From probability to geometry: volume in honor of the 60th birthday of Jean-Michel Bismut 1 From probability to geometry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
Soc. Math. de France
2009
|
Schriftenreihe: | Astérisque
327 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXVII, 424 S. Ill. |
ISBN: | 9782856292884 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV036555181 | ||
003 | DE-604 | ||
005 | 20110131 | ||
007 | t | ||
008 | 100708s2009 a||| |||| 01||| eng d | ||
020 | |a 9782856292884 |9 978-2-85629-288-4 | ||
035 | |a (OCoLC)705650252 | ||
035 | |a (DE-599)BVBBV036555181 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-188 | ||
084 | |a SI 832 |0 (DE-625)143196: |2 rvk | ||
100 | 1 | |a Dai, Xianzhe |e Verfasser |0 (DE-588)141739290 |4 aut | |
245 | 1 | 0 | |a From probability to geometry |b volume in honor of the 60th birthday of Jean-Michel Bismut |n 1 |p From probability to geometry |c Xianzhe Dai ... éds. |
264 | 1 | |a Paris |b Soc. Math. de France |c 2009 | |
300 | |a XXXVII, 424 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Astérisque |v 327 | |
490 | 0 | |a Astérisque |v ... | |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4016928-5 |a Festschrift |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Dai, Xianzhe |e Sonstige |0 (DE-588)141739290 |4 oth | |
700 | 1 | |a Bismut, Jean-Michel |d 1948- |0 (DE-588)141840056 |4 hnr | |
773 | 0 | 8 | |w (DE-604)BV036555176 |g 1 |
830 | 0 | |a Astérisque |v 327 |w (DE-604)BV002579439 |9 327 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020476639&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020476639 |
Datensatz im Suchindex
_version_ | 1804143129488523264 |
---|---|
adam_text | TABLE
OF
CONTENTS
Preface by Paul Malliavin
.............................................. xv
Preface by Sir Michael Atiyah
......................................... xvii
A letter from a friend
................................................... xix
Curriculum
vitae
of Jean-Michel Bismut
.............................. xxi
The mathematical work of Jean-Michel Bismut: a brief summary
xxv
1.
From probability theory
................................................. xxv
2. ...
to Index Theory
...................................................... xxvi
2.1.
Superconnections, Quillen
metrics and 77-invariants
................. xxvi
2.2.
Analytic torsion and complex geometry
............................. xxvii
2.3.
Prom loop spaces to the hypoelliptic Laplacian
...................... xxviii
3.
Conclusion
............................................................... xxix
References
.................................................................. xxix
Shigeki Aida
—
Semi-classical limit of the lowest eigenvalue of a
Schrödinger
operator on a Wiener space: I. Unbounded one
particle Hamiltonians
........................................... 1
1.
Introduction
............................................................. 1
2.
Preliminaries
............................................................ 2
3.
Results
.................................................................. 8
References
.................................................................. 15
Sergio Albeverio
&
Sonia
Mazzucchi
—
Infinite dimensional
oscillatory integrals with polynomial phase function and the
trace formula for the heat semigroup
......................... 17
1.
Introduction
............................................................. 17
2.
Infinite dimensional oscillatory integrals
................................. 19
3.
The asymptotic expansion
............................................... 27
4.
A degenerate case
....................................................... 30
Appendix. Abstract Wiener spaces
......................................... 41
References
.................................................................. 43
vi
TABLE OF CONTENTS
Richard F. Bass fc Edwin Perkins
—
A new technique for proving
uniqueness for martingale problems
........................... 47
1.
Introduction
............................................................. 47
2.
Some estimates
.......................................................... 49
3.
Proof of Theorem
1.1 .................................................... 51
References
.................................................................. 53
Martin Grothaus,
Ludwig Streit
L·
Anna
Vogel —
Feynman
integrals as Hida distributions: the case of non-perturbative
potentials
......................................................... 55
1.
Introduction
............................................................. 55
2.
White Noise Analysis
.................................................... 56
3.
Hida distributions as candidates for Feynman Integrands
................ 57
4.
