732034-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scheer, Elke</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">World Scientific series in nanoscience and nanotechnology</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV036729741</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020647481&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020647481</subfield></datafield></record></collection> |
id | DE-604.BV036729779 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:46:46Z |
institution | BVB |
isbn | 9789814282581 9814282588 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020647481 |
oclc_num | 699598407 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-29T DE-19 DE-BY-UBM DE-703 |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-29T DE-19 DE-BY-UBM DE-703 |
physical | XIX, 703 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific |
record_format | marc |
series | World Scientific series in nanoscience and nanotechnology |
series2 | World Scientific series in nanoscience and nanotechnology |
spelling | Cuevas, Juan Carlos Verfasser aut Molecular electronics an introduction to theory and experiment Juan Carlos Cuevas ; Elke Scheer Singapore [u.a.] World Scientific 2010 XIX, 703 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier World Scientific series in nanoscience and nanotechnology 1 Molekularelektronik (DE-588)4170394-7 gnd rswk-swf Nanoelektronik (DE-588)4732034-5 gnd rswk-swf Molekularelektronik (DE-588)4170394-7 s DE-604 Nanoelektronik (DE-588)4732034-5 s Scheer, Elke Verfasser aut World Scientific series in nanoscience and nanotechnology 1 (DE-604)BV036729741 1 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020647481&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cuevas, Juan Carlos Scheer, Elke Molecular electronics an introduction to theory and experiment World Scientific series in nanoscience and nanotechnology Molekularelektronik (DE-588)4170394-7 gnd Nanoelektronik (DE-588)4732034-5 gnd |
subject_GND | (DE-588)4170394-7 (DE-588)4732034-5 |
title | Molecular electronics an introduction to theory and experiment |
title_auth | Molecular electronics an introduction to theory and experiment |
title_exact_search | Molecular electronics an introduction to theory and experiment |
title_full | Molecular electronics an introduction to theory and experiment Juan Carlos Cuevas ; Elke Scheer |
title_fullStr | Molecular electronics an introduction to theory and experiment Juan Carlos Cuevas ; Elke Scheer |
title_full_unstemmed | Molecular electronics an introduction to theory and experiment Juan Carlos Cuevas ; Elke Scheer |
title_short | Molecular electronics |
title_sort | molecular electronics an introduction to theory and experiment |
title_sub | an introduction to theory and experiment |
topic | Molekularelektronik (DE-588)4170394-7 gnd Nanoelektronik (DE-588)4732034-5 gnd |
topic_facet | Molekularelektronik Nanoelektronik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020647481&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV036729741 |
work_keys_str_mv | AT cuevasjuancarlos molecularelectronicsanintroductiontotheoryandexperiment AT scheerelke molecularelectronicsanintroductiontotheoryandexperiment |