Foundations of mathematical and computational economics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2011
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVI, 542 S. graph. Darst. 260 mm x 193 mm |
ISBN: | 9783642137471 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036493078 | ||
003 | DE-604 | ||
005 | 20190114 | ||
007 | t | ||
008 | 100609s2011 d||| |||| 00||| eng d | ||
015 | |a 10,N21 |2 dnb | ||
016 | 7 | |a 1002540798 |2 DE-101 | |
020 | |a 9783642137471 |c GB. : ca. EUR 149.75 (freier Pr.), ca. sfr 217.50 (freier Pr.) |9 978-3-642-13747-1 | ||
024 | 3 | |a 9783642137471 | |
028 | 5 | 2 | |a 80015850 |
035 | |a (OCoLC)701477090 | ||
035 | |a (DE-599)DNB1002540798 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-M382 |a DE-355 |a DE-20 |a DE-384 |a DE-573 |a DE-N2 |a DE-19 |a DE-92 | ||
082 | 0 | |a 330.0151 |2 22/ger | |
084 | |a QH 100 |0 (DE-625)141530: |2 rvk | ||
084 | |a QH 110 |0 (DE-625)141531: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
084 | |a 330 |2 sdnb | ||
100 | 1 | |a Dadkhah, Kamran |e Verfasser |4 aut | |
245 | 1 | 0 | |a Foundations of mathematical and computational economics |c Kamran Dadkah |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2011 | |
300 | |a XVI, 542 S. |b graph. Darst. |c 260 mm x 193 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Wirtschaftsmathematik |0 (DE-588)4066472-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökonometrie |0 (DE-588)4132280-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wirtschaftsmodell |0 (DE-588)4079348-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Wirtschaftsmodell |0 (DE-588)4079348-5 |D s |
689 | 0 | 1 | |a Wirtschaftsmathematik |0 (DE-588)4066472-7 |D s |
689 | 0 | 2 | |a Ökonometrie |0 (DE-588)4132280-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-642-13748-8 |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3476839&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020415661&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-020415661 |
Datensatz im Suchindex
_version_ | 1805094152148353024 |
---|---|
adam_text |
IMAGE 1
CONTENTS
PART I BASIC CONCEPTS AND METHODS
1 MATHEMATICS, COMPUTATION, AND ECONOMICS . . . . . . . . . . . . 3
1.1 MATHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 PHILOSOPHIES OF MATHEMATICS . . . . . . . . . . . . . . . . . . 9
1.3 WOMEN IN MATHEMATICS . . . . . . . . . . . . . . . . . . . . . 11
1.4 COMPUTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 MATHEMATICS AND ECONOMICS . . . . . . . . . . . . . . . . . . 14
1.6 COMPUTATION AND ECONOMICS . . . . . . . . . . . . . . . . . . 14
2 BASIC MATHEMATICAL CONCEPTS AND METHODS . . . . . . . . . . . . . 17
2.1 FUNCTIONS OF REAL VARIABLES . . . . . . . . . . . . . . . . . . . 17
2.1.1 VARIETY OF ECONOMIC RELATIONSHIPS . . . . . . . . . . 22
2.1.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
2.2.1 SUMMATION NOTATION * . . . . . . . . . . . . . . . . 24
2.2.2 LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 CONVERGENT AND DIVERGENT SERIES . . . . . . . . . . . 27
2.2.4 ARITHMETIC PROGRESSION . . . . . . . . . . . . . . . . 29
2.2.5 GEOMETRIC PROGRESSION . . . . . . . . . . . . . . . . . 31
2.2.6 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 PERMUTATIONS, FACTORIAL, COMBINATIONS, AND THE BINOMIAL EXPANSION .
. . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 LOGARITHM AND EXPONENTIAL FUNCTIONS . . . . . . . . . . . . . 38
2.4.1 LOGARITHM . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 BASE OF NATURAL LOGARITHM, E . . . . . . . . . . . . . 40
2.4.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 MATHEMATICAL PROOF . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 DEDUCTION, MATHEMATICAL INDUCTION, AND PROOF BY CONTRADICTION . .
