Heart development and regeneration: 1
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier, Acad. Press
2010
|
Ausgabe: | 1. ed. |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXXII, 565, 31 S. Ill., graph. Darst. |
ISBN: | 9780123724908 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV036721747 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 101015s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780123724908 |9 978-0-12-372490-8 | ||
035 | |a (OCoLC)700336643 | ||
035 | |a (DE-599)BVBBV036721747 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
245 | 1 | 0 | |a Heart development and regeneration |n 1 |c ed. by Nadia Rosenthal ... |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier, Acad. Press |c 2010 | |
300 | |a XXXII, 565, 31 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Rosenthal, Nadia |e Sonstige |4 oth | |
773 | 0 | 8 | |w (DE-604)BV036721723 |g 1 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639609&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639609&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-020639609 |
Datensatz im Suchindex
_version_ | 1804143370655760384 |
---|---|
adam_text | Volume
I
.Contents
List of Contributors
Foreword
Preface
Heart Evolution
1.1.
Evolutionary Origins of Hearts
losé Xavier-Neto,
Brad Davidson, Marcos
Sawada Simoes-Costa,
Rodrigo Abe
Castro,
Hozana
Andrade
Castillo, Allysson
Coelho
Sampaio
and Ana Paula Azambuja
I. Introduction
II. Animal Circulatory Pumps: Micropumps
and Macropumps
H.A.
Macropumps or Specialized
Pumping Organs
III. What is a Heart? Telling Homology from
Analogy
IV. What Phylogenies Tell Us About the
Origins of Pumping Organs
IV.A. Morphological and Molecular
Phylogenies
IV.B. Phylogenies and the Origin of
Pumping Organs
IV.C. Peristaltic Pumps Arose in
Connection with Blood Vascular
Systems of Bilaterians
V. The Rise of Blood Vascular Systems
V.A. Myoepithelial Cells, Myocytes and
the Origin of the Ancestral Peristaltic
Pump
VI. A
Gut Origin for the Ancestral Peristaltic
Pump: An Alternative View
VI.A. Origins of Pumping Organs: A
Synthesis
VII.
Reconstructing the Circulation in the
Bilaterian Ancestor
VILA. The Impact of the Ancestral
Peristaltic Pump Concept
xxv
VII.B. Homology, Analogy and Gene
xxix
Regulatory Networks
12
xxxi
VII.C. Parallel Avenues in the Evolution
of Hearts and Pumping Organs
14
VII.D. A Reappraisal of the Different
Categories of Pumping Organs
14
VIII.
Hemodynamic Constraints May Have
Shaped Modern Pumping Organs Out
of a Primitive Peristaltic Pump
16
VIII.A. Solutions to the Shortcomings
of Peristaltic Pumps: A Mixed
Bag of Tricks
17
IX. The Evolution of Chambered Hearts
Among Deuterostomes
19
IX.A.
Deuterostome
Phylogenies
19
3
IX.B. The Pumping Organs of
Deuterostomes
19
4
IX.C. Vertebrates
25
IX.D. Extant Vertebrates
25
4
X. Chordates: A Synthesis
26
XI. The Evolutionary Origin of Cardiac
5
Chambers
26
XI.A. The Problem
26
5 XII.
Chordate Phylogenies and the Origin
of Vertebrate Hearts
27
5
XII.A. EarlierViews
27
XII.B. Alternative Phylogenies for the
6
Vertebrate Heart
27
XIII.
Scrutinizing Cardiac Chamber Evolution
28
Xlll.A. Using the Typical Attributes of
6
Cardiac Chambers as Handles
28
9
XIII.B. Gene Regulatory Networks and
the Emergence of Cardiac Muscle
28
XIII.
С
The Evolution of Chamber
9
Myocardium
28
XIII.D. The Inflow/Outflow Organization
28
10 XIV.
The Path to a Chambered Heart
29
XV. Hypotheses for the Evolution of
12
Cardiac Chambers
29
XV.A. The Sequential Hypothesis
29
12
XV.B. The Recruitment Hypothesis
31
XV.C. The Inflow/Outflow Patterning
12
Hypothesis
32
vu
Vlil
Contents
XVI.
Challenges
to the Inflow/Outflow
Patterning Hypothesis
32
XV1.A. The Second Heart Field
33
XVI.B. Conflicting Evidence
33
XVI.C. The Second Heart Field Goes
Evolutionary
34
XVI.D. One Cardiac Field After All?
35
XVI.E. Reconciling Cardiac Anterior-
Posterior Patterning with the
Heterogeneous Nature of the
Cardiac Field
35
XVI.F. Retinoic Acid Signaling and
Cardiac Anterior-Posterior
Patterning in Amphibians and Fish
35
XVII.
Conclusions
38
References
38
1.2.
Development and Aging of the
Drosophila
Heart
Rolf Bodmer and Manfred
Fräsch
I. Introduction
47
II. Morphology and Morphogenesis
of the
Drosophila
Heart
47
H.A.
