Aerothermodynamics of turbomachinery: analysis and design
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Wiley
2010
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXVII, 445 S. Ill., zahlr. graph. Darst. |
ISBN: | 9780470825006 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036621336 | ||
003 | DE-604 | ||
005 | 20100929 | ||
007 | t | ||
008 | 100818s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780470825006 |c cloth |9 978-0-470-82500-6 | ||
035 | |a (OCoLC)699830270 | ||
035 | |a (DE-599)HBZHT016386035 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-634 |a DE-703 | ||
084 | |a ZL 5400 |0 (DE-625)159579: |2 rvk | ||
100 | 1 | |a Chen, Naixing |d 1933- |e Verfasser |0 (DE-588)141646632 |4 aut | |
245 | 1 | 0 | |a Aerothermodynamics of turbomachinery |b analysis and design |c Naixing Chen |
264 | 1 | |a Singapore |b Wiley |c 2010 | |
300 | |a XXVII, 445 S. |b Ill., zahlr. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Aerothermodynamik |0 (DE-588)4133168-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmaschine |0 (DE-588)4058079-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Aerothermodynamik |0 (DE-588)4133168-0 |D s |
689 | 0 | 1 | |a Strömungsmaschine |0 (DE-588)4058079-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020541355&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020541355&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-020541355 |
Datensatz im Suchindex
_version_ | 1804143231735169024 |
---|---|
adam_text | Contents
Foreword
xv
Preface
xvii
Acknowledgments
xix
Nomenclature
xxi
1
Introduction
1
1.1
Introduction to the Study of the Aerothermodynamics of Turbomachinery
1
1.2
Brief Description of the Development of the Numerical Study of the
Aerothermodynamics of Turbomachinery
2
1.3
Summary
6
Further Reading
7
2
Governing Equations Expressed in Non-Orthogonal Curvilinear
Coordinates to Calculate
3D
Viscous Fluid Flow in Turbomachinery
9
2.1
Introduction
9
2.2
Aerothermodynamics Governing Equations (Navier-Stokes Equations)
of Turbomachinery
10
2.3
Viscous and Heat Transfer Terms of Equations
11
2.3.1
Viscous Stress Tensor
12
2.3.2
Strain Tensor
13
2.3.3
Viscous Force
14
2.3.4
Rates of Work Done by the Viscous Stresses and
Dissipation Function
14
2.3.5
Heat Transfer Term
15
2.4
Examples of Simplification of Viscous and Heat Transfer Terms
15
2.4.1
Three-Dimensional Flow in Turbomachinery Expressed
by Using Arbitrary Non-Orthogonal Coordinates
15
2.4.2
SI Stream-Surface Flow
17
2.4.3
S2 Stream-Surface Flow
17
2.4.4
Annulus Wall Boundary Layer
17
2.4.5
Three-Dimensional Boundary Layer on Rotating Blade Surface
19
2.5
Tensor Form of Governing Equations
20
2.5.1
Continuity Equation
20
2.5.2
Momentum Equation
20
vi
Contents
2.5.3
Energy
Equation
21
2.5.4
Entropy Equation
21
2.6
Integral Form of Governing Equations
21
2.6.1
Continuity Equation
21
2.6.2
Momentum Equation
21
2.6.3
Energy Equation
21
2.7
A Collection of the Basic Relationships for Non-Orthogonal Coordinates
22
2.8
Summary
24
3
Introduction to Boundary Layer Theory
25
3.1
Introduction
25
3.2
General Concepts of the Boundary Layer
25
3.2.1
Nature of Boundary Layer Flow
25
3.2.2
Boundary Layer Thicknesses
27
3.2.3
Transition of the Boundary Layer Regime
29
3.2.4
Boundary Layer Separation
30
3.2.5
Thermal Boundary Layer
32
3.3
Summary
35
4
Numerical Solutions of Boundary Layer Differentia] Equations
37
4.1
Introduction