Solution to time-dependent
Schrödinger
equation
........................ 59
5.
General construction of the Feynman integrand
......................... 62
6.
Examples
................................................................ 63
6.1.
The Feynman integrand for polynomial potentials
.................. 64
6.2.
Non-perturbative accessible potentials
.............................. 65
References
.................................................................. 67
Hiroshi Kunita
—
Smooth Density of Canonical Stochastic
Differential Equation with Jumps
............................. 69
1.
Introduction and main results
........................................... 69
2.
Malliavin calculus for canonical SDE
.................................... 73
3.
SDE s for derivatives of stochastic flow
.................................. 76
4.
Alternative criterion for the smooth density
............................. 80
5.
Relation with Lie algebra
................................................ 83
6.
Appendix. An analogue of Norris estimate
.............................. 87
References
.................................................................. 90
James R. Norris
—
Two-parameter stochastic calculus and
Malliavin s integration-by-parts formula on Wiener space
. 93
1.
Introduction
............................................................. 93
2.
Integration-by-parts formula
............................................. 94
3.
Review of two-parameter stochastic calculus
............................. 96
4.
A regularity result for two-parameter stochastic differential equations
... 100
5.
Derivation of the formula
................................................ 109
References
.................................................................. 113
Ichiro Shigekawa
—
Witten
Laplacian on a lattice spin system
... 115
1.
Introduction
............................................................. 115
2.
Witten
Laplacian in finite dimension
................................... 116
ASTÉRISQUE
327
TABLE
OF
CONTENTS
vii
3.
Witten Laplacian
acting on differential forms
............................ 118
4.
Witten
Laplacian in one-dimension
...................................... 121
5.
Positivity
of the lowest eigenvalue for the
Witten
Laplacian
............. 124
References
.................................................................. 129
Anton Alekseev, Henrique
Bursztyn
& Eckhard Meinrenken —
Pure Spinora on Lie
groupa
.................................... 131
0.
Introduction
............................................................. 131
1.
Linear Dirac geometry
................................................... 134
1.1.
Clifford algebras
.................................................... 134
1.2.
Pure spinors
........................................................ 136
1.3.
The bilinear pairing of spinors
...................................... 136
1.4.
Contravariant
spinors
............................................... 137
1.5.
Action of the orthogonal group
...................................... 138
1.6.
Morphisms
.......................................................... 139
1.7.
Dirac spaces
......................................................... 141
1.8.
Lagrangian splittings
................................................ 142
2.
Pure spinors on manifolds
............................................... 146
2.1.
Dirac structures
..................................................... 146
2.2.
Dirac morphisms
.................................................... 148
2.3.
Bivector fields
....................................................... 150
2.4.
Dirac cohomology
................................................... 152
2.5.
Classical dynamical Yang-Baxter equation
.......................... 154
3.
Dirac structures on Lie groups
........................................... 155
3.1.
The isomorphism TG
=
G
χ
(g
φ
g)
................................. 155
3.2.
η
-twisted
Dirac structures on G
..................................... 156
3.3.
The Cartan-Dirac structure
......................................... 157
3.4.
Group multiplication
................................................ 159
3.5.
Exponential map ....................................................
161
3.6.
The Gauss-Dirac structure
.......................................... 164
4.
Pure spinors on Lie groups
.............................................. 167
4.1.
Cl(g) as a spinor module over Cl(g
θ
g)
............................. 167
4.2.
The isomorphism KT*G
9*
G
χ
Cl(g)
................................ 170
4.3.
Group multiplication
................................................ 174
4.4.
Exponential map
.................................................... 175
4.5.
The Gauss-Dirac spinor
............................................. 178
5.
q-Hamiltonian G-manifolds
.............................................. 182
5.1.
Dirac morphisms and group-valued moment maps
.................. 182
5.2.
Volume forms
....................................................... 184
5.3.
