Set theory and the continuum problem:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Mineola, N.Y.
Dover Publ.
2010
|
Ausgabe: | Rev. and corr. republ. |
Schlagworte: | |
Online-Zugang: | Publisher description Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XIII, 315 S. |
ISBN: | 9780486474847 0486474844 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV036548490 | ||
003 | DE-604 | ||
005 | 20100831 | ||
007 | t | ||
008 | 100705s2010 xxu |||| 00||| eng d | ||
010 | |a 2009036172 | ||
020 | |a 9780486474847 |9 978-0-486-47484-7 | ||
020 | |a 0486474844 |9 0-486-47484-4 | ||
035 | |a (OCoLC)705647432 | ||
035 | |a (DE-599)BVBBV036548490 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 | ||
050 | 0 | |a QA248 | |
082 | 0 | |a 511.3/22 | |
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
100 | 1 | |a Smullyan, Raymond M. |d 1919-2017 |e Verfasser |0 (DE-588)115668411 |4 aut | |
245 | 1 | 0 | |a Set theory and the continuum problem |c Raymond M. Smullyan ; Melvin Fitting |
250 | |a Rev. and corr. republ. | ||
264 | 1 | |a Mineola, N.Y. |b Dover Publ. |c 2010 | |
300 | |a XIII, 315 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Set theory | |
650 | 4 | |a Continuum hypothesis | |
650 | 0 | 7 | |a Kontinuumshypothese |0 (DE-588)4481570-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | 1 | |a Kontinuumshypothese |0 (DE-588)4481570-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fitting, Melvin |e Sonstige |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy1003/2009036172-d.html |3 Publisher description | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020470107&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020470107&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-020470107 |
Datensatz im Suchindex
_version_ | 1804143119691677696 |
---|---|
adam_text | CONTENTS
PREFACE TO THE REVISED
2010
EDITION
iii
PREFACE
v
I AXIOMATIC SET THEORY
1
CHAPTER
1
GENERAL BACKGROUND
3
§1
What is infinity?
.................................... 3
§2
Countable or uncountable?
.............................. 4
§3
A non-denumerable set
................................ 6
§4
Larger and smaller
.................................. 7
§5
The continuum problem
................................ 9
§6
Significance of the results
............................... 9
§7
Frege
set theory
.................................... 11
§8
Russell s paradox
................................... 11
§9
Zermelo set theory
.................................. 12
§10
Sets and classes
.................................... 13
CHAPTER
2
SOME BASICS OF CLASS-SET THEORY
15
§1
Extensionality and separation
............................. 15
§2
Transitivity and supercompleteness
.......................... 17
§3
Axiom of the empty set
................................ 18
§4
The pairing axiom
................................... 19
§5
The union axiom
................................... 21
§6
The power axiom
................................... 23
§7
Cartesian products
.................................. 24
§8
Relations
....................................... 24
§9
Functions
....................................... 25
§10
Some useful facts about transitivity
.......................... 26
§11
Basic universes
.................................... 27
CHAPTERS THE NATURAL NUMBERS
29
§1
Preliminaries
..................................... 29
§2
Definition of the natural numbers
........................... 32
§3
Derivation of the Peano postulates and other results
................. 33
§4
A double induction principle and its applications
.................. 35
§5
Applications to natural numbers
........................... 40
§6
Finite sets
....................................... 42
§7
Denumerable classes
................................. 42
§8
Definition by finite recursion
............................. 43
CONTENTS
§9 Supplement—optional................................ 44
CHAPTER
4 SUPERINDUCTION,
WELL ORDERING AND CHOICE
47
§1
Introduction to well ordering.............................
47
§2
Superinduction and double superinduction
...................... 52
§3
The well ordering of ^-towers ............................