37
4.2
Boundary Layer Equations Expressed in Partial Differential Form
37
4.2.1
Two-Dimensional Laminar Boundary Layer Equations
37
4.2.2
Laminar Boundary Layer Equations of Axisymmetrical Flow
38
4.2.3
Turbulent Boundary Layer Equations
39
4.2.4
Boundary Conditions of Solution
40
4.3
Numerical Solution of the Boundary Layer Differential Equations
for a Cascade on the Stream Surface of Revolution
41
4.3.1
Boundary Layer Equations of SI Stream Surface Flow
of Revolution and Their Solution
41
4.3.2
Turbulence Modeling
44
4.4
Calculation Results and Validations
45
4.4.1
Laminar Boundary Layer Calculation Example
45
4.4.2
Turbulent Boundary Layer with Favorable Pressure Gradient
45
4.4.3
Turbulent Boundary Layer with Adverse Pressure Gradient
(Ludweig and
Tillmann) 46
4.4.4
Turbulent Boundary Layer with Favorable Pressure Gradient (Bell)
47
4.4.5
Turbulent Boundary Layer with Adverse Pressure Gradient
(Schubauer and
Spangenberg) 48
4.5
Application to Analysis of the Performance of Turbomachinery
Blade Cascades
49
4.5.1
Boundary Layer Momentum Thickness
(Bammelt
s
Experiment)
49
4.5.2
Laminar Boundary Layer Prediction (Turbine and Compressor
Blade Profiles)
49
4.5.3
Laminar-Turbulent Boundary Layer Prediction
51
4.5.4
Turbulent Viscosity Prediction
52
Contents
vii
4.5.5
Stagger Angle Effect (C4)
53
4.5.6
Effect of Incidence Angle on Blade Loss Coefficient (C4)
55
4.5.7
Effect of Reynolds Number on the Loss Coefficient of
Compressor Blade Cascades (C4)
55
4.5.8
Effect of Stream Sheet Thickness on Boundary Layer
Momentum Thickness (Turbine Blade)
55
4.6
Summary
57
5
Approximate Calculations Using Integral Boundary Layer Equations
59
5.1
Introduction
59
5.2
Integral Boundary Layer Equations
59
5.2.1
Boundary Layer Momentum Integral Equation of the
Flow on the Stream Surface of Revolution
59
5.2.2
Momentum and Energy Integral Equations of the Boundary
Layer for Different Flow Cases
62
5.3
Generalized Method for Approximate Calculation of the
Boundary Layer Momentum Thickness
64
5.4
Laminar Boundary Layer Momentum Integral Equation
66
5.5
Transitional Boundary Layer Momentum Integral Equation
68
5.5.1
Velocity Distribution in the Boundary Layer Region
68
5.5.2
Wall Shear Stress Prediction in the Transitional Region
68
5.5.3
An Approximate Momentum Integral Equation for the
Transitional Region
70
5.6
Turbulent Boundary Layer Momentum Integral Equation
70
5.6.1
The Law of Velocity Distribution
71
5.6.2
Shape Parameters,
H
and H20
72
5.6.3
Wall Shear Stress Coefficient
72
5.6.4
Boundary Layer Momentum Thickness Prediction
75
5.6.5
An Approximate Formula for Prediction of the Shape
Parameter
H
of the Turbulent Boundary Layer
78
5.6.6
Empirical Constants for the Generalized Method for Approximate
Calculation of Turbulent Boundary Layer Momentum
Thickness Proposed by Different Authors
80
5.7
Calculation of a Compressible Boundary Layer
81
5.7.1
Compressibility Transformation of the Integral Equation
of the Boundary Layer
81
5.7.2
Calculation Method for a Compressible Boundary Layer
Without Heat Transfer
83
5.7.3
Boundary Layer Calculation Method for a Blade Cascade
on the Stream Surface of Revolution
84
5.8
Summary
84
6
Application of Boundary Layer Techniques to Turbomachinery
87
6.1
Introduction
87
6.2
Flow Rate Coefficient and Loss Coefficient of Two-Dimensional
Blade Cascades
87
viii Contents
6.2.1
Flow Rate Coefficient of a Blade Cascade
88
6.2.2