. . . . . . . . . . . . . . . 42
2.5.2 COMPUTER-ASSISTED MATHEMATICAL PROOF . . . . . . . . 44
2.5.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 45
IX
IMAGE 2
X CONTENTS
2.6 TRIGONOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1 CYCLES AND FREQUENCIES . . . . . . . . . . . . . . . . 50
2.6.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7 COMPLEX NUMBERS . . . . . . . . . . . . . . . . . . . . . . . 51
2.7.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 56
3 BASIC CONCEPTS OF COMPUTATION . . . . . . . . . . . . . . . . . . . 57
3.1 ITERATIVE METHODS . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.1 NAMING CELLS IN EXCEL . . . . . . . . . . . . . . . . . 60
3.2 ABSOLUTE AND RELATIVE COMPUTATION ERRORS . . . . . . . . . . . 61
3.3 EFF ICIENCY OF COMPUTATION . . . . . . . . . . . . . . . . . . . 62
3.4 O AND O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 SOLVING AN EQUATION . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 BASIC CONCEPTS AND METHODS OF PROBABILITY THEORY AND STATISTICS 69 4.1
PROBABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS . . . . . . . . 72
4.3 MARGINAL AND CONDITIONAL DISTRIBUTIONS . . . . . . . . . . . . 74
4.4 THE BAYES THEOREM . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 THE LAW OF ITERATED EXPECTATIONS . . . . . . . . . . . . . . . . 81
4.6 CONTINUOUS RANDOM VARIABLES . . . . . . . . . . . . . . . . . 82
4.7 CORRELATION AND REGRESSION . . . . . . . . . . . . . . . . . . . 85
4.8 MARKOV CHAINS . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
PART II LINEAR ALGEBRA
5 VECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 95
5.1 VECTORS AND VECTOR SPACE . . . . . . . . . . . . . . . . . . . . 96
5.1.1 VECTOR SPACE . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 NORM OF A VECTOR . . . . . . . . . . . . . . . . . . . . 102
5.1.3 METRIC . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.4 ANGLE BETWEEN TWO VECTORS AND THE CAUCHY-SCHWARZ THEOREM . . . . .
. . . . . 105
5.1.5 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 ORTHOGONAL VECTORS . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.1 GRAMM-SCHMIDT ALGORITHM . . . . . . . . . . . . . . 109
5.2.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 111
6 MATRICES AND MATRIX ALGEBRA . . . . . . . . . . . . . . . . . . . .
113
6.1 BASIC DEF INITIONS AND OPERATIONS . . . . . . . . . . . . . . . .
113
6.1.1 SYSTEMS OF LINEAR EQUATIONS . . . . . . . . . . . . . 118
6.1.2 COMPUTATION WITH MATRICES . . . . . . . . . . . . . . 121
6.1.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 THE INVERSE OF A MATRIX . . . . . . . . . . . . . . . . . . . . .
123
6.2.1 A NUMBER CALLED THE DETERMINANT . . . . . . . . . . 127
IMAGE 3
CONTENTS XI
6.2.2 RANK AND TRACE OF A MATRIX . . . . . . . . . . . . . . 132
6.2.3 ANOTHER WAY TO FIND THE INVERSE OF A MATRIX . . . . . 133
6.2.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 SOLVING SYSTEMS OF LINEAR EQUATIONS USING MATRIX ALGEBRA . . 137
6.3.1 CRAMER'S RULE . . . . . . . . . . . . . . . . . . . . . 139
6.3.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 142
7 ADVANCED TOPICS IN MATRIX ALGEBRA . . . . . . . . . . . . . . . . .
143
7.1 QUADRATIC FORMS AND POSITIVE AND NEGATIVE DEF INITE MATRICES . . . .
. . . . . . . . . . . . . . . . . . . . 143
7.1.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2 GENERALIZED INVERSE OF A MATRIX . . . . . . . . . . . . . . . . .
