Molecular quantum mechanics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2011
|
Ausgabe: | 5. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 537 S. Ill., graph. Darst. |
ISBN: | 9780199541423 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036718814 | ||
003 | DE-604 | ||
005 | 20151020 | ||
007 | t | ||
008 | 101014s2011 ad|| |||| 00||| eng d | ||
020 | |a 9780199541423 |c pbk. : ca. GBP 38.99 |9 978-0-19-954142-3 | ||
035 | |a (OCoLC)699872913 | ||
035 | |a (DE-599)BSZ323126871 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-19 |a DE-20 |a DE-634 |a DE-12 |a DE-29T |a DE-11 |a DE-91G |a DE-188 |a DE-355 |a DE-384 | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a UM 3000 |0 (DE-625)145865: |2 rvk | ||
084 | |a VE 5650 |0 (DE-625)147118:253 |2 rvk | ||
084 | |a PHY 501f |2 stub | ||
084 | |a CHE 150f |2 stub | ||
100 | 1 | |a Atkins, Peter W. |d 1940- |e Verfasser |0 (DE-588)128437782 |4 aut | |
245 | 1 | 0 | |a Molecular quantum mechanics |c Peter Atkins and Ronald Friedman |
250 | |a 5. ed. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2011 | |
300 | |a XIV, 537 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Molekül |0 (DE-588)4039972-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenchemie |0 (DE-588)4047979-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Quantenchemie |0 (DE-588)4047979-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Molekül |0 (DE-588)4039972-2 |D s |
689 | 1 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 2 | 1 | |a Molekül |0 (DE-588)4039972-2 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
700 | 1 | |a Friedman, Ronald |d 1962- |e Verfasser |0 (DE-588)14295554X |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020636738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020636738 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804143366318850048 |
---|---|
adam_text | Brief
contents
Introduction and orientation
1
The foundations of
quantum
mechanics
9
Mathematical background
1
Complex numbers
35
2
Linear motion and the harmonic oscillator
37
Mathematical background
2
Differential equations
66
3
Rotational motion and the hydrogen atom
69
4
Angular momentum
99
Mathematical background
3
Vectors
121
5
Group theory
125
Mathematical background
4
Matrices
166
6
Techniques of approximation
170
7
Atomic spectra and atomic structure
210
б
An introduction to molecular structure
258
9
Computational chemistry
295
10
Molecular rotations and vibrations
338
Mathematical background
5
Fourier series and Fourier transforms
379
11
Molecular electronic transitions
382
12
The electric properties of molecules
407
13
The magnetic properties of molecules
437
Mathematical background
6
Scalar and vector functions
474
14
Scattering theory
476
Resource section
513
Answers to selected exercises and problems
523
Index
529
D
Ω
fr Slö
[lofi
íP
A
Π
ІЬ
O
[ЛІН
€2
l&LQlUlli&U
lUUU DLUH
fllL^
0.1
Black-body radiation
1
0.2
Heat capacities
2
0.3
The photoelectric and Compton effects
3
0.4
Atomic spectra
4
0.5
The duality of matter
5
~
............... ........ ......
~
......