56
§4
Well ordering and choice
............................... 57
§5
Maximal principles
.................................. 61
§6
Another approach to maximal principles
....................... 64
§7
Cowen s theorem
................................... 66
§8
Another characterization of g-sets
.......................... 68
CHAPTERS ORDINAL NUMBERS
71
§1
Ordinal numbers
................................... 71
§2
Ordinals and transitivity
................................ 75
§3
Some ordinals
..................................... 76
CHAPTER
6
ORDER ISOMORPHISM AND
TRANSFINITE
RECURSION
79
§1
A few preliminaries
.................................. 79
§2
Isomorphisms of well
orderings
........................... 80
§3
The axiom of substitution
............................... 82
§4
The counting theorem
................................. 83
§5
Transfinite
recursion theorems
............................ 84
§6
Ordinal arithmetic
................................... 88
CHAPTER? RANK
91
§1
The notion of rank
.................................. 91
§2
Ordinal hierarchies
.................................. 92
§3
Applications to the Ra sequence
........................... 93
§4
Zermelo universes
................................... 96
CHAPTER
8
FOUNDATION,
є
-INDUCTION,
AND RANK
99
§1
The notion of well-foundedness
........................... 99
§2
Descending
є
-chains
.................................
100
§3
e-Induction and rank
................................. 101
§4
Axiom
£
and
Von
Neumann s principle
....................... 103
§5
Some other characterizations of ordinals
....................... 104
§6
More on the axiom of substitution
.......................... 106
CHAPTER
9
CARDINALS
107
§ 1
Some simple facts
................................... 107
§2
The
Bernstein-Schröder
theorem
........................... 108
§3
Denumerable sets
...................................
Ill
§4
Infinite sets and choice functions
...........................
Ill
§5
Hartog s theorem
................................... 112
§6
A fundamental theorem
................................ 114
§7
Preliminaries
..................................... 116
§8
Cardinal arithmetic
.................................. 118
§9
Sierpinski s theorem
................................. 121
CONTENTS xi
II CONSISTENCY OF THE CONTINUUM
HYPOTHESIS
125
CHAPTER
10
MOSTOWSKI-SHEPHERDSON MAPPINGS
127
§1
Relational systems
.................................. 127
§2
Generalized induction and
Г-гапк
.......................... 129
§3
Generalized
transfinite
recursion
........................... 133
§4
Mostowski-Shepherdson maps
............................ 134
§5
More on Mostowski-Shepherdson mappings
..................... 136
§6
Isomorphisms, Mostowski-Shepherdson, well
orderings
............... 137
CHAPTER
11
REFLECTION PRINCIPLES
141
§0
Preliminaries
..................................... 141
§1
The Tarski-Vaught theorem
.............................. 145
§2
We add extensionality considerations
......................... 147
§3
The class version of the Tarski-Vaught theorems
................... 148
§4
Mostowski, Shepherdson, Tarski, and Vaught
.................... 150
§5
The Montague-Levy reflection theorem
....................... 151
CHAPTERS CONSTRUCTIBLE SETS
155
§0
More on first-order definability
............................ 155
§1
The class
L
of constructible sets
........................... 156
§2
Absoluteness
..................................... 158
§3
Constructible classes
................................. 163
CHAPTER
13
L
IS A WELL FOUNDED FIRST-ORDER UNIVERSE
169
§1
First-order universes
................................. 169
§2
Some preliminary theorems about first-order universes
............... 172
§3
More on first-order universes
............................. 174
§4
Another result
..................................... 177
CHAPTER
14
CONSTRUCITBILITY IS ABSOLUTE OVER
L
179
§1
Σ
-formulas
and upward absoluteness
......................... 179
§2
More on
Σ
definability
................................ 181
§3
The relation
y
=
T(x)
................................. 183
§4
Constructibffity is absolute over
L
.......................... 189
§5
Further results
..................................... 190
§6
A proof that ¿can be well ordered
.......................... 191
CHAPTER
15
CONSTRUCTIBILITY AND THE CONTINUUM HYPOTHESIS
193
§0
What we will do
.................................... 193
§1
The key result
..................................... 194
§2
Gödel s
isomorphism theorem (optional)
....................... 196
§3
Some consequences of Theorem
G
.......................... 198
§4
Metamaíhematical
consequences of Theorem
G
................... 199
§5
Relative consistency of the axiom of choice
..................... 200
§6
Relative consistency ofGCH and AC in class-set theory
............... 201
CONTENTS
Ш
FORCING
AND INDEPENDENCE RESULTS
205
CHAPTER
16
FORCING, THE VERY IDEA
207
§1
What is forcing?