The volume form in terms of the Gauss-Dirac spinor
................ 187
5.4.
q-Hamiltonian q-Poisson g-manifolds
................................ 188
5.5.
t -valued moment maps
............................................. 191
6.
if*-valued moment maps
................................................ 192
SOCIÉTÉ MATHÉMATIQUE DE
FRANCE
2009
viii TABLE OF
CONTENTS
6.1. Review
of JC -valued moment
maps .................................
193
6.2.
P-valued moment
maps
............................................. 194
6.3.
Equivalence between
K -valueâ and P-valued moment
maps .......
195
6.4.
Equivalence between P-valued and t -valued moment maps
......... 196
References
.................................................................. 196
Moulay-Tahar Benameur L· Paolo Piazza
—
Index, eta and rho
invarianta
on foliated bundles
.................................. 201
Introduction and main results
.............................................. 202
1.
Group actions
........................................................... 208
1.1.
The discrete groupoid @
............................................ 208
1.2.
C-algebras associated to the discrete groupoid
$ .................. 209
1.3. von
Neumann algebras associated to the discrete groupoid
í^
....... 209
1.4.
Traces
............................................................... 211
2.
Foliated spaces
.......................................................... 213
2.1.
Foliated spaces
...................................................... 213
2.2.
The
monodramy
groupoid and the C-algebra of the foliation
...... 215
2.3. von
Neumann Algebras of foliations
................................. 216
2.4.
Traces
............................................................... 218
2.5.
Compatibility with Morita isomorphisms
............................ 221
3.
Hilbert modules and Dirac operators
.................................... 226
3.1.
Connes-Skandalis Hilbert module
................................... 226
3.2.
Г
-equivariant
pseudodifferential operators
........................... 231
3.3.
Functional calculus for Dirac operators
.............................. 235
4.
Index theory
............................................................. 242
4.1.
The numeric index
.................................................. 242
4.2.
The index class in the maximal C*-algebra
......................... 244
4.3.
The signature operator for odd foliations
............................ 246
5.
Foliated rho invariants
................................................... 246
5.1.
Foliated eta and rho invariants
...................................... 247
5.2.
Eta invariants and determinants of paths
........................... 250
6.
Stability properties of p for the signature operator
..................... 255
6.1.
Leafwise homotopies
................................................ 255
6.2.
pv{V,
9)
is metric independent
...................................... 258
7.
Loops, determinants and
Bott
periodicity
............................... 261
8.
On the homotopy
invariance
of rho on foliated bundles
.................. 263
8.1.
The Baum-Connes map for the discrete groupoid
Τ χ Γ
............ 264
8.2.
Homotopy
invariance
of (r{V,
Í7)
for special homotopy equivalences
266
9.
Proof of the homotopy
invariance
for special
homotopy equivalences: details
.......................................... 268
9.1.
Consequences of surjectivity I: equality of determinants
............. 268
9.2.
Consequences of surjectivity II: the large time path
................. 269
9.3.
The determinants of the large time path
............................ 271
ASTÉRISQUE
327
TABLE
OF
CONTENTS
ix
9.4.
Consequences of injectivity: the small time path
.................... 273
9.5.
The determinants of the small time path
............................ 278
References
.................................................................. 284
Alain Berthomieu
—
Direct image for some secondary
К
-theories
289
1.
Introduction
............................................................. 289
2.
Various
K-theorìes
....................................................... 293
2.1.
Preliminaries
........................................................ 293
2.1.1.
Connections and vector bundle morphisms
..................... 293
2.1.2.
Chern-Simons transgression forms
.............................. 294
2.2.
Definitions of the considered if-groups
.............................. 295
2.2.1.
Topological
АГ
-theory
...........................................
295
2.2.2.
К°-іЬеоту
of the category of flat bundles
....................... 295
2.2.3.
Relative
ѓГ
-theory
..............................................
296
2.2.4.
Free multiplicative or
non
hermitian smooth
.ЌГ
-theory
......
297
2.3.
Chern-Simons class on relative ir-theory
............................ 297
2.4.
Relations between the preceding if-groups
.......................... 298
2.5.
Symmetries associated to hermitian metrics
......................... 299
2.6.
