An introduction to applied statistical thermodynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J. [u.a.]
Wiley
2011
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 341 S. graph. Darst. |
ISBN: | 9780470913475 0470913479 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036668185 | ||
003 | DE-604 | ||
005 | 20140618 | ||
007 | t | ||
008 | 100914s2011 d||| |||| 00||| eng d | ||
015 | |a GBB089468 |2 dnb | ||
020 | |a 9780470913475 |9 978-0-470-91347-5 | ||
020 | |a 0470913479 |9 0-470-91347-9 | ||
035 | |a (OCoLC)705809969 | ||
035 | |a (DE-599)BVBBV036668185 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-91G | ||
084 | |a UG 3500 |0 (DE-625)145626: |2 rvk | ||
084 | |a PHY 057f |2 stub | ||
084 | |a CHE 170f |2 stub | ||
100 | 1 | |a Sandler, Stanley I. |d 1940- |e Verfasser |0 (DE-588)137890095 |4 aut | |
245 | 1 | 0 | |a An introduction to applied statistical thermodynamics |c Stanley I. Sandler |
264 | 1 | |a Hoboken, N.J. [u.a.] |b Wiley |c 2011 | |
300 | |a XVI, 341 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Statistical thermodynamics | |
650 | 4 | |a Thermodynamics / Industrial applications | |
650 | 0 | 7 | |a Statistische Thermodynamik |0 (DE-588)4126251-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistische Thermodynamik |0 (DE-588)4126251-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020587340&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020587340 |
Datensatz im Suchindex
_version_ | 1804143291369783296 |
---|---|
adam_text | Titel: An introduction to applied statistical thermodynamics
Autor: Sandler, Stanley I
Jahr: 2011
Contents
PREFACE FOR INSTRUCTORS v
PREFACE FOR STUDENTS ix
CHAPTER 1 INTRODUCTION TO STATISTICAL THERMODYNAMICS 1
1.1 Probabilistic Description 1
1.2 Macroscopic States and Microscopic States 2
1.3 Quantum Mechanical Description of Microstates 3
1.4 The Postulates of Statistical Mechanics 5
1.5 The Boltzmann Energy Distribution 6
CHAPTER 2 THE CANONICAL PARTITION FUNCTION 9
2.1 Some Properties of the Canonical Partition Function 9
2.2 Relationship of the Canonical Partition Function to Thermodynamic
Properties 11
2.3 Canonical Partition Function for a Molecule with Several Independent
Energy Modes 12
2.4 Canonical Partition Function for a Collection of Noninteracting Identical
Atoms 13
Chapter 2 Problems 15
CHAPTER 3 THE IDEAL MONATOMIC GAS 16
3.1 Canonical Partition Function for the Ideal Monatomic Gas 16
3.2 Identification of ß as 1/kT 18
3.3 General Relationships of the Canonical Partition Function to Other
Thermodynamic Quantities 19
3.4 The Thermodynamic Properties of the Ideal Monatomic Gas 22
3.5 Energy Fluctuations in the Canonical Ensemble 29
3.6 The Gibbs Entropy Equation 33
3.7 Translational State Degeneracy 35
3.8 Distinguishability, Indistinguishability, and the Gibbs Paradox 37
3.9 A Classical Mechanics-Quantum Mechanics Comparison: The
Maxwell-Boltzmann Distribution of Velocities 39
Chapter 3 Problems 42
CHAPTER 4 THE IDEAL DIATOMIC AND POLYATOMIC GASES 44
4.1 The Partition Function for an Ideal Diatomic Gas 44
4.1a The Translational and Nuclear Partition Functions 45
4.1b The Rotational Partition Function 45
4.1c The Vibrational Partition Function 47
4.1d The Electronic Partition Function 48
4.2 The Thermodynamic Properties of the Ideal Diatomic Gas 49
4.3 The Partition Function for an Ideal Polyatomic Gas 53
xiii
xiv Contents
4.4 The Thermodynamic Properties of an Ideal Polyatomic Gas 55
4.5 The Heat Capacities of Ideal Gases 58
4.6 Normal Mode Analysis: The Vibrations of a Linear Triatomic Molecule 59
Chapter 4 Problems 62
CHAPTER 5 CHEMICAL REACTIONS IN IDEAL GASES 64
5.1 The Nonreacting Ideal Gas Mixture 64
5.2 Partition Function of a Reacting Ideal Chemical Mixture 65
5.3 Three Different Derivations of the Chemical Equilibrium Constant in an
Ideal Gas Mixture 67
5.4 Fluctuations in a Chemically Reacting System 70
5.5 The Chemically Reacting Gas Mixture: The General Case 73
5.6 Two Illustrations 80
Appendix: The Binomial Expansion 83
Chapter 5 Problems 85
CHAPTER 6 OTHER PARTITION FUNCTIONS 87
6.1 The Microcanonical Ensemble for a Pure Fluid 87
6.2 The Grand Canonical Ensemble for a Pure Fluid 89
6.3 The Isobaric-Isothermal Ensemble 92
6.4 The Restricted Grand or Semi-Grand Canonical Ensemble 93
6.5 Comments on the Use of Different Ensembles 94
Chapter 6 Problems 96
CHAPTER 7 INTERACTING MOLECULES IN A GAS 98
7.1 The Configuration Integral 98