Loss Coefficient of a Blade Cascade
89
6.3
Studies on the Velocity Distributions Along Blade Surfaces and Correlation
Analysis of the Aerodynamic Characteristics of Plane Blade Cascades
92
6.3.1
Influence of Blade Surface Velocity Distribution on Boundary
Layer Momentum Loss Thickness
92
6.3.2
The Loss Coefficient of a Theoretical Optimum Plane Turbine
Profile Cascade
93
6.3.3
Correlations of the Loss Coefficient of a Plane Turbine Profile
Cascade (Using the Geometrical Convergence Gradient of
Blade Passage, G)
94
6.3.4
Correlations of the Loss Coefficient of a Plane Turbine
Profile Cascade (Using the Convergence Gradient of Blade
Passage
G
Expressed by Row Angles)
97
6.3.5
Correlations of the Loss Coefficient of a Plane Compressor
Blade Cascade (Using Diffusion Factor D)
99
6.4
Summary
101
7
Stream Function Methods for Two- and Three-Dimensional Flow
Computations in Turbomachinery
103
7.1
Introduction
103
7.2
Three-Dimensional Row Solution Methods with Two Kinds
of Stream Surfaces
104
7.2.1
Three-Dimensional Solution
104
7.2.2
Quasi-Three-Dimensional Solution
106
7.3
Two- Stream Function Method for Three-Dimensional Row Solution
106
7.3.1
Coordinate System and Metrical Tensors
106
7.3.2
Three-Dimensional Governing Equations of Steady Inviscid
Ruid Flow
109
7.3.3
Definition of Stream Functions and Coordinate-Transformation
110
7.3.4
Boundary Conditions and Calculation Examples
112
7.4
Stream Function Methods for Two-Dimensional Viscous Ruid
Row Computations
118
7.4.1
Navier-Stokes Equation Solution for Rotating Blade
Cascade Row on an SI Stream Surface of Revolution
119
7.4.2
Boundary Conditions
122
7.4.3
Solution Procedure
123
7.4.4
Calculation Examples
123
7.5
Stream Function Method for Numerical Solution of Transonic
Blade Cascade Row on the Stream Surface of Revolution
127
7.5.1
Stream Function Equation and Artificial Compressibility
127
7.5.2
Stone s Strongly Implicit Procedure (SIP) and
its Improvement
128
7.5.3
Numerical Solution Procedure
129
7.5.4
Calculation Examples
130
7.6
Finite Analytic Numerical Solution Method (FASM) for
Solving the Stream Function Equation of Blade Cascade Row
131
Contents
7.6.1
Governing
Equation
and its
Solution
132
7.6.2
Linearization of Equation Solution for a Rectangular Region
133
7.6.3
Non-Orthogonal Coordinate System and Discretized
Difference Equation
134
7.6.4
Adaptability of the Coefficients to Compressibility
136
7.6.5
Numerical Solution Procedure
137
7.6.6
Calculation Examples
137
7.7
Summary
140
Appendix 7.A Formulas for Estimating the Coefficients of the
Differential Equations of the
3D
Two-Stream Function
Coordinate Method
141
8
Pressure Correction Method for Two-Dimensional and
Three-Dimensional Flow Computations in Turbomachinery
145
8.1
Introduction
145
8.2
Governing Equations of Three-Dimensional Turbulent Flow and the
Pressure Correction Solution Method
146
8.2.1
Governing Equations
146
8.2.2
Two-Equation {k
-
ε)
Turbulence Model
148
8.2.3
Coordinate Transformation and Generalized Form of
Governing Equations with Body-Fitted Coordinates for Calculating
Orthogonal Coordinate Components of the Velocity Vector
150
8.2.4
Discretized Algebraic Equations
151
8.2.5
Boundary Conditions and Wall-Function Treatment
156
8.3
Two-Dimensional Turbulent Flow Calculation Examples
157
8.3.1
A Symmetric Airfoil
157
8.3.2
Low Speed Subsonic Turbine Blade Cascade
(NACA
TN-3802)
159
8.3.3
Turbine Blade Cascade (VKI-LS59)
162