Heart Structure
47
II.B.
Embryology of Heart Development
48
III. Genetic Control of the Formation and
Dorsal Expansion of the Mesoderm
50
III.A. Twist and Snail
50
III.B. Heartless
51
IV. Transcription Factors Controlling
Cardiac Specification
51
IV.A. The NK Homeobox Gene tinman
51
IV.B. The Dorsocross
Т
-box
Genes
54
IV.C. The GATA-Encoding Gene pannier
54
IV.D. The islet-1 Ortholog ta/ /up
56
IV.E. The Zinc-Finger Encoding Gene
zfh
7
and the Homeobox Gene eve
in Pericardia! Cell Specification
56
V. Combinatorial Signals During Cardiac
Induction
57
V.A. The Signaling Factors Encoded by
decapentaplegic and wingless
57
V.B. A Combinatorial Model for
Specifying the Precardiac
Mesoderm
59
V.C. Early Diversification within the
Cardiac Mesoderm
61
VI. Lineage Decisions and Notch Signaling
During the Specification of Cardiac Cells
64
VII.
Axial Patterning, Diversification and
Differentiation of the Myocardium
64
VILA. Intrasegmental Myocardial
Diversification Within the
Developing Dorsal Vessel
64
VII.B. Axial Patterning and Subdivision
of the Dorsal Vessel
67
VII.C. Differentiation of the Dorsal Vessel
69
VIII.
Assembly of the Cardiac Tube
71
VIII.A. Myocardial Polarity
71
VI1I.B. The Mevalonate Pathway
72
IX. Remodeling of the Larval to the Adult
Dorsal Vessel
72
X. Controls of the Physiology and Aging
of the Adult Heart
74
X.A. Control of the Heart Rhythm
75
X.B. Pericardial Influences on Heart
Function: even-skipped
77
X.C. Insulin Receptor Signaling, Potassium
Channels and Cardiac Aging
78
References
79
1.3.
Cardiac Development in the Frog
Mark
Mercóla,
Rosa M.
Guzzo
and Ann C. Foley
I. Introduction
87
II. The Heart-Forming Region in the
Early Embryo
87
III. Sources of Heart-Inducing Signals
89
IV. Inhibitory Signals and the Concept of
a Cardiac Field
90
V. Signaling Pathways that Induce Heart
Development
91
V.A. Early Wnt Signaling Establishes
Dorsoanterior Mesoderm
91
V.B. Specification of the Heart Field by
Wnt Antagonists,
TGFß
family
members and Cerberus
92
V.C. Bone Morphogenetic Proteins and
Progression to Beating Myocardium
94
V.D. Transcription Factor Control of
Cardiac Muscle Gene Activity
94
VI. Morphogenetic Studies of Heart
Tube Formation
95
VI.A. Formation and Closure of the
Heart Tube
95
VLB. The Three-Chambered Amphibian
Heart
97
VII.
Conclusions and Prospects
98
References
98
1.4.
Cardiac Development in
the Zebrafish
Ian C. Scott and Deborah Yelon
I. Introduction
II. Experimental Approaches for Analysis
of Heart Development in Zebrafish
H.A.
Genetics
II.B.
Regulation of Gene Activity
103
103
104
105
Contents
IX
U.C. Embryological Manipulation 106
II.
D.
Imaging
106
III. Mechanisms Regulating Zebrafish Heart
Development
108
111. A. Overview of Stages of Zebrafish
Development
Τ
08
III.
В.
Cardiac Progenitor Specification
109
III.C. Heart Tube Assembly
111
11
I.D.
Morphogenesis of the Cardiac
Chambers and Atrioventricular
Cushions
112
IV. Use of Zebrafish as Models of
Heart Disease
115
V. Conclusions
116
References
116
1.5.
An Overview of Avian Heart
Structure and Development
Katherine
Moynìhan,
Frank Stockdale
and David
Bader
I. Overview of Chapter
121
II. Anatomy of the Chick Heart
121
H.A.
Circulation, Chambers and Valves
121
N.B.
Coronary Circulation and Conduction
122
U.C.
Histology
123
III. Development: An Overview
123
IV. Determination and Earliest Development
123
IV.A. Cardiogenic Determination
125
IV.B. Inducers of Cardiomyogenic
Determination
125
IV.C. In vitro Analysis of Cardiogenic
Mesoderm
126
V. Early Morphogenetic Changes in the
Forming Heart Tube
126
V.A. Diversification of Myogenic
Cell Lineages
127
VI. Trabeculation and Cardiac Myocytes
129
VII.
Summary
131
References
131
Part
2
Cardiac Precursor Populations
and Lineages
2.1.
The Specification of Myocardial
Progenitor Cells in the Ciona
Tadpole
Michael
Levine
I. Overview
137
II. Specification of the Heart Field
137
H.A.
Fibroblast
Growth Factor Signaling
and Heart Induction
138
N.B.