....................................207
§2
What is modal logic?
.................................209
§3
What is
54
and why do we care?
...........................213
§4
A classical embedding
................................215
§5
The basic idea
.....................................221
CHAPTER
17
THE CONSTRUCTION OF
54
MODELS FOR ZF
223
§1
What are the models?
.................................223
§2
About equality
....................................229
§3
The well founded sets are present
...........................233
§4
Four more axioms
...................................235
§5
The definability of forcing
..............................239
§6
The substitution axiom schema
............................242
§7
The axiom of choice
.................................244
§8
Where we stand now
.................................247
CHAPTER
18
THE AXIOM OF CONSTRUCTIBILITY IS INDEPENDENT
249
§1
Introduction
...................................... 249
§2
Ordinals are well behaved
............................... 249
§3
Constractible sets are well behaved too
........................ 251
§4
A real
54
model, at last
................................ 252
§5
Cardinals are sometimes well behaved
........................ 253
§6
The status of the generalized continuum hypothesis
................. 256
CHAPTERS INDEPENDENCE OF THE CONTINUUM HYPOTHESIS
259
§1
Power politics
.....................................259
§2
The model
.......................................259
§3
Cardinals stay cardinals
................................260
§4
CH is independent
...................................262
§5
Cleaning it up
.....................................263
§6
Wrapping it up
....................................266
CHAPTER
20
INDEPENDENCE OF THE AXIOM OF CHOICE
267
§1
A little history
..................................... 267
§2
Automorphism groups
................................ 268
§3
Automorphisms preserve truth
............................ 270
§4
Model and submodel
................................. 272
§5
Verifying the axioms
................................. 273
§6
AC is independent
................................... 278
CHAPTER
21
CONSTRUCTING CLASSICAL MODELS
285
§1
On countable models
................................. 285
§2
Cohen s way
......................................
286
§3
Dense sets, filters, and generic sets
.......................... 287
§4
When generic sets exist
................................
289
§5
Generic extensions
..................................
291
§6
The truth lemma
....................................
294
CONTENTS xiii
§7
Conclusion
......................................296
CHAPTER
22
FORCING BACKGROUND
299
§1
Introduction
...................................... 299
§2
Cohen s version^)
.................................. 300
§3
Boolean valued models
................................ 301
§4
Unramifled forcing
.................................. 301
§5
Extensions
....................................... 302
BIBLIOGRAPHY
305
INDEX
307
LIST OF NOTATION
ЗІЗ
Set Theory and the
Continuum Problem
umilili
ill
SiìiiSf
ii
lililí!
Fittili
A lucid, elegant, and complete survey of set theory, this volume is drawn from
the authors substantial teaching experience. The first of three parts focuses on
axiomatic set theory. The second part explores the consistency of the continuum
hypothesis, and the final section examines forcing and independence results.
Part One s focus on axiomatic set theory features nine chapters that examine
problems related to size comparisons between infinite sets, basics of class the¬
ory, and natural numbers. Additional topics include author Raymond Smullyan s
double induction principle, super induction, ordinal numbers, order isomorphism
and
transfinite
recursion, and the axiom of foundation and cardinals. The six
chapters of Part Two address Mostowski-Shepherdson mappings, reflection prin¬
ciples,
constructible
sets and constructibiiity, and the continuum hypothesis. The
text concludes with a seven-chapter exploration of forcing and independence
results. This treatment is noteworthy for its clear explanations of highly techni¬
cal proofs and its discussions of countability, uncountability, and mathematical
induction, which are simultaneously charming for experts and understandable to
graduate students of mathematics.