1
The foundations of quantum mechanics ®
;
Operators in quantum mechanics
9
1.1
Linear operators
10
1.2
Eigenfunctions and eigenvalues
10
1.3
Representations
12
1.4
Commutation and non-commutation
13
1.5
The construction of operators
14
1.6
Integrals over operators
15
1.7
Dirac bracket and matrix notation
16
(a) Dirac brackets
16
(b) Matrix notation
17
1.8
Hermitian operators
17
[a) The definition of herrniticity
18
Ш
The consequences of hermiticity
19
The postulates of quantum mechanics
20
1.9
States and wavefunctions
20
1.10
The fundamental prescription
21
1.11
The outcome of measurements
22
1.12
The interpretation of the wavef unction
24
1.13
The equation for the wavefunction
24
1.14
The separation of Hie
Schrödinger
equation
25
The specification and evolution of states
26
1.15
Simultaneous
observables
27
1.16
The uncertainty principle
28
1.17
Consequences of the uncertainty principle
30
1-18
The uncertainty in energy and time
31
LIS
Tirne-evoiuitonar.đ
conservation laws
31
Mathematical background
1
Complex numbers
MB1.1 Definitions
Г4В1.2
Fotar
representation
MBL3
Operatiors
2.2
Some general remarks on the
Schrödinger
equation
38
(a) The curvature of the wavefimction
38
(b) Qualitative solutions
39
(c) The emergence of quantization
40
(d) Penetration into non-classical regions
40
Translationai motion
41
2.3
Energy and momentum
41
2.4
The significance of the coefficients
42
2.5
The flux density
43
2.6
Wavepackets
44
Penetration into and through barriers
44
2.7
An infinitely thick potential wall
45
2.8
A barrier of finite width
46
(a) The case E<V
46
(b) The case
E
>
V
48
2.9
The
Eckart
potential barrier
48
Particle in a box
49
2.10
The solutions
50
2.11
Features of the solutions
51
2.12
The two-dimensional square well
52
2.13
Degeneracy
53
The harmonic oscillator
54
2.14
The solutions
55
2.15
Properties of the solutions
5?
2.16
The classical limit
58
Further information
60
2.1
The motion of wavepackets
60
2.2
The harmonic osclator: solution by factorization
61
2.3
The harmonic oscillator: the standard solution
62
2.4
The
vinal
theorem
62
Mathematical background
2
Differential equations
66
MB2.1
Tlie
structure of differentia! equations
66
MB2.2
Tnesäiitiani
of ordinary differential equations
66
Ѓ4В2.3
The solution of partial differential equations
67
The characteristics of wavefanctions
2.1
Constraints
oji
the
wEKSÍüncticn
35 3
Rotational
mBfioisaKdtläsIífárogen sto m
35 .......
35
Particle on a ring
36 3.1
тії»
iiamfcrèan
and the
Schrödinger
equation
3.2
The angular
mosnesiijjra
fif |
3.3
TheshapeSQfîhsţsswgfurîcfJons
—
J
3.4
Ttls classical
í
jïïit
•a·?
3.5
Ttecoojtarsssigrewatt
|a)
TnssspEîsfeon
oí «rabíes
3?
|bj The
rafei
soturians
59
70
71
72
73
73
73
VIII
DETAILED CONTENTS
Partide
on a sphere
3.6
The
Schrödinger
equation and its solution
(a) The wavefunctians
{b} The allowed energies
3.7
The angular momentum of the particle
3.8
Properties of the solutions
3.9
The rigid rotor
3.10
Particle in a spherical well
Motion in a Coutombic field
3.11
The
Schrödinger
equation for hydrogenic atoms
3.12 Theseparation
of the relative coordinates
3.13
The
radial Schrödinger
equation
(a) The solutions close to the nucleus for
í
= 0
(b)
The solutions close to the nucleus for
ί Φ
0
(c)
The
compiete
solutions
(d)
The allowed energies
3.14
Probabilities and the radial distribution function
3.15
Atomic
orbitais
(a) s-orbitals
(b) p-orbitals
{c) d-andf-orbitals
(d) The radial extent of
orbitais
3.16
The degeneracy of hydrogenic atoms
Further information
3.1
The angular wavefunctions
3.2
Reduced mass
3.3
The radial wave equation
4
Angular momentum
The angular momentum operators
4.1
4.2
43
ι
he operators and their commutation relations
[a) The angular momentum operators
(b) The commutation relations
Angular momentum
observables
The shift operators
The definition of the states
4.4
The effect of the shift operators
4.5
Тће
eigenvalues of the angular momentum
4.6
The matrix elements of the angular momentum
4.7
The orbital angular momentum eigenfunctions
4.8
Spin
(a) The properties of spin
(b) The matrix elements of spin operators
The angular momenta of composite systems
4.9
The specification of coupled states
4.10
The permitted values of the
totat
angular
momentum
4.11
The vector model of coupled
anguíar
momenta
4.12
The relation between schemes
(a} Singlet and triplet ■coupled states
tbj The corstructioi-, cf coupled states
(c) States of the configuration
ď
4.13
The coupling of several angular momenta
75
75
77
78
78
80
81
83
84
85
86
86
86
87
89
89
90
91
91
93
93
S4
95
95
95
96
99
99
100
100
101
102
102
103
104
106
108
110
110
111
Ш
111
112
114
115
115
116
117
118
Mathematical backgrounds Vectors
121
MB3.1 Definitions
121
MB3.2 Operations
121
MB3.3 The graphical representation of vector operations
122
MB3.4 Vector differentiation
123
5
Group theory
1
f S !