Directed Migration of Myocardial
Progenitor Cells
139
U.C.
Uncoupling Heart Migration and
Differentiation
140
II.D.
Heart Differentiation Network
140
111. Future Prospects
141
References
141
2.2.
The Second Heart Field
Robert G. Kelly and Sylvia M. Evans
I. Introduction
143
II. Discovery and Initial Characterization of
the Second Heart Field
143
H.A.
The Avian Second Heart Field
143
II.B. The Mammalian Second Heart Field
144
U.C.
The Second Heart Field Paradigm
146
III. Evaluating the Contribution of the
Second Heart Field
149
III.A. The Contribution of the Second
Heart Field at the Arterial Pole
149
lll.B. The Contribution of the Second
Heart Field at the Venous Pole
150
IV. The Contribution of Nonmyocardial
Cell Types to Development of the Arterial
Pole of the Heart and the Limits of the
Second Heart Field
151
IV.A. Pharyngeal Endoderm and Ectoderm
151
IV.B. Endocardium and Epicardium
151
IV.C. Neural Crest Cells
152
IV.D. The Edge of the Second Heart
Field
153
V. Transcriptional Networks Controlling
the Second Heart Field
153
V.A. Transcriptional Circuits Driving
Second Heart Field Differentiation
153
V.B. The Role of Pitx2c in the Second
Heart Field
154
V.C. 7òx7
Regulation of the Second
Heart Field
155
VI. Signaling Networks Controlling the
Second Heart Field
157
VI.A.
Fibroblast
Growth Factor
Signaling
157
VLB. Bone Morphogenetic Protein
Signaling
159
VI.
С
Hedgehog Signaling
160
VLD.
Retinoic Acid Signaling
160
VI.E. Notch Signaling
160
VI.F. Wnt Signaling and Intersections
with
TGFß
Signaling During
Outflow Tract Morphogenesis
161
VII.
Outstanding Questions Concerning
Second Heart Field Deployment
161
VIII.
The
Biomedical
Significance of the
Second Heart Field
162
С
ontcnts
Vlll.A. The Second Heart Field and
Congenital Heart Defects
162
Vlll.B. The Second Heart Field and
Resident Cardiac Progenitor Cells
164
References
164
2.3.
Patterning and Development of
the Conduction System of the
Heart: Origins of the Conduction
System in Development
Vincent M.
Christoffels, Willem
M.H. Hoogaars
and Antoon EM. Moorman
I. Introduction
1 71
II. Myocardial Origin and Composition
of the Developing Conduction System
173
III. Markers for the Forming Conduction
System
173
IV. Pacemaker Activity, Polarity and
the Formation of the Sinus Node
176
V. Chamber Differentiation, Atrioventricular
Canal Specification and the Formation
of the Atrioventricular Node
1 79
VI.
Internodal
Tracts and Outflow Tract
181
VI.A. The Formation of the Atrioventricular
Bundle and Proximal Bundle
Branches
182
VLB. The Peripheral Ventricular Conduction
System: Distal Bundle Branches and
Purkinje Fiber Network
183
VII.
Formation of the Conduction System
Components by Recruitment or by Early
Specification and Outgrowth
185
References
187
Part3
Patterning of the Early Heart Tube
3.1.
The Behavior of Cells that Form
the Myocardial Compartments of
the Vertebrate Heart
Sigolène M.
Meilhac and Margaret E. Buckingham
I. Introduction
195
II. Progenitor Cell Migration
195
III. Formation of the Myocardial Epithelium
197
IV. Behavior of Cells in the Second
Heart Field
ι
98
V. Formation of the Cardiac Tube
200
VI. Expansion of the Cardiac Chambers
203
VI.A. Cell Proliferation
203
VI.B.
Other Aspects of Cell Behavior
205
VII.
Outflow Tract Morphogenesis
VILA. Rotation of Outflow Tract
Myocardium
VII.B. Septation
VIII.
Concluding Remarks
References
2Ü7
207
209
209
211
3.2.
Early Cardiac Growth and the
Ballooning Model of Cardiac
Chamber Formation
Antoon EM. Moorman, Cert van den Berg,
Robert H. Anderson and Vincent M.
Christoffels
I. Introduction
219
II. Diversity of Cardiac Myocytes:
The Primary versus the Chamber
Myocardium
220
III. The Cardiac Chambers
220
III.A. Evolutionary Conservation
220
III.B. Chamber Development is a Local
Process
221
IV. Fields, Lineages and Cardiac
Precursor Cells
223
V. Cardiac Growth
225
V.A. Growth by Addition
225
V.B. Formation of the Heart Tube from a
Single Caudal Growth Center
226
V.C. Growth of the Chambers
226
V.D. Fate of Remaining Primary
Myocardium
229
VI. Differentiation of Chamber
Myocardium
230
VI.A. Patterning of the Compartments
230
VLB. Patterning and Formation of the
Trabecular Ventricles
230
VII.