147
7.2.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 ORTHOGONAL MATRICES . . . . . . . . . . . . . . . . . . . . . . 150
7.3.1 ORTHOGONAL PROJECTION . . . . . . . . . . . . . . . . . 150
7.3.2 ORTHOGONAL COMPLEMENT OF A MATRIX . . . . . . . . . 152
7.3.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 153
7.4 EIGENVALUES AND EIGENVECTORS . . . . . . . . . . . . . . . . . . 153
7.4.1 COMPLEX EIGENVALUES . . . . . . . . . . . . . . . . . 159
7.4.2 REPEATED EIGENVALUES . . . . . . . . . . . . . . . . . 160
7.4.3 EIGENVALUES AND THE DETERMINANT AND TRACE OF A MATRIX . . . . . .
. . . . . . . . . . . . . . . . . . 164
7.4.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 166
7.5 FACTORIZATION OF SYMMETRIC MATRICES . . . . . . . . . . . . . . 167
7.5.1 SOME INTERESTING PROPERTIES OF SYMMETRIC MATRICES . 167 7.5.2
FACTORIZATION OF MATRIX WITH REAL DISTINCT ROOTS . . . 170 7.5.3
FACTORIZATION OF A POSITIVE DEF INITE MATRIX . . . . . . 172
7.5.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 176
7.6 LU FACTORIZATION OF A SQUARE MATRIX . . . . . . . . . . . . . . 176
7.6.1 CHOLESKY FACTORIZATION . . . . . . . . . . . . . . . . 181
7.6.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 182
7.7 KRONECKER PRODUCT AND VEC OPERATOR . . . . . . . . . . . . . . 183
7.7.1 VECTORIZATION OF A MATRIX . . . . . . . . . . . . . . . 185
7.7.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 185
PART III CALCULUS
8 DIFFERENTIATION: FUNCTIONS OF ONE VARIABLE . . . . . . . . . . . . .
189
8.1 MARGINAL ANALYSIS IN ECONOMICS . . . . . . . . . . . . . . . . 189
8.1.1 MARGINAL CONCEPTS AND DERIVATIVES . . . . . . . . . . 190
8.1.2 COMPARATIVE STATIC ANALYSIS . . . . . . . . . . . . . . 192
8.1.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 LIMIT AND CONTINUITY . . . . . . . . . . . . . . . . . . . . . . 194
8.2.1 LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.2.2 CONTINUITY . . . . . . . . . . . . . . . . . . . . . . . 196