8.3.4
Transonic Turbine Blade Cascade with Large Round
Leading Edges (T12)
164
8.3.5
Supersonic Turbine Blade Cascade
165
8.3.6
Compressor Blade Cascade (Tl)
166
8.4
Three-Dimensional Turbulent Flow Calculation Examples
169
8.4.1
Linear Turbine Blade Cascade
173
8.4.2
Annular Turbine Blade Cascade
175
8.4.3
High Turning Turbine Blade Cascade for an Annular
Blade Cascade Wind Tunnel
181
8.4.4
Linear Compressor Cascade
183
8.4.5
BUAA Single Rotor Test Compressor
185
8.4.6
Centrifugal Impeller
192
8.5
Summary
198
9
Time-Marching Method for Two-Dimensional and
Three-Dimensional Flow Computations in Turbomachinery
199
9.1
Introduction
199
9.2
Governing Equations of Three-Dimensional Viscous Flow
in Turbomachinery
201
x
Contents
9.2.1 Relative Motion in Turbomachinery 201
9.2.2
Governing Equations Written in
Differential
Equation Formulation
201
9.2.3
Governing Equations Written in Integral Form
204
9.3
Solution Method Based on Multi-Stage Runge-Kutta
Time-Marching Scheme
205
9.3.1
Discretization of Governing Equations
205
9.3.2
Method for Prediction of Parameters on Boundary Surfaces
and Fluxes
205
9.3.3
Adaptive Dissipation Term
206
9.3.4
Modified Multi-Stage Runge-Kutta Time-Marching Scheme
208
9.3.5
Turbulence Modeling and Wall Function
213
9.3.6
Multi-Grid Scheme
215
9.4
Two-Dimensional Turbulent Flow Examples Calculated by the
Multi-Stage Runge-Kutta Time-Marching Method
216
9.4.1
A Grid Generation Method Based on Analogy
with the Staff-Spring System
216
9.4.2
Turbine Blade Cascade (VKI-LS59)
220
9.4.3
Transonic Steam Turbine Blade Cascade (VKI-LS59 ST)
221
9.4.4
Supersonic Inlet Flow Compressor Blade Cascade
225
9.5
Three-Dimensional Flow Examples Calculated by the
Multi-Stage Runge-Kutta Time-Marching Method
226
9.5.1
Numerical Solution for Three-Dimensional Inviscid Flow
in a Transonic Single Rotor Compressor
227
9.5.2
Numerical Solution for Three-Dimensional Turbulent Flow
in a Single Rotor Compressor
232
9.5.3
Numerical Solution for Three-Dimensional Turbulent How
in a Turbine Stage
233
9.5.4
Three-Dimensional Turbulent Flow in a Centrifugal
Impeller by the Modified Multi-Stage Runge-Kutta
Time-Marching Method
238
9.6
Summary
249
10
Numerical Study on the Aerodynamic Design of Circumferential-
and Axial-Leaned and Bowed Turbine Blades
251
10.1
Introduction
251
10.2
Circumferential Blade-Bowing Study
252
10.2.1
Circumferential Blade-Bowing Procedure
252
10.2.2
Effect on the Pressure Distributions of the Surfaces
of Revolution at Different Span Heights
255
10.2.3
Effect on Parameter Contours of the Meridian Surfaces
(x1
=
const)
257
10.2.4
Effect on Pressure Contours of the Coordinate Surfaces
(x1
=
const)
258
10.2.5
The Bowing Effect for Restraining Boundary-Layer
Separation from the End-Wall
260
Contents
10.2.6 Circumferential
Bowing Effect on Pitch-Wise
Mass-Averaged Parameters at Station
3 261
10.2.7
Suggestion of Applying a New Circumferentially
Bowed Blading
266
10.3
Axial Blade-Bowing Study
266
10.3.1
Axial Blade-Bowing Procedure
266
10.3.2
Effect on Static Pressure Contours of the Meridian Surfaces
(x2
=
const)
268
10.3.3
Effect on Pressure Distributions of the Surfaces of
Revolution at Different Span Heights
269
10.3.4
Effect on Static Pressure Contours of the Surfaces of x1
=
const
271
10.3.5
Effect on Circumferentially Averaged Parameters at the
Vertical Measuring Plane (Just at the Exit from the Blade
Channel, that is, Station No.