The Origin of the Components of the
Chambers in the Mature Heart
231
VILA. Contributions of the Primary
Myocardium Flanking the
Chambers: The Cranio-Caudal Axis
231
VIII.
Concluding Thoughts
232
References
233
3.3.
Retinoids and Heart Development
Karen
Niederreither
and Pascal
Dollé
1.
Introduction
237
II. Early Heart Morphogenesis
and Patterning
239
ILA.
Dynamic Patterns of Retinoic
Acid Synthesis during Early Heart
Development
239
II.B.
Retinoic Acid Signaling Restricts
the Zebrafish Cardiac Progenitor
Cell Pool
240
Contents
XI
U.C. Retinole
Acid and Anterior-
Posterior Patterning of the
Heart Tube
240
II.D. Retinole
Acid Deficiency Alters
Murine
Second Heart Field
Formation
243
U.E.
Retinoic Acid and Left-Right
Heart Looping Morphogenesis
243
III. Later Events in Outflow Tract Septation
and Patterning of the Posterior
Pharyngeal Arches
245
III.A. Investigations of Defective
Outflow Tract Development
245
III.B. Retinoic Acid Deficiency Affects
Posterior Branchial Arch
Development
247
IV. Regulation of Myocardial Cell
Proliferation and Differentiation
248
IV.A. Epicardlal Retinoic Acid Induces
Myocardial Growth
248
IV.B. Retinoid Regulation of Heart
Differentiation has Implications
for Regeneration and Progenitor
Cell Specification
249
References
250
3.4.
A System for Describing Congenital
Cardiac Malformations and
Correlating Them with Abnormal
Cardiac Development
Robert H. Anderson, Antoon
F. M.
Moorman,
Sandra Webb and Nigel A. Brown
I.
Introduction
255
II. Describing the Cardiac Components
255
III. Describing the Congenitally
Malformed Heart
257
IV. The Starting Point for Analysis
258
V. Analysis of the Atrioventricular Junctions
259
VI. Analysis of the Ventriculo-Arterial
Junctions
263
VII.
Cataloging the Associated Malformations
273
VIII.
Conclusion
276
References
276
Part
4
Asymmetry in Cardiac Development
4.1.
Cardiac Left-Right Asymmetry
Jeffrey D. Amack and H. Joseph Yost
I. Introduction
281
II. Overview of Cardiac Left-Right
Development
281
III. Left-Right Nomenclature
282
III.A. Inversion
283
III.
В.
Global Randomization
283
I
U.C.
Isolated Randomization
283
III.D. Failure of Left-Right
Morphogenesis
283
IV. Cardiac Looping
284
IV.A. Mechanisms of Looping
284
IV.B. Asymmetry in the Heart Tube
284
V. An Asymmetric Signaling Cascade
Controls Cardiac Left-Right Development
285
V.A. Asymmetric Signaling in Chick:
A Role for the Node
286
V.B. A Conserved
Nodal-Lefty-Pitx2
Pathway
287
V.C. RoleoftheMidllne
287
VI. Left-Right Cilia and Asymmetric
Fluid Flow
288
VI.A. Discovery of Asymmetric Nodal
Flow In Mouse
288
VLB. Asymmetric Fluid Flow in Zebrafish:
Ciliated Cells are Necessary for
Left-Right Development
289
VI.C. Left-Right Cilia and the
Organ of Asymmetry
290
VI.D.
How does Asymmetric Flow Send
Left-Right Signals?
290
VII.
Asymmetries that Precede
Cilia-Dependent Asymmetric Flow
291
VIII.
Conclusions and Future Perspectives
292
References
293
.2.
Molecular Mechanisms of
Left-Right Development
Hiroshi Hamada
I. Overview
297
II. Symmetry Breaking by Cilia and
Fluid Flow
298
III. Action of Nodal Flow
299
IV. Transfer of an Asymmetric Signal from
the Node to the Lateral Plate
Mesoderm
300
IV.A. The Route of Signal Transfer
300
IV.B. Expression of Nodal, a Left-Side
Determinant, Begins at the Node
300
I V.C. The Nodal Signal is Transferred
Directly from the Node to
the Lateral Plate Mesoderm
300
V. Molecular Patterning by the
Asymmetric Signals Nodal and Lefty
301
VI. The Cellular Basis of Asymmetric
Morphogenesis
303
VII.
Diversity Among Vertebrates
304
References
305
XII
4.3.
Pitx2 in Cardiac
Left-Right
Asymmetry and Human Disease
James F. Martin, Brad A. Amendt and
Nigel A. Brown
I. Left-Right Asymmetry and
Heart Disease
307
II. Cardiac Disease and the Nodal-
/.efty-P/tó
Left-Right Asymmetry
Pathway
308
H.A.
