Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Augsburg
Inst. für Mathematik
2009
|
Schriftenreihe: | Preprint / Institut für Mathematik
2009,33 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 Online-Ressource |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV036591077 | ||
003 | DE-604 | ||
005 | 20200426 | ||
007 | cr|uuu---uuuuu | ||
008 | 100729s2009 |||| o||u| ||||||eng d | ||
035 | |a (OCoLC)705703857 | ||
035 | |a (DE-599)BVBBV036591077 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-384 | ||
084 | |a SI 910 |0 (DE-625)143212: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
245 | 1 | 0 | |a Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain |c Dirk Blömker ; Yongqian Han |
264 | 1 | |a Augsburg |b Inst. für Mathematik |c 2009 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Preprint / Institut für Mathematik |v 2009,33 | |
650 | 0 | 7 | |a Ginzburg-Landau-Gleichung |0 (DE-588)4157356-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufälliges dynamisches System |0 (DE-588)4335207-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Musterbildung |0 (DE-588)4137934-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches dynamisches System |0 (DE-588)4305316-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische partielle Differentialgleichung |0 (DE-588)4135969-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ginzburg-Landau-Gleichung |0 (DE-588)4157356-0 |D s |
689 | 0 | 1 | |a Stochastisches dynamisches System |0 (DE-588)4305316-6 |D s |
689 | 0 | 2 | |a Zufälliges dynamisches System |0 (DE-588)4335207-8 |D s |
689 | 0 | 3 | |a Musterbildung |0 (DE-588)4137934-2 |D s |
689 | 0 | 4 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |D s |
689 | 0 | 5 | |a Stochastische partielle Differentialgleichung |0 (DE-588)4135969-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Blömker, Dirk |d 1970- |e Sonstige |0 (DE-588)173390463 |4 oth | |
700 | 1 | |a Han, Yongqian |e Sonstige |4 oth | |
810 | 2 | |a Institut für Mathematik |t Preprint |v 2009,33 |w (DE-604)BV000015847 |9 2009,33 | |
856 | 4 | 0 | |u http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1509/ |x Verlag |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020511787 |
Datensatz im Suchindex
_version_ | 1804143189168226304 |
---|---|
any_adam_object | |
author_GND | (DE-588)173390463 |
building | Verbundindex |
bvnumber | BV036591077 |
classification_rvk | SI 910 SK 920 |
collection | ebook |
ctrlnum | (OCoLC)705703857 (DE-599)BVBBV036591077 |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02129nmm a2200481 cb4500</leader><controlfield tag="001">BV036591077</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200426 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100729s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705703857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036591077</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 910</subfield><subfield code="0">(DE-625)143212:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain</subfield><subfield code="c">Dirk Blömker ; Yongqian Han</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Augsburg</subfield><subfield code="b">Inst. für Mathematik</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint / Institut für Mathematik</subfield><subfield code="v">2009,33</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ginzburg-Landau-Gleichung</subfield><subfield code="0">(DE-588)4157356-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufälliges dynamisches System</subfield><subfield code="0">(DE-588)4335207-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Musterbildung</subfield><subfield code="0">(DE-588)4137934-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches dynamisches System</subfield><subfield code="0">(DE-588)4305316-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ginzburg-Landau-Gleichung</subfield><subfield code="0">(DE-588)4157356-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches dynamisches System</subfield><subfield code="0">(DE-588)4305316-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zufälliges dynamisches System</subfield><subfield code="0">(DE-588)4335207-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Musterbildung</subfield><subfield code="0">(DE-588)4137934-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blömker, Dirk</subfield><subfield code="d">1970-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)173390463</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Yongqian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Institut für Mathematik</subfield><subfield code="t">Preprint</subfield><subfield code="v">2009,33</subfield><subfield code="w">(DE-604)BV000015847</subfield><subfield code="9">2009,33</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1509/</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020511787</subfield></datafield></record></collection> |
id | DE-604.BV036591077 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:43:37Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020511787 |
oclc_num | 705703857 |
open_access_boolean | 1 |
owner | DE-384 |
owner_facet | DE-384 |
physical | 1 Online-Ressource |
psigel | ebook |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Inst. für Mathematik |
record_format | marc |
series2 | Preprint / Institut für Mathematik |
spelling | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain Dirk Blömker ; Yongqian Han Augsburg Inst. für Mathematik 2009 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Preprint / Institut für Mathematik 2009,33 Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd rswk-swf Zufälliges dynamisches System (DE-588)4335207-8 gnd rswk-swf Musterbildung (DE-588)4137934-2 gnd rswk-swf Stochastisches dynamisches System (DE-588)4305316-6 gnd rswk-swf Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd rswk-swf Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd rswk-swf Ginzburg-Landau-Gleichung (DE-588)4157356-0 s Stochastisches dynamisches System (DE-588)4305316-6 s Zufälliges dynamisches System (DE-588)4335207-8 s Musterbildung (DE-588)4137934-2 s Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 s Stochastische partielle Differentialgleichung (DE-588)4135969-0 s DE-604 Blömker, Dirk 1970- Sonstige (DE-588)173390463 oth Han, Yongqian Sonstige oth Institut für Mathematik Preprint 2009,33 (DE-604)BV000015847 2009,33 http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1509/ Verlag kostenfrei Volltext |
spellingShingle | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd Zufälliges dynamisches System (DE-588)4335207-8 gnd Musterbildung (DE-588)4137934-2 gnd Stochastisches dynamisches System (DE-588)4305316-6 gnd Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd |
subject_GND | (DE-588)4157356-0 (DE-588)4335207-8 (DE-588)4137934-2 (DE-588)4305316-6 (DE-588)4128900-6 (DE-588)4135969-0 |
title | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain |
title_auth | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain |
title_exact_search | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain |
title_full | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain Dirk Blömker ; Yongqian Han |
title_fullStr | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain Dirk Blömker ; Yongqian Han |
title_full_unstemmed | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain Dirk Blömker ; Yongqian Han |
title_short | Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain |
title_sort | asymptotic compactness of stochastic complex ginzburg landau equation on an unbounded domain |
topic | Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd Zufälliges dynamisches System (DE-588)4335207-8 gnd Musterbildung (DE-588)4137934-2 gnd Stochastisches dynamisches System (DE-588)4305316-6 gnd Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd |
topic_facet | Ginzburg-Landau-Gleichung Zufälliges dynamisches System Musterbildung Stochastisches dynamisches System Nichtlineare partielle Differentialgleichung Stochastische partielle Differentialgleichung |
url | http://opus.bibliothek.uni-augsburg.de/volltexte/2010/1509/ |
volume_link | (DE-604)BV000015847 |
work_keys_str_mv | AT blomkerdirk asymptoticcompactnessofstochasticcomplexginzburglandauequationonanunboundeddomain AT hanyongqian asymptoticcompactnessofstochasticcomplexginzburglandauequationonanunboundeddomain |