3) 271
10.3.6
Axial Bowing Effect on Secondary Flow
273
10.3.7
Axial Bowing Effect on Global Adiabatic Efficiency and
Flow Rate
275
10.4
Circumferential Blade-Bowing Study of Turbine Nozzle Blade
Row with Low Span-Diameter Ratio
277
10.4.1
Leaning Effect on Adiabatic Efficiency and Exit Flow Angle
279
10.4.2
Generation of a Radial Stacking Form Close to Optimal
281
10.4.3
An Attempt at a Blade Modification
283
10.5
Summary
286
11
Numerical Study on Three-Dimensional Flow Aerodynamics
and Secondary Vortex Motions in Turbomachinery
287
11.1
Introduction
287
11.2
Post-Processing Algorithms
288
11.2.1
Relative Velocity Vector Schemes, Surface Trace and
Volume Trace
288
11.2.2
Vortex Intensity
289
11.2.3
Entropy Increment
289
11.2.4
An Approximate Formula for Predicting the Secondary Flow
Velocity Vector
289
11.3
Axial Turbine Secondary Vortices
289
11.3.1
Saddle Point and Horseshoe Vortex
290
11.3.2
Bowing Effect on the Location of the Saddle Point
290
11.3.3
Passage Vortex
294
11.3.4
Bowing Effect on the Development of the Passage Vortex
295
11.3.5
Bowing Effect on the Passage Vortex for Different
Incidence Angles
296
11.3.6
Corner Vortex in Straight and Saber-Shaped Blade Cascades
300
11.3.7
Tip Clearance Vortex
301
11.3.8
Blade Bowing Effect in Blades with Tip Clearance
305
11.3.9
Mechanism of Loss Reduction by Bowed Blades
306
xii
Contents
11.4
Some Features of Straight-Leaned Blade Aerodynamics
of a Turbine Nozzle with Low Span-Diameter Ratio
310
11.4.1
Leaning Effect on Static Pressure Contours on the Blade
Surfaces and on the Exit Coordinate Plane
310
11.4.2
Leaning Effect on Limiting Streamlines on Blade Surfaces
311
11.4.3
Leaning Effect on Entropy Contours at the Exit Plane
from the Blade Channel
311
11.5
Numerical Study on the Three-Dimensional Flow Pattern and Vortex
Motions in a Centrifugal Compressor Impeller
317
11.5.1
Complexity of the Flow in an Impeller
317
11.5.2
Limiting Streamlines on the Pressure/Hub and Suction/Hub Surfaces
317
11.5.3
Secondary Vortices in the Centrifugal Impeller
319
11.5.4
Topology of the Passage Vortex in the Centrifugal
Compressor Impeller
322
11.5.5
Separation Vortex in a Vaneless
Diffuser 325
11.5.6
Vaneless
Diffuser
Design Improvement
326
11.6
Summary
326
12
Two-Dimensional Aerodynamic Inverse Problem Solution Study
in Turbomachinery
329
12.1
Introduction
329
12.2
Stream Function Method
331
12.2.1
S2 Meridional Stream Surface Flow
332
12.2.2
SI Stream Surface Flow of Revolution
334
12.3
A Hybrid Problem Solution Method Using the Stream Function Equation
with Prescribed Target Velocity for the Blade Cascades of Revolution
336
12.3.1
Circumferentially Geometric Proportional Curvilinear
Coordinate System
337
12.3.2
Stream Function Equation and its Coefficients
338
12.3.3
Solution Procedure
339
12.3.4
Calculation Examples
340
12.4
Stream-Function-Coordinate Method (SFC) for the Blade
Cascades on the Surface of Revolution
343
12.4.1
Stream-Function-Coordinate Equation
343
12.4.2
Artificial Compressibility Technique
345
12.4.3
Boundary Conditions
345
12.4.4
Numerical Examples
346
12.5
Stream-Function-Coordinate Method (SFC) with Target
Circulation for the Blade Cascades on the Surface of Revolution
350
12.5.1
