Die nicht-euklidischen Raumformen in analytischer Behandlung:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Saarbrücken
VDM Verlag Dr. Müller
[2007]
|
Schriftenreihe: | Edition classic
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hergestellt on demand |
Beschreibung: | XI, 264 S. graph. Darst. 21 cm |
ISBN: | 9783836439305 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036566640 | ||
003 | DE-604 | ||
005 | 20230825 | ||
007 | t | ||
008 | 100715r2007uuuugw d||| |||| 00||| ger d | ||
015 | |a 10,A19 |2 dnb | ||
016 | 7 | |a 991257901 |2 DE-101 | |
020 | |a 9783836439305 |c kart. |9 978-3-8364-3930-5 | ||
035 | |a (OCoLC)614459972 | ||
035 | |a (DE-599)DNB991257901 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c XA-DE | ||
049 | |a DE-634 | ||
082 | 0 | |a 516.9 |2 22/ger | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Killing, Wilhelm |d 1847-1923 |e Verfasser |0 (DE-588)119097117 |4 aut | |
245 | 1 | 0 | |a Die nicht-euklidischen Raumformen in analytischer Behandlung |c von Wilhelm Killing |
264 | 1 | |a Saarbrücken |b VDM Verlag Dr. Müller |c [2007] | |
300 | |a XI, 264 S. |b graph. Darst. |c 21 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Edition classic | |
500 | |a Hergestellt on demand | ||
648 | 7 | |a Geschichte 1885 |2 gnd |9 rswk-swf | |
650 | 0 | 7 | |a Nichteuklidische Geometrie |0 (DE-588)4042073-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4135952-5 |a Quelle |2 gnd-content | |
689 | 0 | 0 | |a Nichteuklidische Geometrie |0 (DE-588)4042073-5 |D s |
689 | 0 | 1 | |a Geschichte 1885 |A z |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020487841&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020487841 |
Datensatz im Suchindex
_version_ | 1804143146025615360 |
---|---|
adam_text | INHALTSTERZEICHNIS. DIE ANGEHAENGTEN ZAHLEN BEZIEHEN SICH AUF DEN
LITTETATUNIACHWEIL. ERSTER ABSCHNITT. DER RAUM *** DREI DIMENSIONEN. §
1. GEMEINSCHAFTLICHE GRUNDLAGE DER RERSCBLEDENEN RAUMFORMEN. A#LU 1. DIE
VORAUSSETZUNGEN EUKLIDS . . . . . . L 2. UEBERBLICK UEBER DIE
ANZUSTELLENDE UNTERSUCHUNG 3 3. DIE WINKELSUMME IM UNENDLICH KLEINEN
DREIECK 1 . . . . 3 4. DAS DREIECK MIT EINEM UNENDLICH KLEINEN WINKEL
. . . . 4 6. DAS UNENDLICH KLEINE GEBIET 6. 6. DIE UNTERSUCHUNGEN ***
ART. 6 IN ANDERER FORM. 6 7. DIE PERIPHERIE EINES KREISES ALS FUNKTION
DES RADIUS . . . 8 8. DIE TRIGONOMETRISCHEN FORMELN 9 9. DIE GEMACHTEN
VORAUSSETZUNGEN FUEHREN AUF TERSEHIEDENE RAUM- FORMEN 12 10. DAS
RIEMANNSCHE KRUEMMUNGSMASS EINER BAUMFORM* . . . 13 11. CHARAKTERISIERUNG
DER VIER KAUMFORMEN* 14 § 2. KOORDINATEN IN DER EBENE. 12. DIE
WEIERSTRASSSCHEN KOORDINATEN* 17 13. ABSTAND ZWEIER PUNKTE 18 § 3. DIE
GERADE LINIE IN DER EBENE. 14. GLEICHUNG DER GERADEN LINIE 20 15.
GEGENSEITIGE LAGE ZWEIER GERADEN 22 16. BEZIEHUNG DER EIEMANNSCHEN EBENE
ZU IHRER POLAIFORM . . 24 17 BIBLIOGRAFISCHE INFORMATIONEN
HTTP://D-NB.INFO/991257901 DIGITALISIERT DURCH VILI INHALTSVERZEICHNIS.