Nodal Signaling: Mutations in
Human Patients
309
III. Pitx2 and Cardiac Morphogenesis
309
Ill.A. Pitx2 Function: Evidence from
Loss-of-Function Studies in Mice
311
III.B. Pitx2, the Second Heart Field and
Outflow Tract Development
312
III.C. The Role of the Pitx2-Mediated
Left-Right Asymmetry Pathway in
О
utf I ow Tract
G
rowth
З
1
З
11
I.D.
Pitx2 and
70x7
in Second
Heart Field
315
IV. Pathways Regulating Pitx2 Expression
316
V. Pitx Genes and Transcriptional
Regulation
317
V.A. Pitx2 in the Inflow Tract and Atrial
Fibrillation
319
VI. Conclusions and Future
Considerations
319
References
319
Parts
Epicardial Development
5.1.
Epicardial Lineage: Origins and Fates
Takashi Mikawa and Thomas Brand
I. Introduction
325
II. Epicardial Development
326
H.A.
Induction and Specification of the
Epicardial
Anlagen 326
N.B.
Proepicardial Growth
toward the Heart
330
U.C.
Epicardial Sheet Formation and
Patterning of the Myocardium
332
II.D.
Epithelial-to-Mesenchymal
Transformation
332
U.E.
Fate Diversity of Proepicardium and
Epicardial Cells
333
III. Epicardial Marker Genes
334
Ill.A. Wilms Tumor Gene
1
(Wtl)
334
III.B.
Т
-box
Genes
335
III.C. Serum Response Factor (SRF)
335
IH.D.
GATA
Genes
3З6
Contents
III.E. Epicardin
336
lll.F. Forkhead Transcription Factors
336
III.G. Cited2 and Pbx Genes
336
I
H.H.
The Bves/Popdc Gene Family
337
IV. Evo-Devo Aspects
337
V. The Epicardium: A Progenitor Cell
Population
338
VI. The Role of the Epicardium in Heart
Regeneration
338
VII.
Outlook
338
References
339
5.2.
The Epicardial Signaling Center in
Development and Disease
KoryJ.
Lavine
and David M. Ornitz
I. Introduction
345
I.A.
Stages of Cardiac Development
345
I.B. Midgestational Heart Development
345
II. Epicardium and Myocardial
Proliferation
347
H.A.
Development of Epicardium
347
II.B.
Derivatives of the Epicardium
347
U.C.
Function of the Epicardium
347
II.D.
Epicardial Control of Myocardial
Growth
348
U.E.
Fibroblast
Growth Factor
9
(FGF9)
as a Retinoic Acid Inducible Factor
349
II.F. FGF
Signaling Regulates the
Progression of Myocardial
Differentiation
349
III. Coronary Vascular Development
349
Ill.A. Epicardium and Coronary
Development
350
III.B. An FGF-HH-VEGF/ANG Signaling
Pathway Controls Coronary
Development
350
III.C. The Epicardium Acts as a Signaling
Center for Heart Development
351
III.D. A Ventricular Wave of
H H
Activity
Mediates Coronary Development
352
III.E. Mechanism by which HH Controls
Vegf and Angiopoietin2 Expression
352
lll.F. FGF Regulation of HH Signaling
352
III.G. Development of Coronary Arteries
and Veins
353
IV. Role of Signaling Pathways Governing
Midgestational Heart Development in
Adult Heart Disease
354
IV.A. Developmental Signaling Pathways
in the Treatment of
Ischemie
Heart
Disease
354
IV.B. HH Signaling Mediates Coronary
Vessel Growth in the Adult Heart
355
References
356
Contents
XIII
Cushions, Valves and Septa
6.1.
Molecular Regulation of
Cushion Morphogenesis
Todd D. Camenisch, Raymond B. Runyan
and Roger R.
Markwald
I. Origins and Morphogenetic Stages of
Valve-Septal Development
363
I.A.
Introduction
363
I.B. Structure-Function Relationships
of Early Cushions
365
II. Cushion Formation
366
H.A.
The Extracellular Matrix
366
N.B.
Dynamics of the Matrix
367
U.C.
The Epithelial-Mesenchymal
Transition Paradigm
368
II.D.
TGFßs
as Mediators of Epithelial-
Mesenchymal Transition
370
U.E.
BMP Signaling in Epithelial-
Mesenchymal Transition
372
II.F. Notch as a Regulator of Epithelial-
Mesenchymal Transition
373
II.G. Receptor Tyrosine Kinase and
Ras-MAPK Signaling During
Epithelial-Mesenchymal Transition
374
H.H.
Calcium and VEGF as Regulators of
Epithelial-Mesenchymal Transition
375
III. Post-Epithelial-Mesenchymal Transition
Remodeling of Cushions into
Valvuloseptal Structures
376
III.A. Proliferation and Elongation
376
III.B. Differentiation
377
III.
С
Attenuation and Compaction
377
III.D. Delamination and Formation of
Supporting Valve Structures
377
III.E. Abnormal Morphogenesis
(Pediatric
Valvular Diseases)
378
IV. Regulation of Post-Epithelial-
Mesenchymal Transition Cushion
Morphogenesis: Lessons from Adult
Valve Diseases
378
V. The Living Valve
379
V.A. When Does Valvulogenesis End?