The symmetries of objects
125
5.1
Symmetry operations and elements
126
5.2
The classification of moieoies
127
The calculus of symmetry
131
5.3
The definition of a group
131
5.4
Group multiplication tables
132
5.5
Matrix representations
133
5.6
The properties of matrix representations
136
5.7
The characters of representations
138
5.8
Characters and classes
139
5.9
Irreducible representations
140
5.10
The great and little orthogonality theorems
142
Reduced representations
146
5.11
The reduction of representations
146
5.12
Symmetry-adapted bases
147
(a) Projection operators
148
(b) The generation of symmetry-adapted bases
149
The symmetry properties of functions
151
5.13
The transformation of p-orbitals
151
5.14
The decomposition of direct-product bases
152
5.15
Direct-product groups
154
5.16
Vanishing integrals
156
5.17
Symmetry and degeneracy
158
The full rotation group
159
5.18
The generators of rotations
159
5.19
The representation of the full rotation group
161
5.20
Coupled angular momenta
162
Applications
163
Mathematical background
4
Matrices
166
MB4.1 Definitions
166
MB4.2 Matrix addition and multiplication
166
MB4.3 Eigenvalue equations
167
6
Techniques of approximation
¿у
j
The semidassicai approximation
170
Time-independent perturbation theory
174
6.1
Perturbation of a two-level system
174
6.2
Many-level systems
176
(a) Formulation of the problem
177
DETAILED CONTENTS
їх
(b)
The first-order correction to the energy
177
[a] The Hartree-Fock equations
235
(c) The first-order correction to the wavefunction
178
(b] One-electron energies
237
(d) The second-order correction to the energy
180
7.17
Restricted and unrestricted Hartree-Fock calculations
238
6.3
Comments on the perturbation expressions
(a) The role of symmetry
181
182
7.18
Density functional procedures
[a] The Thomas-Fermi method
239
239
(b) The closure approximation
183
(b) The Thomas-Fermi-Dirac method
242
6.4
Perturbation theory for degenerate states
185
7.19
Term symbols and transitions of many-electron atoms
243
Variation theory
187
ţa) Russell-Saunders
coupling
(b} Excluded terms
243
244
6.5
The Rayleigh ratio
187
(c) Selection rules
245
6.6
The Rayleigh-Ritz method
189
7.20
Hund s rules and Racah parameters
245
The Hellmann-Feynman theorem
191
7.21
Alternative coupling schemes
247
Time-dependent perturbation theory
192
Atoms in external fields
248
6.7
The time-dependent behaviour of a two-level system
192
7.22
The normal
Zeeman
effect
248
(a) The solutions
193
7.23
The anomalous
Zeeman
effect
249
(b) The
Rabi
formula
195
7.24
The Stark effect
251
6.8
Many-level systems: the variation of constants
196
(a) The general formulation
196
Further information
253
(b) The effect of a slowly switched constant perturbation
(c) The effect of an oscillating perturbation
198
199
7.1
The Hartree-Fock equations
253
6.9
Transition rates to continuum states
201
7.2
Vector coupling schemes
253
6.10
The Einstein transition probabilities
202
7.3
Functionals and functional derivatives
254
6.11
Lifetime and energy uncertainty
204
7.4
Solution of the Thomas-Fermi equation
255
Further information
206
6.1
Electric
dipole
transitions
206
8
An introduction to molecular structure
liifsj
7
Atomic spectra and atomic structure
і
Ш
J
The Born-Oppenheimer approximation
258
.......—............—.......—
8.1
The formuiotion of the approximation