Blade Circulation and its Derivative
351
12.5.2
Blade Thickness Distribution
352
12.6
Two-Dimensional Inverse Method Using a Direct Solver
with Residual Correction Technique
353
12.6.1
Residual Correction Equation
354
12.6.2
A Calculation Example
357
12.7
Summary
359
Contents xiii
13
Three-Dimensional Aerodynamic Inverse Problem Solution Study
in Turbomachinery
361
13.1
Introduction
361
13.2
Two-Stream-Function-Coordinate-Equation Inverse Method
362
13.2.1
Two-Stream-Function-Coordinate Differential Equations
362
13.2.2
Inverse Problem Solution Procedure
363
13.2.3
A Calculation Example
363
13.3
Three-Dimensional Potential Function Hybrid Solution Method
364
13.3.1
Governing Equations
364
13.3.2
Potential Function Equation
366
13.3.3
Solution Procedure
366
13.3.4
Calculation Example
370
13.4
Summary
372
14
Aerodynamic Design Optimization of Compressor and Turbine Blades
375
14.1
Introduction
375
14.2
Parameterization Method
377
14.2.1
Parameterization of Blade Profile and Stacking Line
378
14.2.2
2D Blade Reconstruction (Rebuilding)
381
14.2.3
Parameter Effects on the Geometry of a Blade Profile
384
14.3
Response Surface Method (RSM) for Blade Optimization
387
14.3.1
Response Surface Creation
394
14.3.2
Principle Scheme of the Response Surface Method
395
14.4
A Study on the Effect of Maximum Camber Location
for a Transonic Fan Rotor Blading by GPAM
395
14.4.1
Brief Description
396
14.4.2
Optimization Procedure
397
14.5
Optimization of a Low Aspect Ratio Turbine by GPAM and a Study
of the Effects of Geometry on the Aerodynamics Performance
401
14.5.1
Geometry Effect on Blade Performance
403
14.5.2
Optimal Turbine Nozzle Blades
411
14.6
Blade Parameterization and Aerodynamic Design
Optimization for a
3D
Transonic Compressor Rotor
412
14.6.1
Calculation Example
413
14.6.2
Brief Description of Methodologies
414
14.6.3
Optimization with Response Surface Method (RSM)
417
14.6.4
Optimization by Gradient-Based Parameterization
Method (GPAM)
419
14.6.5
Simple Gradient Method (SGM)
422
14.6.6
Final Results
423
14.7
Summary
426
References
429
Index
441
AEROTHERMODYNAMICS
OF TURBOMACHINERY
Analysis and Design
Naixing Chen, Institute of Engineering Thermophysics, Chinese Academy
of Sciences, China
Computational Fluid Dynamics (CFD) is now an essential and effective tool used in the
design of all types of
turbomachine,
and this topic constitutes the main theme of this book.
With over
50
years of experience in the field of aerodynamics, Professor Naixing Chen
has developed a wide range of numerical methods covering almost the entire spectrum
of turbomachinery applications. Moreover, he has also made significant contributions to
practical experiments and real-life designs.
The book focuses on rigorous mathematical derivation of the equations governing
flow and detailed descriptions of the numerical methods used to solve the equations.
Numerous applications of the methods to different types of
turbomachine
are given and,
in many cases, the numerical results are compared to experimental measurements. These
comparisons illustrate the strengths and weaknesses of the methods
-
a useful guide
for readers. Lessons for the design of improved blading are also indicated after many
applications.