379
References
380
6.2.
Signaling Pathways in Valve
Formation: The Origin of
Congenital Defects
Joaquim Crego-Bessa,
José M.
Pérez-Pomares
and
José
Luis de
la Pompa
I. Introduction
II. Valve Anatomy and Function
389
389
III. Early
Embryogenesis
of Heart Valves:
The Origins of Cardiac Valve Cell
Populations
392
IV. Late
Embryogenesis
of Valves
393
V. Signaling Pathways and Effectors of
Endocardia! Epitheliai-to-Mesenchymal
Transformation and Valve Morphogenesis
393
V.A.
TheTGFßSuperfamily 394
V.B.
Vascular Endothelial Growth
Factor (VEGF)
396
V.C. Calcineurin and Nuclear Factor of
Activated
Т
-Cel
Is (NFATc)
397
V.D. Neuregulin
1
(NRG1)andErbB3
398
V.E. Sox9
398
V.F. Gata4
399
V.G. Notch
399
V.H. NeurofibromatosisType
1
(Nfi)
401
VI. Normal and Abnormal Signaling in Valve
Development: The Origin of Congenital
Defects
402
VI.A. Altered Developmental Mechanisms
and Their Morphological Reflection
403
VLB. Abnormal Developmental Processes
in Cardiac Valve Formation
404
VII.
Tissue Engineering: In Vitro Generation
of Functional Valvular Tissue
406
VIII.
Future Prospects
407
References
407
Part/
Cardiac Neural Crest and
Pharyngeal Patterning
7.1.
Role of Cardiac Neural Crest
Cells in Morphogenesis of the
Heart and Great Vessels
Kimberly E.
Inman,
Max Ezin, Marianne
Bronner-Fraser and Paul A. Trainor
I. Introduction
417
II. Neural Crest Formation
417
III. The Cardiac Neural Crest
418
IV. Evolution of the Cardiac Neural Crest
420
V. Cardiac Neural Crest Cells and
Morphogenesis of the Heart and
Great Vessels
421
VI. Interactions between Cardiac Neural
Crest and Mesoderm
423
VII.
Pharyngeal Endoderm and the
Cardiac Crest
424
VIII.
Genetic Regulation of Cardiac Neural
Crest Cell Patterning
425
VIII.A. Expansion of the Cardiac Neural
Crest Cell Population
425
XIV
Contents
VIII.
В.
Migration
of the Cardiac Crest
426
IX. The Post-Migratory Cardiac Crest
429
IX.A. Aortic Arch Remodeling
429
IX.B. Outflow Tract Septation
430
IX.C. Differentiation of Cardiac
Neural Crest
431
X. Persistence of Cardiac Neural
Crest Cells in the Heart
432
XI. Summary
434
References
434
7.2.
Role of Cardiac Neural Crest in the
Development of the Caudal
Pharyngeal Arches, the Cardiac
Outflow and Disease
Mary R. Hutson and Margaret
L
Kirby
441
441
442
442
442
443
I. Introduction
I.A.
Origin of the Neural Crest
I.B. Neural Crest Cell Lineages
II. Cardiac Neural Crest Cells in the
Caudal Pharynx
H.A.
Pharyngeal Arch Arteries
II.B. Pharyngeal Glands
III. Cardiac Neural Crest and the
Formation of the Arterial Pole
443
III.A. Septation of the Arterial Pole
443
III.B. Formation of the Arterial Pole
444
IV. Cardiac Neural Crest Ablation Model
445
IV.A. Direct Defects: Outflow Septation,
Aortic Arch Arteries and
Pharyngeal Glands
446
IV.B. Indirect Defects: Role for Cardiac
Neural Crest Cells to Modulate
Signaling in the Caudal Pharynx
447
IV.C. Arterial Pole Alignment versus
Septation
448
V. Cardiac Neural Crest Cells at the Venous
Pole are Associated with the
Conduction System
448
VI. Factors Important in Cardiac Neural
Crest Induction and Function
448
VI.A. Transcription Factors
449
VLB. Signaling Factors
450
VI.C. Gap Junctions
453
VII.
Human Syndromes that are Likely to
Involve Cardiac Neural Crest
453
VILA.
DiGeorge
and Velocardiofacial
Syndromes
453
VII.B. CHARGE Syndrome
454
Vll.C. Fetal Alcohol Syndrome (FAS)
455
VILD.
Retinoic Acid
(RA) Embryopathy
455
VUL
Conclusions and Future Perspectives
455
References
456
PartJB
Making Vessels
8.1.
Origin of the Vertebrate
Endothelial Cell Lineage: Ontogeny
and Phylogeny
Ramón Muñoz-Chápuli
and
José M.
Pérez-Pomares
I. Introduction
465
И.