258
The spectrum of atomic hydrogen
210
8.2
An application: the hydrogen molecule-ion
260
(a) The molecular potential energy curves
260
7.1
The energies of the transitions
210
(b) The
molecular orbitais
261
7.2
Selection rules
211
(a) The Laporte selection
rufe
211
Molecular
orbitai
theory
262
[b)
Constraints on
Δί
(с)
Constraints on Ami
(d)
Higher-order
transitions
212
212
213
8.3
Linear combinations of atomic
orbitais
(a) The secuiar determinant
{tij
The Coulomb integral
262
263
263
7.3
Orbital and spin magnetic moments
214
(c) The resonance integral
265
(a) The orbital magnetic moment
214
(d) The LCAO-MO energy
leveis
for the hydrogen
(b) The spin
magnetic
moment
215
molecule-ion
265
7.4
Spin-orbit coupling
215
(e) The LCAO-MOs for the hydrogen
moleculeion
266
7.5
The fine-structure of spectra
217
8.4
The hydrogen molecule
266
7.6
Term symbols and spectral details
218
8.5
Configuration interaction
268
7.7
The detailed spectaim of hydrogen
219
8.6
Diatomic molecules
269
{a) Criteria for atomic orbital overlap and bond formation
269
The structure of helium
221
(b) Homonuclear diatomic molecules
270
(c) Heteronucfear diatomic molecules
272
7.8
The helium atom
221
(a) Atomic units
(b) The orbital approximation
221
222
Molecular orbital theory of polyatomic molecules
274
7.9
Excited states of helium
224
8.7
Symmetry-adapted iinear combinations
274
(a) The H2O molecule
274
7.10
The spectrum of helium
225
(b) The NH3 molecule
276
7.11
The PauS
principie
227
8.6
Conjugated it-systems and the Hiickei approximation
276
Many-electron atoms
229
B.9
Ugand
field theory
282
(a) The SALCs of the octahedral complex
282
7.12
Penetration and shielding
230
£b) The molecular or«tab of the octahedral complex
282
7.13
Penodfcity
232
(c] The ground-state configuration: low- and high-spin
7.14
Slater atomic
orbitate
233
compiexes
[di Tartabe-Sugano
diagrams
283
284
7.15
Slater determinants and the Condon-Slater rales
234
{el Jatin-Telíer
distortion
2B4
7.16
Self-consistent
fieÌds
235
£f) MetaHJgand
π
bonding
285
χ Ι
QETâLED
CONTENTS
Таз
fosná
tfesry of
saïd
8
386
Μα!®
2бз
ία
з
340
342
292
10.4
9
Computaţional
chemistry
The Hartree-Fock self-consistent field method
Tře
Нзг&ѕз-Ѕс
9.4
Ina
ssiscnm of
tass
sete
[Зј/
G5 J5S::3FÍ-fcpS
ПГС^ЗЅ
íb}
Ite
tKTBtRjcfcn cf contracted
Gaussiars
fc)
Ca&fetioraí
accuracy and the
basšs
set
Etecíron correSation
äS
Co-figurat sri
state
їугсйогб
9.6
Configuration interaction
9.7
Cíca culaišOHs
9.B
KíJEšcoTCTguratŠGn
¡methods
8.9 Maüer-Pfesset
many-body perturbation theory
9.10
Tfïa
coupteo-clijster
method
(a) FoTffliåaöonof
the method
(b) The coupled-duster equations
Density functional theory
1.1
I The
Hofienbeřg-Kbftn
existence theorem
9.12
The Hortenbeig-Kohn variationat theorem
9.13
Ths Kahn-Sham. equations
g,i
4
The exchange-correlation challenge
(a) Local density approximations
(b) Mare elaborate funetionats
Gradient methods and molecular properties
9.15
Energy derivatives and the Hessian matrix
9.16
Anatytica! procedures
Semiempirical methods
9.17
Conjugated n-eiectron systems
(a! The
№
ickeS approximation
fö}
The Parissr-Parr-Pople method
9.1Э
General procedures
Molecular mechanics
9.19
Force fields
9.20 Quantum
mechanics-rnolecuiar mechanics
10
Molecular rotations and vibrations
Spectroscopie
transitions
10.1
Absorption and emission
13.2
Rarnart processes
296
2Э6
29?