Dover
(2010)
revised and updated
republication
of the edition published by
Oxford University Press, New York,
1996.
|
any_adam_object | 1 |
author | Smullyan, Raymond M. 1919-2017 |
author_GND | (DE-588)115668411 |
author_facet | Smullyan, Raymond M. 1919-2017 |
author_role | aut |
author_sort | Smullyan, Raymond M. 1919-2017 |
author_variant | r m s rm rms |
building | Verbundindex |
bvnumber | BV036548490 |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 |
callnumber-search | QA248 |
callnumber-sort | QA 3248 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 150 |
ctrlnum | (OCoLC)705647432 (DE-599)BVBBV036548490 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Rev. and corr. republ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02027nam a2200481zc 4500</leader><controlfield tag="001">BV036548490</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100831 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100705s2010 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009036172</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780486474847</subfield><subfield code="9">978-0-486-47484-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0486474844</subfield><subfield code="9">0-486-47484-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705647432</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036548490</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA248</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smullyan, Raymond M.</subfield><subfield code="d">1919-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115668411</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Set theory and the continuum problem</subfield><subfield code="c">Raymond M. Smullyan ; Melvin Fitting</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. and corr. republ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Mineola, N.Y.</subfield><subfield code="b">Dover Publ.</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 315 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum hypothesis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumshypothese</subfield><subfield code="0">(DE-588)4481570-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kontinuumshypothese</subfield><subfield code="0">(DE-588)4481570-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fitting, Melvin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy1003/2009036172-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020470107&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020470107&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020470107</subfield></datafield></record></collection> |
id | DE-604.BV036548490 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:42:36Z |
institution | BVB |
isbn | 9780486474847 0486474844 |
language | English |
lccn | 2009036172 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020470107 |
oclc_num | 705647432 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XIII, 315 S. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Dover Publ. |
record_format | marc |
spelling | Smullyan, Raymond M. 1919-2017 Verfasser (DE-588)115668411 aut Set theory and the continuum problem Raymond M. Smullyan ; Melvin Fitting Rev. and corr. republ. Mineola, N.Y. Dover Publ. 2010 XIII, 315 S. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Set theory Continuum hypothesis Kontinuumshypothese (DE-588)4481570-0 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s Kontinuumshypothese (DE-588)4481570-0 s DE-604 Fitting, Melvin Sonstige oth http://www.loc.gov/catdir/enhancements/fy1003/2009036172-d.html Publisher description Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020470107&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020470107&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Smullyan, Raymond M. 1919-2017 Set theory and the continuum problem Set theory Continuum hypothesis Kontinuumshypothese (DE-588)4481570-0 gnd Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4481570-0 (DE-588)4074715-3 |
title | Set theory and the continuum problem |
title_auth | Set theory and the continuum problem |
title_exact_search | Set theory and the continuum problem |
title_full | Set theory and the continuum problem Raymond M. Smullyan ; Melvin Fitting |
title_fullStr | Set theory and the continuum problem Raymond M. Smullyan ; Melvin Fitting |
title_full_unstemmed | Set theory and the continuum problem Raymond M. Smullyan ; Melvin Fitting |
title_short | Set theory and the continuum problem |
title_sort | set theory and the continuum problem |
topic | Set theory Continuum hypothesis Kontinuumshypothese (DE-588)4481570-0 gnd Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Set theory Continuum hypothesis Kontinuumshypothese Mengenlehre |
url | http://www.loc.gov/catdir/enhancements/fy1003/2009036172-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020470107&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020470107&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT smullyanraymondm settheoryandthecontinuumproblem AT fittingmelvin settheoryandthecontinuumproblem |