A Brief Synopsis of the Circulatory
Systems in Metazoans
467
ILA. Coelomic
Circulatory Systems
467
N.B.
Hemal Circulatory Systems
468
U.C.
Anatomy of Coelomic and Hemal
Invertebrate Circulatory Systems
469
II.D.
Blood Cells in Invertebrates
470
U.E.
The Invertebrate Heart
471
II.F.
Development of the Invertebrate
Hemal Circulatory System
472
II.G.
Vertebrate Endothelium is an
Exception in the Animal Kingdom
472
III. The Ontogeny of the Endothelium
472
III.A. The Basic Anatomy of Vertebrate
Vasculature
472
III.B. Mechanisms of Vascular Formation
and Growth: Angiogenesis versus
Vasculogenesis
473
111.
С
Fine Features of Embryonic
Vasculogenesis
474
III.D. Origin and Differentiation of
Vertebrate Angioblasts
475
III.E. Endothelial Cell Types: The
Paradigmatic Case of Cardiac
Endothelial Lineages
476
lll.F. Molecular Regulation of Embryonic
Vasculogenesis: Essential Elements
477
IV. Phylogeny of the Endothelium
478
IVA. A
Hypothesis on the Origin of
Endothelial Cells
478
IV.B. The Origin of Pericytes and
Vascular Smooth Muscle
479
IV.C. Supporting Evidence
480
IV.D. An Evo-Devo Conclusion
481
References
481
8.2.
Vascular Development
Ondine
Cleaver and Paul
Α.
Krieg
I. Introduction to Vascular Development
487
II. The Origin of Endothelial Cells
488
H.A.
Endothelial Origins in the
Mesoderm
488
Contents
XV
11.
В.
Molecules Regulating
Differentiation of Endothelial
Cells
490
U.C. Extraembryon
ic
and
Intraembryonic Angioblasts
490
II.D.
Vascular Studies: Classical
Embryology to Molecular
Breakthroughs
490
III. Blood Islands
491
IV. The Hemangioblast
491
IV.A. In Vitro Studies: Embryonic
Stem Cell Differentiation
493
IV.B. In Vitro Studies: Embryonic
Cells
493
IV.C. In Vivo Studies
493
V. The Endothelial Cell
494
V.A. Cellular Mechanisms of
Blood Vessel Assembly
494
VI. Vasculogenesis and Angiogenesis
495
VI.A. Vasculogenesis
497
VLB. Molecules Regulating
Vasculogenesis
497
VI.C. Extracellular Matrix and
Cell Adhesion Molecules
499
VLD.
Molecules Regulating
Tubulogenesis
501
VI. E. Angiogenesis
502
VI.F. Molecules Regulating Angiogenic
Remodeling
507
VII.
Vascular Patterning
508
VILA. Patterning during
Vasculogenesis:
Primary Plexus Formation
508
VII.B. Patterning during Angiogenesis:
Sculpting Growing Blood
Vessels
509
VII.C. Molecules Regulating Vascular
Patterning
511
VIII.
Vessel Maturation and Vascular
Wall Formation
512
VIII.A. The Endothelial Basement
Membrane
514
VIII.
B. The Vascular Wall
514
VIII.C. Molecules Regulating Mural Cell
Recruitment and Vessel
Maturation
515
VIII.D. Transcriptional Regulation of
Endothelial Gene Expression
517
IX. Endothelial Heterogeneity
and Plasticity
517
IX.A. Endothelial Cell
Heterogeneity
517
IX.B. Endothelial Cell Plasticity
518
X. Conclusion
518
References
519
8.3.
Arteriovenous Patterning in
the Vascular System
Thomas
Cri d
ley
I. Introduction
529
II. Arteriovenous Patterning: Genetic
Prepatterning
529
ILA.
Ephrins and EPH Receptors
529
N.B.
Vascular Endothelial Growth
Factor and the Notch Pathway in
Zebrafish
531
U.C.
Vascular Endothelial Growth Factor
and the Notch Pathway in Mice
532
II.
D. FOXC1/FOXC2
533
ILE. SOXF
Subgroup Genes
533
II.F. COUP-TFII
534
II.G.
Chemical Genetic Screens in
Zebrafish: Pathways Downstream of
Vascular Endothelial Growth Factor
534
H.H.
Phospholipase
С
Gamma
535
ILL
TGFß
Signaling, Endoglin/AcvrH
and Hereditary Hemorrhagic
Telangiectasia
535
II.J. In Vitro Differentiation of Endothelial
Cells from Stem Cells
535
III. Arteriovenous Patterning: Role of
Hemodynamic Flow and Other
Environmental Cues
536
lll.A. Endothelial Cell Plasticity Revealed
by Cell Transplantation
536
II!.B.
Endothelial Cell Plasticity Revealed
by Disruption of Hemodynamic Flow
536
III.
C. Hypoxia
and Oxygen Tension
537
IV. Conclusions and Perspectives
538
References
538
8.4.