Borel-Kamber-Tondeur class on
Кљ
................................ 301
3.
Direct images for if-groups
.............................................. 303
3.1.
The case of topological Jff-theory
.....................,.............. 303
3.1.1.
Preliminary: construction of family index bundles
.............. 303
3.1.2.
Definition of the direct image morphism for K^op and
Jf¿,p
..... 304
3.2.
The case of the ir°-theory of flat bundles
........................... 306
3.3.
The case of relative if-theory
....................................... 307
3.3.1.
The notion of link
............................................ 307
3.3.2.
Definition of the direct image for K°el
.......................... 307
3.4.
The case of multiplicative, or smooth,
Ä^-theory ................... 309
3.4.1.
Transgression of the family index theorem
...................... 309
3.4.2.
Direct image for multiplicative/smooth K°-theory
.............. 310
3.5.
Hermitian symmetry and functoriality results
....................... 311
3.5.1.
Direct images and symmetries
.................................. 311
3.5.2.
Double fibrations
............................................... 312
4.
Proof of Theorems
25
and
27 ............................................ 312
4.1.
Proof of Theorem
25 ................................................ 312
4.1.1.
Links and exact sequences of vector bundles
.................... 312
4.1.2.
Link with positive kernel family index bundles
................ 313
4.1.3.
Deformation of
ψ,
h*
and
Vţ ...................................
314
4.1.4.
General construction (and proof of Theorem
25) ............... 315
4.2.
Proof of Theorem
27 ................................................ 316
4.2.1.
Reduction of the problem
....................................... 316
4.2.2.
Sheaf theoretic direct images and short exact sequences
........ 317
SOCIÉTÉ MATHÉMATIQUE DE FRANCE
3009
TABLE
OF
CONTENTS
4.2.3.
Adiabatic
limit of
harmonie
forms
............................ 318
4.2.4.
End of proof of Proposition
43 ................................. 319
5.
JT-forms
.................................................................. 320
5.1.
Zi-graded theory
.................................................... 320
5.1.1.
Za-graded bundles and
superconnections
....................... 320
5.1.2.
Special adjunction
.............................................. 321
5.2.
Adaptation of Bismut s
superconnection
............................ 322
5.2.1.
Definition of Bismut and Lott s Levi-Civita
superconnection
... 322
5.2.2.
Properties and asymptotics of the Chern character of Ct
....... 323
5.2.3.
Calculating Ct for the product with the real line
............... 324
5.2.4.
t
—► 0
asymptotics of the infinitesimal transgression form
..... 325
5.2.5.
Adapting Ct to some suitable triple
............................ 326
5.2.6.
t
—>
+0O asymptotics of the infinitesimal transgression form
. . 327
5.3.
Proof of the first part of Theorem
28 ................................ 328
5.3.1.
Chern-Simons transgression and links
.......................... 328
5.3.2.
Definition of the 77-form and check of its properties
............. 329
5.3.3.
Invariance
properties of
77 ....................................... 330
5.4.
Anomaly formulae and their consequences
.......................... 332
5.4.1.
Anomaly formulae
.............................................. 332
5.4.2.
End of proof of Theorem
28 .................................... 334
5.4.3.
Proof of Theorem
29 ........................................... 334
5.4.4.
Proof of Theorem
31 ........................................... 334
5.4.5.
Influence of the vertical metric and the horizontal distribution
. 336
6.
Fiberwise Hodge symmetry
.............................................. 337
6.1.
Symmetries induced on family index bundles
........................ 337
6.1.1.
The fiberwise Hodge
*
operator
................................ 337
6.1.2.
Symmetry induced by *z on fiberwise twisted
Euler
operators
. 338
6.1.3.
Odd dimensional fibre case
..................................... 338
6.1.4.
Symmetry on canonical links
................................... 339
6.1.5.
Symmetry on connections on the infinite rank bundle
S
........ 341
6.2.
Proof of results about
Ä^at
and K°el
................................ 342
6.2.1.
End of proof of Theorem
32 .................................... 342
6.2.2.
Results on
τιν-
.................................................. 342
6.3.