7.2 Thermodynamic Properties from the Configuration Integral 100
7.3 The Pairwise Additivity Assumption 101
7.4 Mayer Cluster Function and Irreducible Integrals 102
7.5 The Virial Equation of State 109
7.6 Virial Equation of State for Polyatomic Molecules 114
7.7 Thermodynamic Properties from the Virial Equation of State 116
7.8 Derivation of Virial Coefficient Formulae from the Grand Canonical
Ensemble 118
7.9 Range of Applicability of the Virial Equation 123
Chapter 7 Problems 124
CHAPTER 8 INTERMOLECULAR POTENTIALS AND THE EVALUATION
OF THE SECOND VIRIAL COEFFICIENT 125
8.1 Interaction Potentials for Spherical Molecules 125
8.2 The Second Virial Coefficient in a Mixture: Interaction Potentials Between
Unlike Atoms 136
8.3 Interaction Potentials for Multiatom, Nonspherical Molecules, Proteins,
andColloids 137
8.4 Engineering Applications and Implications of the Virial Equation
of State 140
Chapter 8 Problems 144
Contents xv
CHAPTER 9 MONATOMIC CRYSTALS 147
9.1 The Einstein Model of a Crystal 147
9.2 The Debye Model of a Crystal 150
9.3 Test of the Einstein and Debye Heat Capacity Models for a Crystal 157
9.4 Sublimation Pressure and Enthalpy of Crystals 159
9.5 A Comment on the Third Law of Thermodynamics 161
Chapter 9 Problems 161
CHAPTER 10 SIMPLE LATTICE MODELS FOR FLUIDS 163
10.1 Introduction 164
10.2 Development of Equations of State from Lattice Theory 165
10.3 Activity Coefficient Models for Similar-Size Molecules from Lattice
Theory 168
10.4 The Flory-Huggins and Other Models for Polymer Systems 172
10.5 The Ising Model 178
Chapter 10 Problems 184
CHAPTER 11 INTERACTING MOLECULES IN A DENSE FLUID.
CONFIGURATIONAL DISTRIBUTION FUNCTIONS 185
11.1 Reduced Spatial Probability Density Functions 185
11.2 Thermodynamic Properties from the Pair Correlation Function 190
11.3 The Pair Correlation Function (Radial Distribution Function) at Low
Density 194
11.4 Methods of Determination of the Pair Correlation Function at High
Density 197
11.5 Fluctuations in the Number of Particles and the Compressibility
Equation 199
11.6 Determination of the Radial Distribution Function of Fluids using Coherent
X-ray or Neutron Diffraction 202
11.7 Determination of the Radial Distribution Functions of Molecular Liquids 210
11.8 Determination of the Coordination Number from the Radial Distribution
Function 211
11.9 Determination of the Radial Distribution Function of Colloids and
Proteins 213
Chapter 11 Problems 214
CHAPTER 12 INTEGRAL EQUATION THEORIES FOR THE RADIAL
DISTRIBUTION FUNCTION 216
12.1 The Yvon-Born-Green (YBG) Equation 216
12.2 The Kirkwood Superposition Approximation 219
12.3 The Ornstein-Zernike Equation 220
12.4 Closures for the Ornstein-Zernike Equation 222
12.5 The Percus-Yevick Hard-Sphere Equation of State 227
12.6 The Radial Distribution Functions and Thermodynamic Properties of
Mixtures 228
12.7 The Potential of Mean Force 230
12.8 Osmotic Pressure and the Potential of Mean Force for Protein and Colloidal
Solutions 237
Chapter 12 Problems 239
xvi Contents
CHAPTER 13 DETERMINATION OF THE RADIAL DISTRIBUTION FUNCTION
AND FLUID PROPERTIES BY COMPUTER SIMULATION 241
13.1 Introduction to Molecular Level Computer Simulation 242
13.2 Thermodynamic Properties from Molecular Simulation 245
13.3 Monte Carlo Simulation 249
13.4 Molecular-Dynamics Simulation 253
Chapter 13 Problems 255
CHAPTER 14 PERTURBATION THEORY 257
14.1 Perturbation Theory for the Square-Well Potential 257
14.2 First Order Barker-Henderson Perturbation Theory 262
14.3 Second-Order Perturbation Theory 265
14.4 Perturbation Theory Using Other Reference Potentials 269
14.5 Engineering Applications of Perturbation Theory 272
Chapter 14 Problems 274
CHAPTER 15 A THEORY OF DILUTE ELECTROLYTE SOLUTIONS
AND IONIZED GASES 276
15.1 Solutions Containing Ions (and Electrons) 276
15.2 Debye-Hückel Theory 280
15.3 The Mean Ionic Activity Coefficient 291
Chapter 15 Problems 296
CHAPTER 16 THE DERIVATION OF THERMODYNAMIC MODELS FROM
THE GENERALIZED VAN DER WAALS PARTITION FUNCTION 297
16.1 The Statistical-Mechanical Background 298
16.2 Application of the Generalized van der Waals Partition Function
to Pure Fluids 301
16.3 Equation of State for Mixtures from the Generalized van der Waals Partition
Function 310
16.4 Activity Coefficient Models from the Generalized van der Waals Partition
Function 318
16.5 Chain Molecules and Polymers 329
16.6 Hydrogen-Bonding and Associating Fluids 332