Lymphatic Vascular Development
Natasha L. Harvey
I. Introduction
543
II. Lymphatic Vessels: A Historical Perspective
543
III. A Comparison of Lymphatic Vessel and
Blood Vessel Architecture
544
lll.A. Lymphatic versus Blood Capillaries
545
III.B. Lymphatic Collectors
546
III.C
Junctions between Lymphatic
Endothelial Cells
546
IV. The Embryonic Origin of Lymphatic
Endothelial Cells
547
IV.A. A Venous Origin of Lymphatic
Vessels
547
IV.B. A Mesenchymal Origin of
Lymphatic Vessels
548
XVI
Contents
V.
Molecular
Markers of Lymphatic
Endothelial Cells
549
V.A. Cell Surface Markers of
Lymphatic Endothelium
549
V.B. Lymphatic Endothelial Cell
Surface Markers Involved in
Immune Cell Trafficking
551
V.C.
Macrophage Mannose
Receptor
552
V.D. Nuclear Markers of Lymphatic
Endothelium
552
VI. Genesis and Remodeling of the
Lymphatic Vasculature
554
VI.A. Lymphangiogenesis Promoting
Factors
554
VLB. EphrinB2 and Postnatal Lymphatic
Remodeling
555
VI.C. The Vascular Endothelial Growth
Factor (VEGF) Family: VEGF-A, -B,
-C and-D and PIGF
555
VI.D. Alternative Splicing and
Proteolytic Processing of Vascular
Endothelial Growth Factor (VEGF)
Family Members
556
VI.E. PDGF-BB, FGF-2, HGF, IGF-1
and
-2,
Adm
556
VI.
F.
Integrins
557
VI.
G. Hemopoietic
Cells and
Lymphangiogemc Signals
557
VI.H.
Signaling Downstream of
VEGFR3
558
VII.
Separation of the Lymphatic and Blood
Vascular Networks
558
VILA.
Syk, SLP-76
and PLOtf
558
VIII.
How Does Lymphatic Vascular
Development Go Wrong in Disease?
559
IX. Future Perspectives in Lymphatic
Vascular Development
560
References
560
Index
11
The development of the cardiovascular system is a rapidly advancing area in
biomedical
research, now
coupled with the burgeoning field of cardiac regenerative medicine. A lucid understanding of these
fields is paramount to reducing human cardiovascular diseases of both fetal and adult origin. Significant
progress can now be made through a comprehensive investigation of embryonic development and its
genetic control circuitry.
Heart Development and Regeneration, written by experts in the field, provides essential information
on topics ranging from the evolution and lineage origins of the developing cardiovascular system to
cardiac regenerative medicine. A reference for clinicians, medical researchers, students, and teachers,
this publication offers broad coverage of the most recent advances.
Volume One discusses heart evolution; contributing cell lineages; model systems; cardiac growth;
morphology and asymmetry; heart patterning; epicardial, vascular, and lymphatic development; and
congenital heart diseases.
Volume Two includes chapters on transcription factors and transcriptional control circuits in cardiac
development and disease, epigenetic modifiers including microRNAs, genome-wide mutagenesis, imaging,
proteomics approaches, the theory and practice of stem cells, and cardiac regeneration.
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV036721747 |
ctrlnum | (OCoLC)700336643 (DE-599)BVBBV036721747 |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01322nam a2200301 cc4500</leader><controlfield tag="001">BV036721747</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101015s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123724908</subfield><subfield code="9">978-0-12-372490-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)700336643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036721747</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heart development and regeneration</subfield><subfield code="n">1</subfield><subfield code="c">ed. by Nadia Rosenthal ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, Acad. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXII, 565, 31 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenthal, Nadia</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV036721723</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639609&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639609&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020639609</subfield></datafield></record></collection> |
id | DE-604.BV036721747 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:46:35Z |
institution | BVB |
isbn | 9780123724908 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020639609 |
oclc_num | 700336643 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XXXII, 565, 31 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Elsevier, Acad. Press |
record_format | marc |
spelling | Heart development and regeneration 1 ed. by Nadia Rosenthal ... 1. ed. Amsterdam [u.a.] Elsevier, Acad. Press 2010 XXXII, 565, 31 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Rosenthal, Nadia Sonstige oth (DE-604)BV036721723 1 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639609&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639609&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Heart development and regeneration |
title | Heart development and regeneration |
title_auth | Heart development and regeneration |
title_exact_search | Heart development and regeneration |
title_full | Heart development and regeneration 1 ed. by Nadia Rosenthal ... |
title_fullStr | Heart development and regeneration 1 ed. by Nadia Rosenthal ... |
title_full_unstemmed | Heart development and regeneration 1 ed. by Nadia Rosenthal ... |
title_short | Heart development and regeneration |
title_sort | heart development and regeneration |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639609&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639609&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV036721723 |
work_keys_str_mv | AT rosenthalnadia heartdevelopmentandregeneration1 |