8.2.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 198
IMAGE 4
XII CONTENTS
8.3 DERIVATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . .
198
8.3.1 GEOMETRIC REPRESENTATION OF DERIVATIVE . . . . . . . . 200
8.3.2 DIFFERENTIABILITY . . . . . . . . . . . . . . . . . . . . 201
8.3.3 RULES OF DIFFERENTIATION . . . . . . . . . . . . . . . . 204
8.3.4 PROPERTIES OF DERIVATIVES . . . . . . . . . . . . . . . . 207
8.3.5 L'HOPITAL'S RULE . . . . . . . . . . . . . . . . . . . . 214
8.3.6 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 215
8.4 MONOTONIC FUNCTIONS AND THE INVERSE RULE . . . . . . . . . . . 216
8.4.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 219
8.5 SECOND- AND HIGHER-ORDER DERIVATIVES . . . . . . . . . . . . . 220
8.5.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 221
8.6 DIFFERENTIAL . . . . . . . . . . . . . . . . . . . . . . . . . . .
221
8.6.1 SECOND- AND HIGHER-ORDER DIFFERENTIALS . . . . . . . . 223
8.6.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 224
8.7 COMPUTER AND NUMERICAL DIFFERENTIATION . . . . . . . . . . . . 224
8.7.1 COMPUTER DIFFERENTIATION . . . . . . . . . . . . . . . 224
8.7.2 NUMERICAL DIFFERENTIATION . . . . . . . . . . . . . . . 225
8.7.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 226
9 DIFFERENTIATION: FUNCTIONS OF SEVERAL VARIABLES . . . . . . . . . . .
227
9.1 PARTIAL DIFFERENTIATION . . . . . . . . . . . . . . . . . . . . . .
227
9.1.1 SECOND-ORDER PARTIAL DERIVATIVES . . . . . . . . . . . 230
9.1.2 DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLES USING COMPUTER .
. . . . . . . . . . . . . . 232
9.1.3 THE GRADIENT AND HESSIAN . . . . . . . . . . . . . . . 232
9.1.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 234
9.2 DIFFERENTIAL AND TOTAL DERIVATIVE . . . . . . . . . . . . . . . .
235
9.2.1 DIFFERENTIAL . . . . . . . . . . . . . . . . . . . . . . . 235
9.2.2 TOTAL DERIVATIVE . . . . . . . . . . . . . . . . . . . . 237
9.2.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 240
9.3 HOMOGENEOUS FUNCTIONS AND THE EULER THEOREM . . . . . . . . 240
9.3.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 243
9.4 IMPLICIT FUNCTION THEOREM . . . . . . . . . . . . . . . . . . . 244
9.4.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 248
9.5 DIFFERENTIATING SYSTEMS OF EQUATIONS . . . . . . . . . . . . . . 248
9.5.1 THE JACOBIAN AND INDEPENDENCE OF NONLINEAR FUNCTIONS 248 9.5.2
DIFFERENTIATING SEVERAL FUNCTIONS . . . . . . . . . . . 250
9.5.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 255
10 THE TAYLOR SERIES AND ITS APPLICATIONS . . . . . . . . . . . . . . .
257
10.1 THE TAYLOR EXPANSION . . . . . . . . . . . . . . . . . . . . . .
257
10.1.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 266
10.2 THE REMAINDER AND THE PRECISION OF APPROXIMATION . . . . . . 267
10.2.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 270
10.3 FINDING THE ROOTS OF AN EQUATION . . . . . . . . . . . . . . . .
270
10.3.1 ITERATIVE METHODS . . . . . . . . . . . . . . . . . . . 270
IMAGE 5
CONTENTS XIII
10.3.2 THE BISECTION METHOD . . . . . . . . . . . . . . . . . 272
10.3.3 NEWTON'S METHOD . . . . . . . . . . . . . . . . . . . 273
10.3.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 276
10.4 TAYLOR EXPANSION OF FUNCTIONS OF SEVERAL VARIABLES . . . . . . 276
10.4.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 279
11 INTEGRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 281
11.1 THE INDEFINITE INTEGRAL . . . . . . . . . . . . . . . . . . . . . .
282
11.1.1 RULES OF INTEGRATION . . . . . . . . . . . . . . . . . . 283
11.1.2 CHANGE OF VARIABLE . . . . . . . . . . . . . . . . . . . 285
11.1.3 INTEGRATION BY PARTS . . . . . . . . . . . . . . . . . . 287
11.1.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 289
11.2 THE DEF INITE INTEGRAL . . . . . . . . . . . . . . . . . . . . . .
289
11.2.1 PROPERTIES OF DEFINITE INTEGRALS . . . . . . . . . . . . 294
11.2.2 RULES OF INTEGRATION FOR THE DEF INITE INTEGRAL . . . . . 298
11.2.3 CHANGE OF VARIABLE . . . . . . . . . . . . . . . . . . . 299
11.2.4 INTEGRATION BY PARTS . . . . . . . . . . . . . . . . . . 300
11.2.5 RIEMANN-STIELTJES INTEGRAL . . . . . . . . . . . . . . . 304
11.2.6 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 306