ARTIT.I § * - D I E KEGELSCHNITTE. **11# 23. SCHNITT EINE3 GERADEN
KEGELS DURCH EINE EBENE 37 24. GLEICHUNGLEINES KEGELSCHNITTES 40 25.
POLAR-EIGENSCHAFTEN DER KEGELSCHNITTE; MITTELPUNKTE. . . . 41 26.
EINTEILUNG DER KEGELSCHNITTE 44 § G. DIE RANMGEBILDE ALS GROSSE. 27.
MESSUNG DER GERADEN STRECKE UND DES WINKELS 46 28. MESSUNG DER EBENEN
FLAECHE 49 29. MESSUNG EINER KRUMMEN LINIE 8 51 SO. AUSDRUCK FUER DAS
BOGENELEMENT 63 31. AUSDRUCK FUER DAS FLAECHENELEMENT 9 54 § 7. EBENEN UND
GERADE IM RANNTE. 32. DIE EBENE 56 33. DIE GERADEN DES RAUMES 10 59
ZWEITER ABSCHNITT. DER -FACH AUSGEDEHNTE RAUM, § 1. KOORDINATEN. 34
ALLGEMEINE VORAUSSETZUNGEN 11 64 35. ELEMENTARE SAETZE UEBER DIE
GEGENSEITIGE LAGE VON EBENEN 11 . 65 36. LAGE ZWEIER PUNKTE ZU N
AUFEINANDER SENKRECHT STEHENDEN EBENEN 69 37. DAS WEIERSTRASSSCHE
KOORDINATENSYSTEM 70 §2. DIE EINFACHSTEN GEBILDE DES N-DIMENSLONALEN
RAUMES. 3 INHALTSVERZEICHNIS. * IS ARTIKEL * 8 * . 51. KOEFFIZIENTEN
IN DIESER GLEICHUNG 9T 52. ABSTAND EINER EBENE VON N + 2 PUNKTEN 92 53.
PROJEKTIVISCHE KOORDINATEN EINES PUNKTES UND EINER EBENE . 93 64.
DOPPELVERHAELTNIS . ; 95 55. GEBILDE ZWEITER ORDNUNG . . 95 * 56.
EINTEILUNG DER EIGENTLICHEN QUADRATISCHEN GEBILDE . . . . 96 57.
EINTEILUNG DER KEGELGEBILDE 99 68. LINEARE GLEICHUNGEN ZWISCHEN DEN
KOEFFIZIENTEN QUADRATISCHER GEBILDE . . 100 69. PROJEKTIVISCHE ERZEUGUNG
HOEHERER GEBILDE 101 § 4. ZNSAMMENHANG ZWISCHEN FROJEKTIRITAET IMD
METRIK. 60. ABSTAND ZWEIER PUNKTE BEI SPEZIELLER LAGE . 103 61. RELATION
ZWISCHEN DEN N+1 PROJEKTIVISCHEN KOORDINATEN . 106 62. BEGRIFF DER
GLEICHHEIT AUS DEM DES DOPPELVERHAELTNISSES GE- WONNEN 106 63.
BETRACHTUNG DER EBENE ALS ELEMENT 1 . 109 64. DAS WEIERSTRASSSCHE
KOORDINATENSYSTEM ALS SPEZIELLE FORM DES PROJEKTIVISCHEN 110 65.
ABBILDUNG DER NICHT-EUKLIDISCHEN BAUMFORMEN AUF DIE PRO- JEKTIVISCHEN 18
112 § 5. SELBSTAENDIGE BEGRUENDUNG DER PROJEKTIRISCHEN GEOMETRIE. 66.
VORAUSSETZUNGEN DER PROJEKTIVISCHEN GEOMETRIE 114 67. DER VIERTE
HARMONISCHE PUNKT 116 68. VIER HARMONISCHE EBENEN - . 116 69. DAS
GANZZAHLIGE DOPPELVERHAELTNIS VON VIER PUNKTIN . * . . 117 70 X
INHALTSVERZEICHNIS. ARTIKEL STIT * 81. ANWENDUNG DIESER DARSTELLUNG 141
82. DIE VERSCHIEDENEN FORMEN FUER UNGLEICHE ELEMENTARTEILER . . 142 83.
SPEZIELLE AUFZAEHLUNG FUER DREI DIMENSIONEN 145 84. GEBILDE, WELCHE GANZ
IM ENDLICHEN LIEGEN . 146 85. AEHNLICHE UND KONFOKALE GEBILDE 146 § 8.