298
302
303
305
306
307
308
30β
310
312
313
315
315
315
317
317
319
319
321
321
322
323
324
326
326
327
327
328
329
332
332
333
fb)
Ins
sşszMz
läßsbsn ftj.ss
10.5
Katsť:s ra
RâíTSfl
аї ЗЕЕЗП:
itxïîs
10.5
KusöaTSioSäfiSS
faj
TŕecassoíQX
(tí
TRsessstfH;_
Cc)
ârnorsgsraralcaas
The vibratioris of diatomic molecules
10.7
Ths vibratianai
епѕвгу
ime s o? tfatornic rtdecuies
fa) Harreanx osdlstbn
(fc)
ÂnhsrrnanEOscbtian
10.3
VibratiorBlsssctioR
rates
(aj Tte
gross selection
rafe
íb)
The specific sdecSkxmJie
fej
The effect of
anharmanldíies
on atbwed
traiisjtbrts
10.9
VicratiCK-rotaEcn spsctra of diatomic moieculss
10.10
Vibrational Reman transitions of diatomic
moteóles
11
Molecular electronic transitions
The states of diatomic molecules
338
ixi The
Hund
coupling cases
338 11.2
Decoupling and
Л
-doubling
339 11.3
Selection and correlation rules
345
345
347
349
349
350
ЗЬ2
353
353
353
354
356
3SS
357
358
358
360
The vibrations of polyatomic molecules
361
10.11
Normal modes
362
(a) Potential energy
362
(b) Norm-aí
coordinates
363
(c) Vbraöonal
v/avef unctbns and energies
364
10.12
Vibrationat and Raman selection rules for
polyatomic molecules
365
(a) infrared activity
365
£b) Raman activity
366
(c) Group theory and molecular vibrations
366
10.13
Further effects on vibrationat and rotational
spectra
369
(a) The effects of anharmonicity
369
(b) Coriolis forces
372
(c) inversion doubling
373
Further information
374
10.1
Centrifugai
distortion
374
10.2
Normal modes: an example
375
Mathematical background
5
Fourier series and
Fourier transforms
379
MB5.1 Fourier series
379
MB5.2 Fourier transforms
380
MB5.3 The corwfejtion theorem
381
382
382
384
386
DETAILED CONTENTS
χι
Vibronic transitions
11.4
The Franck-Condon principle
11.5
The rotational structure of vibronic transitions
The electronic spectra of polyatomic molecules
11.6
Symmetiy considerations
11.7
CbremophoiBS
11.8
Vibronically allowed transitions
11.9
Singlet-triplet transitions
The fates of excited states
11.10
Non-radiative decay
11.11
Radiative decay
(a) Fluorescence
(b) Phosphorescence
Excited states and chemical reactions
11.12
The conservation of
orbitai
symmetry
11.13
Eiectrocycfc reactions
11.14
Cycloaddition reactions
11.15
Photochemically induced electrocyclic reactions
11.16
Photochemically induced cycloaddition reactions
387
388
13
The magnetic properties of molecules
4 tV ^
390
The description of magnetic fields
437
391
13.1
Basic concepts
437
391
13.2
Paramagnetism
439
392
13.3
The vector potential
440
393
(a) The formulation of the vector potential
441
395
(b) Gauge
invariance
442
396
Magnetic perturbations
443
396
13.4
The perturbation hamiltonian
443
398
13.5
The magnetic susceptibility
444
398
[a) Expressions for the susceptibility
445
398
(b) Contributions to the susceptibility
446
(c) The role of the gauge
448
399
13.6
The current density
449
399
(a) Realwavefunctions
450
(b) Orbitally degenerate states, zero field
450
399
(c) Orbitally non-degenerate states, non-zero field
451
401
13.7
The diamagnetic current density
452
402
13.8
The paramagnetic current density
452
404
12
The electric properties of molecules
The response to electric fields
12.1
Molecular response parameters
12.2
The static electric polarizability
(a) The mean polarizability and polarizability volume
(b) The polarizability and molecular properties
(c) Polarizabitities and molecular spectroscopy
(d) Polarizabilities and dispersion interaction
(e) Retardation effects
Bulk electrical properties
12.3
The relative permittivity and the electric susceptibility
(a) Non-polar molecules
(b) Polar molecules
12.4
Refractive index
(a) The dynamic polarizability
(b) The molar
ref
ractivity
(c) The refractive index and dispersion
Optical activity
12.5
Circular birefringence and optical rotation
12.6
Magnetically induced polarization
12.7
Rotational strength