End of proof of Theorem
33 ......................................... 344
7.
Double fibrations
........................................................ 346
7.1.
Topological
К-Љеоту
............................................... 346
7.1.1.
Fiberwise exterior differentials:
................................. 347
7.1.2.
Fiberwise
Euler
operators
...................................... 347
7.1.3.
Introducing some intermediate suitable triple
................... 348
7.1.4.
Estimates on the operator A
.................................. 349
7.1.5.
Spectral convergence of
Euler
operators
........................ 350
7.1.6.
Construction of the canonical link (proof of Theorem
61) ....... 351
7.2.
Flat and relative
Jř-theory
.......................................... 352
ASTÉRISQUE
32?
TABLE
OF
CONTENTS
xi
7.2.1.
Leray spectral
sequence
......................................... 353
7.2.2.
Compatibility of topologicai and sheaf theoretic links
.......... 353
7.2.3.
Proof of Theorem
34 ........................................... 355
7.3.
Multiplicative and smooth
liľ-theory
................................ 356
7.3.1.
Calculation of
тг|и о
irf?
-
(тг2 о
Wl)fu ..........................
356
7.3.2.
Proof of Theorem
35 ........................................... 357
References
.................................................................. 358
Jean-Benoît
Bost
&
Klaus
Künnemann —
Hermitian vector
bundles and extension groups on arithmetic schemes II.
The arithmetic Atiyah extension
.............................. 361
0.
Introduction
............................................................. 362
1.
Atiyah extensions in algebraic and analytic geometry
.................... 370
1.1.
Definition and basic properties
...................................... 370
1.2.
Cotangent complex and Atiyah class
................................ 375
1.3.
ţ?00
-connections compatible with the holomorphic structure
........ 377
2.
The arithmetic Atiyah class of a vector bundle with connection
......... 378
2.1.
Definition and basic properties
...................................... 378
2.2.
The first Chern class in arithmetic Hodge cohomology
.............. 383
3.
Hermitian line bundles with vanishing arithmetic Atiyah class
........... 386
3.1.
Transcendence and line bundles with connections on abelian varieties
386
3.1.3.
Line bundles with connections on abelian varieties
............. 387
3.1.4.
The complex case
............................................... 389
3.1.5.
An application of the Theorem of Schneider-Lang
.............. 390
3.1.8.
Reality I
........................................................ 391
3.1.10.
Reality II
...................................................... 392
3.1.12.
Conclusion of the proof of Theorem
3.1.1 ...................... 393
3.2.
Hermitian line bundles with vanishing arithmetic Atiyah class on
smooth
projective
varieties over number fields
...................... 394
3.3.
Finiteness results on the kernel of
őf
............................... 398
4.
A geometric analogue
.................................................... 399
4.1.
Line bundles with vanishing relative Atiyah class on fibered
projective
varieties
............................................................ 399
4.1.1.
Notation
........................................................ 399
4.2.
Variants and complements
.......................................... 402
4.3.
Hodge cohomology and first Chern class
............................ 404
4.3.1.
Hodge cohomology groups
...................................... 404
4.3.2.
The first Chern class in Hodge cohomology
..................... 406
4.4.
An application of the Hodge Index Theorem
........................ 407
4.4.1.
The Hodge Index Theorem in Hodge cohomology
.............. 407
4.4.3.
An application to
projective
varieties fibered over curves
....... 407
4.5.
The equivalence of
VAI
and VA2
.................................. 409
4.6.
The
Picard
variety of a variety over a function field
................. 410
SOCIÉTÉ MATHÉMATIQUE DE
FRANCE
3009
xii
TABLE
OF
CONTENTS
4.7.