DIE GEGENSEITIGE LAGE ZWEIER EBENEN. 86. DIE AEHNLICHKEITSBUESCHEL IN DEN
BEIDEN EBENEN 148 87. GEGENSEITIGE LAGE DER GEMEINSCHAFTLICHEN
SENKRECHTEN . . 152 88. EBENEN, WELCHE AUF DEN GEGEBENEN SENKRECHT
STEHEN . . . 153 89. ZUSAMMENFASSUNG DER RESULTATE 154 90. ZWEI EBENEN
IM EUKLIDISCHEN RAEUME 156 91. ZWEI EBENEN IM LOBATSCHEWSKYSCHEN RAEUME
. 167 92. SYSTEME VON EBENEN 159 § 9. KRTTMMUNGSGEBILDE EINER
QUADRATISCHEN SCHAR. 93. EINFACHSTE FORMELN FUER ELLIPTISCHE KOORDINATEN
161 94. GEOMETRISCHE ANWENDUNGEN 164 95. VOLUMEN EINES AU EINER
QUADRATISCHEN SCHAR GEHOERIGEN KRUM - MUNGSGEBILDES 166 96. ALLGEMEINE
GLEICHUNG DER KUERZESTEN LINIEN 167 97. KUERZESTE LINIEN AUF EINEM
KRUEMMUNGSGEBILDE EINER QUA- DRATISCHEN SCHAR 3 169 98. KUERZESTE LINIEN,
WELCHE VON EINEM PUNKTE AUSGEHEN UND DASSELBE KRUEMMUNGSGEBILDE BERUEHREN
. 172 99. DIE GERADEN, WELCHE DIE KUERZESTEN LINIEN EINES KRUEMMUNGS-
GEBILDES BERUEHREN 174 100. ERWEITERUNG EINES SATZES VON M. ROBERTS 176
101. ERWEITERUNG EINES SATZES VON CHASIES . 179 102 INHALTSVERZEICHNIS.
S1 § 11. DIE HAUPTFCRTTMNIUNGSRADIEN EINES ARTILTE . . * (N *
LVDLMCNSLONULMT GEBILDES. SDTE 112. DER MEUSNIERSCHE SATZ 203 113. DIE
HAUPTKRUEMMUNGSRADIEN FUER EINE SPEZIELLE FORM DER GLEICHUNG DES GEBILDES
, 206 114. SCHNITT UNENDLICH NAHER TANGENTIALEBENEN 20» 115. BEZIEHUNG
ZUM GAUSSSCHEN KRUEMMUSGSMASS 210 116. ALLGEMEINE GLEICHUNG DES GEBILDES
I HERLEITUNG DEE MEUSNIER- SCHEN SATZES 211 117 ALLGEMEINER AUSDRUCK DER
HAUPTKRUEMMUNGSRADIEN . . . . 214 IIS. UNENDLICH NAHE NORMALEN 216 119.
DARSTELLUNG DER KOORDINATEN DURCH **1 VARIABELE: AUSDRUCK DER
HAUPTKRUEMMUNGEN 58 218 § 12. ABRRICKELBARKEIT MEHRFACH AUSGEDEHNTER
GEBILDE. 120. DIE ABWICKELBARKEIT UND DIE TRANSFORMATION VON
DIFFERENTIAL- AUSDRUECKEN ZWEITEN GRADES 221 121. NOTWENDIGE BEDINGUNG
FUER DIE MOEGLICHKEIT, ZWEI DIFFORENTIAL- AUSDRUECKE INEINANDER ZU
TRANSFORMIEREN 223 122. UMFORMUNG DIESER BEDINGUNGEN 227 123 ZWEI
SPEZIELLE DIFFERENTIALAUSDRFICKE 230 124. DIE HAUPTKRUEMMUNGEN IN
BEZIEHUNG ZU DEN INVARIANTEN DES ART. 122 232 1251 BEANTWORTUNG DER
FRAGE, WANN (N * L) -DIMENSIONALE GEBILDE OHNE DEHNUNG DEFORMIERT WERDEN
KOENNEN . . . . . .