(a) Symmetry properties
(b) Optical rotatory dispersion
(c) Estimation of rotational strengths
Further information
12.1
Oscillator strength
12.2
Sum rules
12.3
The Maxwell equations
(a) The general form of the equations
(b) The equations for fields in a vacuum
(c) The propagation of fields in a polarizable medium
(d) Propagation in chiral media
407
407
409
409
411
412
413
416
417
417
418
419
421
422
424
424
425
425
427
429
429
429
430
432
432
432
433
Magnetic resonance parameters
454
13.9
Shielding constants
454
(a) The nuclear field
454
(b) The hamiltonian
455
(c) The first-order correction to the energy
455
(d) Contributions to the shielding constant
457
13.10
The diamagnetic contribution to shielding
458
13.11
The paramagnetic contribution to shielding
459
13.12
Theg-value
450
(a) The spin hamiltonian
460
(b) Formulating the g-vatue
461
13.13
Spin-spin coupling
462
13.14
Hyperf
ine
interactions
463
(a) Dipolar coupling
464
(b) The Fermi contact interaction
465
(c) The total interaction
466
13.15
Nuclear spin-spin coupling
467
(a) The formulation of the problem
468
(b) Coupling through a chemical bond
470
Further information
471
13.1
The hamiltonian in the presence of a magnetic field
471
13.2
The dipolar vector potential
471
Mathematical background
б
Scalar and vector
functions
474
MB6.1 Definitions
474
MB6.2 Differentiation
474
Scattering theory
The fundamental concepts
433 14.1
The scattering matrix
433 14.2
The scattering cross-section
434
434
476
476
479
DETAILED CONTENTS
Elastic scattering
480
143
Stationary scattering states
480
(a) The scattering amplitude
481
(b) The differential cross-section
482
14.4
Scattering by a central potential
483
(a) The partial-wave stationary scattering state
483
(b) The partial-wave equation
484
(c) The scattering phase shift
485
(d) The scattering matrix element
487
(e) The scattering cross-section
489
14.5
Scattering by a spherical square well
491
(a) The S-wave radial wavefunction and phase shift
491
(b) Background and resonance phase shifts
492
(c) The Breit-Wigner formula
494
(d) The resonance contribution to the scattering matrix
eiement
496
14.6
Methods of approximation
497
(a) The WKB approximation
498
(b) The Born approximation
499
Multichannel scattering
503
14.7
The scattering matrix for multichannel processes
504
14.8
Inelastic scattering
(a) The form of the multichannel stationary
scattering state
(b) Scattering amplitude and cross-sections
(c) The close-coupling approximation
504
505
505
506
14.9
Reactive scattering
507
14.10
The
S
matrix and multichanne! resonances
508
Further information
509
14.1
Green s functions
509
Resource section
513
Further reading
513
1
Character tables and direct products
516
2
Vector coupling coefficients
520
3
Wigner-Witmer rules
521
Answers to selected exercises and problems
523
Index
529
|
any_adam_object | 1 |
author | Atkins, Peter W. 1940- Friedman, Ronald 1962- |
author_GND | (DE-588)128437782 (DE-588)14295554X |
author_facet | Atkins, Peter W. 1940- Friedman, Ronald 1962- |
author_role | aut aut |
author_sort | Atkins, Peter W. 1940- |
author_variant | p w a pw pwa r f rf |
building | Verbundindex |
bvnumber | BV036718814 |
classification_rvk | UK 1000 UM 3000 VE 5650 |
classification_tum | PHY 501f CHE 150f |
ctrlnum | (OCoLC)699872913 (DE-599)BSZ323126871 |
discipline | Chemie / Pharmazie Physik Chemie |