Chapter 16 Problems 334
INDEX 335
|
any_adam_object | 1 |
author | Sandler, Stanley I. 1940- |
author_GND | (DE-588)137890095 |
author_facet | Sandler, Stanley I. 1940- |
author_role | aut |
author_sort | Sandler, Stanley I. 1940- |
author_variant | s i s si sis |
building | Verbundindex |
bvnumber | BV036668185 |
classification_rvk | UG 3500 |
classification_tum | PHY 057f CHE 170f |
ctrlnum | (OCoLC)705809969 (DE-599)BVBBV036668185 |
discipline | Physik Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01471nam a2200385 c 4500</leader><controlfield tag="001">BV036668185</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140618 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100914s2011 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB089468</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470913475</subfield><subfield code="9">978-0-470-91347-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470913479</subfield><subfield code="9">0-470-91347-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705809969</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036668185</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3500</subfield><subfield code="0">(DE-625)145626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 057f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 170f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sandler, Stanley I.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137890095</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to applied statistical thermodynamics</subfield><subfield code="c">Stanley I. Sandler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J. [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 341 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics / Industrial applications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Thermodynamik</subfield><subfield code="0">(DE-588)4126251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistische Thermodynamik</subfield><subfield code="0">(DE-588)4126251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020587340&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020587340</subfield></datafield></record></collection> |
id | DE-604.BV036668185 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:45:20Z |
institution | BVB |
isbn | 9780470913475 0470913479 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020587340 |
oclc_num | 705809969 |
open_access_boolean | |
owner | DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-11 DE-91G DE-BY-TUM |
physical | XVI, 341 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley |
record_format | marc |
spelling | Sandler, Stanley I. 1940- Verfasser (DE-588)137890095 aut An introduction to applied statistical thermodynamics Stanley I. Sandler Hoboken, N.J. [u.a.] Wiley 2011 XVI, 341 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Statistical thermodynamics Thermodynamics / Industrial applications Statistische Thermodynamik (DE-588)4126251-7 gnd rswk-swf Statistische Thermodynamik (DE-588)4126251-7 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020587340&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sandler, Stanley I. 1940- An introduction to applied statistical thermodynamics Statistical thermodynamics Thermodynamics / Industrial applications Statistische Thermodynamik (DE-588)4126251-7 gnd |
subject_GND | (DE-588)4126251-7 |
title | An introduction to applied statistical thermodynamics |
title_auth | An introduction to applied statistical thermodynamics |
title_exact_search | An introduction to applied statistical thermodynamics |
title_full | An introduction to applied statistical thermodynamics Stanley I. Sandler |
title_fullStr | An introduction to applied statistical thermodynamics Stanley I. Sandler |
title_full_unstemmed | An introduction to applied statistical thermodynamics Stanley I. Sandler |
title_short | An introduction to applied statistical thermodynamics |
title_sort | an introduction to applied statistical thermodynamics |
topic | Statistical thermodynamics Thermodynamics / Industrial applications Statistische Thermodynamik (DE-588)4126251-7 gnd |
topic_facet | Statistical thermodynamics Thermodynamics / Industrial applications Statistische Thermodynamik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020587340&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sandlerstanleyi anintroductiontoappliedstatisticalthermodynamics |