•
Presents real-world perspective to the past, present and future concern in
turbomachinery
•
Covers direct and inverse solutions with theoretical and practical aspects
•
Demonstrates huge application background in China
•
Supplementary instructional materials are available on the companion website
Aerothermodynamics of Turbomachinery: Analysis and Design is ideal for senior
undergraduates and graduates studying in the fields of mechanics, energy and power, and
aerospace engineering; design engineers in the business of manufacturing compressors,
steam and gas turbines; and research engineers and scientists working in the areas of
fluid mechanics, aerodynamics, and heat transfer.
Supplementary lecture materials for instructors are available at
www.wiley.com/go/chenturbo
)
WILEY
wiley.com
Cover design: Jim Wilkie
ISBN 978-0-47O-825O0-6
9
l780470 825006
|
any_adam_object | 1 |
author | Chen, Naixing 1933- |
author_GND | (DE-588)141646632 |
author_facet | Chen, Naixing 1933- |
author_role | aut |
author_sort | Chen, Naixing 1933- |
author_variant | n c nc |
building | Verbundindex |
bvnumber | BV036621336 |
classification_rvk | ZL 5400 |
ctrlnum | (OCoLC)699830270 (DE-599)HBZHT016386035 |
discipline | Maschinenbau / Maschinenwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01607nam a2200349 c 4500</leader><controlfield tag="001">BV036621336</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100929 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100818s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470825006</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-82500-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699830270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT016386035</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZL 5400</subfield><subfield code="0">(DE-625)159579:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Naixing</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141646632</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerothermodynamics of turbomachinery</subfield><subfield code="b">analysis and design</subfield><subfield code="c">Naixing Chen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Wiley</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 445 S.</subfield><subfield code="b">Ill., zahlr. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aerothermodynamik</subfield><subfield code="0">(DE-588)4133168-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmaschine</subfield><subfield code="0">(DE-588)4058079-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aerothermodynamik</subfield><subfield code="0">(DE-588)4133168-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strömungsmaschine</subfield><subfield code="0">(DE-588)4058079-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020541355&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020541355&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020541355</subfield></datafield></record></collection> |
id | DE-604.BV036621336 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:44:23Z |
institution | BVB |
isbn | 9780470825006 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020541355 |
oclc_num | 699830270 |
open_access_boolean | |
owner | DE-83 DE-634 DE-703 |
owner_facet | DE-83 DE-634 DE-703 |
physical | XXVII, 445 S. Ill., zahlr. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Wiley |
record_format | marc |
spelling | Chen, Naixing 1933- Verfasser (DE-588)141646632 aut Aerothermodynamics of turbomachinery analysis and design Naixing Chen Singapore Wiley 2010 XXVII, 445 S. Ill., zahlr. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Aerothermodynamik (DE-588)4133168-0 gnd rswk-swf Strömungsmaschine (DE-588)4058079-9 gnd rswk-swf Aerothermodynamik (DE-588)4133168-0 s Strömungsmaschine (DE-588)4058079-9 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020541355&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020541355&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Chen, Naixing 1933- Aerothermodynamics of turbomachinery analysis and design Aerothermodynamik (DE-588)4133168-0 gnd Strömungsmaschine (DE-588)4058079-9 gnd |
subject_GND | (DE-588)4133168-0 (DE-588)4058079-9 |
title | Aerothermodynamics of turbomachinery analysis and design |
title_auth | Aerothermodynamics of turbomachinery analysis and design |
title_exact_search | Aerothermodynamics of turbomachinery analysis and design |
title_full | Aerothermodynamics of turbomachinery analysis and design Naixing Chen |
title_fullStr | Aerothermodynamics of turbomachinery analysis and design Naixing Chen |
title_full_unstemmed | Aerothermodynamics of turbomachinery analysis and design Naixing Chen |
title_short | Aerothermodynamics of turbomachinery |
title_sort | aerothermodynamics of turbomachinery analysis and design |
title_sub | analysis and design |
topic | Aerothermodynamik (DE-588)4133168-0 gnd Strömungsmaschine (DE-588)4058079-9 gnd |
topic_facet | Aerothermodynamik Strömungsmaschine |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020541355&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020541355&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT chennaixing aerothermodynamicsofturbomachineryanalysisanddesign |