|
any_adam_object | 1 |
author | Killing, Wilhelm 1847-1923 |
author_GND | (DE-588)119097117 |
author_facet | Killing, Wilhelm 1847-1923 |
author_role | aut |
author_sort | Killing, Wilhelm 1847-1923 |
author_variant | w k wk |
building | Verbundindex |
bvnumber | BV036566640 |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)614459972 (DE-599)DNB991257901 |
dewey-full | 516.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.9 |
dewey-search | 516.9 |
dewey-sort | 3516.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
era | Geschichte 1885 gnd |
era_facet | Geschichte 1885 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01611nam a2200433 c 4500</leader><controlfield tag="001">BV036566640</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230825 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100715r2007uuuugw d||| |||| 00||| ger d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,A19</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">991257901</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783836439305</subfield><subfield code="c">kart.</subfield><subfield code="9">978-3-8364-3930-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)614459972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB991257901</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.9</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Killing, Wilhelm</subfield><subfield code="d">1847-1923</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119097117</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Die nicht-euklidischen Raumformen in analytischer Behandlung</subfield><subfield code="c">von Wilhelm Killing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Saarbrücken</subfield><subfield code="b">VDM Verlag Dr. Müller</subfield><subfield code="c">[2007]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 264 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">21 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Edition classic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hergestellt on demand</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1885</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="0">(DE-588)4042073-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4135952-5</subfield><subfield code="a">Quelle</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichteuklidische Geometrie</subfield><subfield code="0">(DE-588)4042073-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1885</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020487841&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020487841</subfield></datafield></record></collection> |
genre | (DE-588)4135952-5 Quelle gnd-content |
genre_facet | Quelle |
id | DE-604.BV036566640 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:43:01Z |
institution | BVB |
isbn | 9783836439305 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020487841 |
oclc_num | 614459972 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | XI, 264 S. graph. Darst. 21 cm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | VDM Verlag Dr. Müller |
record_format | marc |
series2 | Edition classic |
spelling | Killing, Wilhelm 1847-1923 Verfasser (DE-588)119097117 aut Die nicht-euklidischen Raumformen in analytischer Behandlung von Wilhelm Killing Saarbrücken VDM Verlag Dr. Müller [2007] XI, 264 S. graph. Darst. 21 cm txt rdacontent n rdamedia nc rdacarrier Edition classic Hergestellt on demand Geschichte 1885 gnd rswk-swf Nichteuklidische Geometrie (DE-588)4042073-5 gnd rswk-swf (DE-588)4135952-5 Quelle gnd-content Nichteuklidische Geometrie (DE-588)4042073-5 s Geschichte 1885 z DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020487841&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Killing, Wilhelm 1847-1923 Die nicht-euklidischen Raumformen in analytischer Behandlung Nichteuklidische Geometrie (DE-588)4042073-5 gnd |
subject_GND | (DE-588)4042073-5 (DE-588)4135952-5 |
title | Die nicht-euklidischen Raumformen in analytischer Behandlung |
title_auth | Die nicht-euklidischen Raumformen in analytischer Behandlung |
title_exact_search | Die nicht-euklidischen Raumformen in analytischer Behandlung |
title_full | Die nicht-euklidischen Raumformen in analytischer Behandlung von Wilhelm Killing |
title_fullStr | Die nicht-euklidischen Raumformen in analytischer Behandlung von Wilhelm Killing |
title_full_unstemmed | Die nicht-euklidischen Raumformen in analytischer Behandlung von Wilhelm Killing |
title_short | Die nicht-euklidischen Raumformen in analytischer Behandlung |
title_sort | die nicht euklidischen raumformen in analytischer behandlung |
topic | Nichteuklidische Geometrie (DE-588)4042073-5 gnd |
topic_facet | Nichteuklidische Geometrie Quelle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020487841&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT killingwilhelm dienichteuklidischenraumformeninanalytischerbehandlung |