The equivalence of VA2 and VA3
.................................. 412
Appendix A. Arithmetic extensions and
Cech
cohomology
................. 414
Appendix B. The universal vector extension of
a Picard
variety
............ 416
References
.................................................................. 422
ASTÉRISQUE
327
|
any_adam_object | 1 |
author | Dai, Xianzhe |
author_GND | (DE-588)141739290 (DE-588)141840056 |
author_facet | Dai, Xianzhe |
author_role | aut |
author_sort | Dai, Xianzhe |
author_variant | x d xd |
building | Verbundindex |
bvnumber | BV036555181 |
classification_rvk | SI 832 |
ctrlnum | (OCoLC)705650252 (DE-599)BVBBV036555181 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01648nam a2200397 cc4500</leader><controlfield tag="001">BV036555181</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110131 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100708s2009 a||| |||| 01||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782856292884</subfield><subfield code="9">978-2-85629-288-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705650252</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036555181</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dai, Xianzhe</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141739290</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From probability to geometry</subfield><subfield code="b">volume in honor of the 60th birthday of Jean-Michel Bismut</subfield><subfield code="n">1</subfield><subfield code="p">From probability to geometry</subfield><subfield code="c">Xianzhe Dai ... éds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Soc. Math. de France</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVII, 424 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">327</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">...</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Xianzhe</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)141739290</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bismut, Jean-Michel</subfield><subfield code="d">1948-</subfield><subfield code="0">(DE-588)141840056</subfield><subfield code="4">hnr</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV036555176</subfield><subfield code="g">1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">327</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">327</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020476639&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020476639</subfield></datafield></record></collection> |
genre | (DE-588)4016928-5 Festschrift gnd-content |
genre_facet | Festschrift |
id | DE-604.BV036555181 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:42:45Z |
institution | BVB |
isbn | 9782856292884 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020476639 |
oclc_num | 705650252 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-188 |
physical | XXXVII, 424 S. Ill. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Soc. Math. de France |
record_format | marc |
series | Astérisque |
series2 | Astérisque |
spelling | Dai, Xianzhe Verfasser (DE-588)141739290 aut From probability to geometry volume in honor of the 60th birthday of Jean-Michel Bismut 1 From probability to geometry Xianzhe Dai ... éds. Paris Soc. Math. de France 2009 XXXVII, 424 S. Ill. txt rdacontent n rdamedia nc rdacarrier Astérisque 327 Astérisque ... Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf (DE-588)4016928-5 Festschrift gnd-content Wahrscheinlichkeitstheorie (DE-588)4079013-7 s DE-604 Dai, Xianzhe Sonstige (DE-588)141739290 oth Bismut, Jean-Michel 1948- (DE-588)141840056 hnr (DE-604)BV036555176 1 Astérisque 327 (DE-604)BV002579439 327 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020476639&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dai, Xianzhe From probability to geometry volume in honor of the 60th birthday of Jean-Michel Bismut Astérisque Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4079013-7 (DE-588)4016928-5 |
title | From probability to geometry volume in honor of the 60th birthday of Jean-Michel Bismut |
title_auth | From probability to geometry volume in honor of the 60th birthday of Jean-Michel Bismut |
title_exact_search | From probability to geometry volume in honor of the 60th birthday of Jean-Michel Bismut |
title_full | From probability to geometry volume in honor of the 60th birthday of Jean-Michel Bismut 1 From probability to geometry Xianzhe Dai ... éds. |
title_fullStr | From probability to geometry volume in honor of the 60th birthday of Jean-Michel Bismut 1 From probability to geometry Xianzhe Dai ... éds. |
title_full_unstemmed | From probability to geometry volume in honor of the 60th birthday of Jean-Michel Bismut 1 From probability to geometry Xianzhe Dai ... éds. |
title_short | From probability to geometry |
title_sort | from probability to geometry volume in honor of the 60th birthday of jean michel bismut from probability to geometry |
title_sub | volume in honor of the 60th birthday of Jean-Michel Bismut |
topic | Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Wahrscheinlichkeitstheorie Festschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020476639&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV036555176 (DE-604)BV002579439 |
work_keys_str_mv | AT daixianzhe fromprobabilitytogeometryvolumeinhonorofthe60thbirthdayofjeanmichelbismut1 AT bismutjeanmichel fromprobabilitytogeometryvolumeinhonorofthe60thbirthdayofjeanmichelbismut1 |