edition | 5. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02135nam a2200517 c 4500</leader><controlfield tag="001">BV036718814</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151020 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101014s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199541423</subfield><subfield code="c">pbk. : ca. GBP 38.99</subfield><subfield code="9">978-0-19-954142-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699872913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ323126871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 3000</subfield><subfield code="0">(DE-625)145865:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5650</subfield><subfield code="0">(DE-625)147118:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 501f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Atkins, Peter W.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128437782</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular quantum mechanics</subfield><subfield code="c">Peter Atkins and Ronald Friedman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 537 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekül</subfield><subfield code="0">(DE-588)4039972-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenchemie</subfield><subfield code="0">(DE-588)4047979-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Molekül</subfield><subfield code="0">(DE-588)4039972-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Molekül</subfield><subfield code="0">(DE-588)4039972-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedman, Ronald</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14295554X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020636738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020636738</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV036718814 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:46:31Z |
institution | BVB |
isbn | 9780199541423 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020636738 |
oclc_num | 699872913 |
open_access_boolean | |
owner | DE-83 DE-19 DE-BY-UBM DE-20 DE-634 DE-12 DE-29T DE-11 DE-91G DE-BY-TUM DE-188 DE-355 DE-BY-UBR DE-384 |
owner_facet | DE-83 DE-19 DE-BY-UBM DE-20 DE-634 DE-12 DE-29T DE-11 DE-91G DE-BY-TUM DE-188 DE-355 DE-BY-UBR DE-384 |
physical | XIV, 537 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Atkins, Peter W. 1940- Verfasser (DE-588)128437782 aut Molecular quantum mechanics Peter Atkins and Ronald Friedman 5. ed. Oxford [u.a.] Oxford Univ. Press 2011 XIV, 537 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Molekül (DE-588)4039972-2 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Quantenchemie (DE-588)4047979-1 gnd rswk-swf Quantentheorie (DE-588)4047992-4 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Quantenchemie (DE-588)4047979-1 s DE-604 Molekül (DE-588)4039972-2 s Quantenmechanik (DE-588)4047989-4 s Quantentheorie (DE-588)4047992-4 s 1\p DE-604 Friedman, Ronald 1962- Verfasser (DE-588)14295554X aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020636738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Atkins, Peter W. 1940- Friedman, Ronald 1962- Molecular quantum mechanics Molekül (DE-588)4039972-2 gnd Quantenmechanik (DE-588)4047989-4 gnd Quantenchemie (DE-588)4047979-1 gnd Quantentheorie (DE-588)4047992-4 gnd |
subject_GND | (DE-588)4039972-2 (DE-588)4047989-4 (DE-588)4047979-1 (DE-588)4047992-4 (DE-588)4123623-3 |
title | Molecular quantum mechanics |
title_auth | Molecular quantum mechanics |
title_exact_search | Molecular quantum mechanics |
title_full | Molecular quantum mechanics Peter Atkins and Ronald Friedman |
title_fullStr | Molecular quantum mechanics Peter Atkins and Ronald Friedman |
title_full_unstemmed | Molecular quantum mechanics Peter Atkins and Ronald Friedman |
title_short | Molecular quantum mechanics |
title_sort | molecular quantum mechanics |
topic | Molekül (DE-588)4039972-2 gnd Quantenmechanik (DE-588)4047989-4 gnd Quantenchemie (DE-588)4047979-1 gnd Quantentheorie (DE-588)4047992-4 gnd |
topic_facet | Molekül Quantenmechanik Quantenchemie Quantentheorie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020636738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT atkinspeterw molecularquantummechanics AT friedmanronald molecularquantummechanics |