11.3 COMPUTER AND NUMERICAL INTEGRATION . . . . . . . . . . . . . . 306
11.3.1 COMPUTER INTEGRATION . . . . . . . . . . . . . . . . . 306
11.4 NUMERICAL INTEGRATION . . . . . . . . . . . . . . . . . . . . . .
307
11.4.1 THE TRAPEZOID METHOD . . . . . . . . . . . . . . . . . 308
11.4.2 THE LAGRANGE INTERPOLATION FORMULA . . . . . . . . . 310
11.4.3 NEWTON-COTES METHOD . . . . . . . . . . . . . . . . . 312
11.4.4 SIMPSON'S METHOD . . . . . . . . . . . . . . . . . . . 313
11.4.5 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 315
11.5 SPECIAL FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . .
316
11.5.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 316
11.6 THE DERIVATIVE OF AN INTEGRAL . . . . . . . . . . . . . . . . . .
317
11.6.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 320
PART IV OPTIMIZATION
12 STATIC OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . .
. 323
12.1 MAXIMA AND MINIMA OF FUNCTIONS OF ONE VARIABLE . . . . . . 324
12.1.1 INFLECTION POINT . . . . . . . . . . . . . . . . . . . . . 331
12.1.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 333
12.2 UNCONSTRAINED OPTIMA OF FUNCTIONS OF SEVERAL VARIABLES . . . 334
12.2.1 CONVEX AND CONCAVE FUNCTIONS . . . . . . . . . . . . 338
12.2.2 QUASI-CONVEX AND QUASI-CONCAVE FUNCTIONS . . . . . 341 12.2.3
EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 342
12.3 NUMERICAL OPTIMIZATION . . . . . . . . . . . . . . . . . . . . .
343
12.3.1 STEEPEST DESCENT . . . . . . . . . . . . . . . . . . . . 343
12.3.2 GOLDEN SECTION METHOD . . . . . . . . . . . . . . . . 344
12.3.3 NEWTON METHOD . . . . . . . . . . . . . . . . . . . . 344
IMAGE 6
XIV CONTENTS
12.3.4 MATLAB FUNCTIONS . . . . . . . . . . . . . . . . . . . 345
12.3.5 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 346
13 CONSTRAINED OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . .
347
13.1 OPTIMIZATION WITH EQUALITY CONSTRAINTS . . . . . . . . . . . . 347
13.1.1 THE NATURE OF CONSTRAINED OPTIMA AND THE SIGNIFICANCE OF * . . .
. . . . . . . . . . . . . 354
13.1.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 354
13.2 VALUE FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . .
355
13.2.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 362
13.3 SECOND-ORDER CONDITIONS AND COMPARATIVE STATIC . . . . . . . 362
13.3.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 368
13.4 INEQUALITY CONSTRAINTS AND KARUSH-KUHN-TUCKER CONDITIONS . . 368
13.4.1 DUALITY . . . . . . . . . . . . . . . . . . . . . . . . . 372
13.4.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 375
14 DYNAMIC OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . .
377
14.1 DYNAMIC ANALYSIS IN ECONOMICS . . . . . . . . . . . . . . . . 377
14.2 THE CONTROL PROBLEM . . . . . . . . . . . . . . . . . . . . . . 379
14.2.1 THE FUNCTIONAL AND ITS DERIVATIVE . . . . . . . . . . . 381
14.3 CALCULUS OF VARIATIONS . . . . . . . . . . . . . . . . . . . . . .
384
14.3.1 THE EULER EQUATION . . . . . . . . . . . . . . . . . . 386
14.3.2 SECOND-ORDER CONDITIONS . . . . . . . . . . . . . . . 389
14.3.3 GENERALIZING THE CALCULUS OF VARIATIONS . . . . . . . . 390
14.3.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 391
14.4 DYNAMIC PROGRAMMING . . . . . . . . . . . . . . . . . . . . . 391
14.4.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 396
14.5 THE MAXIMUM PRINCIPLE . . . . . . . . . . . . . . . . . . . . 397
14.5.1 NECESSARY AND SUFF ICIENT CONDITIONS . . . . . . . . . 405
14.5.2 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 405
PART V DIFFERENTIAL AND DIFFERENCE EQUATIONS
15 DIFFERENTIAL EQUATIONS . . . . . . . . . . . . . . . . . . . . . . .
. 409
15.1 EXAMPLES OF CONTINUOUS TIME DYNAMIC ECONOMIC MODELS . . 409 15.2 AN
OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 412
15.2.1 INITIAL VALUE PROBLEM . . . . . . . . . . . . . . . . . 414
15.2.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS . . . . . . . . 416
15.2.3 EQUILIBRIUM AND STABILITY . . . . . . . . . . . . . . . 417
15.3 FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS . . . . . . . . . . . .
418
15.3.1 VARIABLE COEFF ICIENT EQUATIONS . . . . . . . . . . . . 420
15.3.2 PARTICULAR INTEGRAL, THE METHOD OF UNDETERMINED COEFFICIENTS . .
. . . . . . . . . . . 421
15.3.3 SEPARABLE EQUATIONS . . . . . . . . . . . . . . . . . . 424
15.3.4 EXACT DIFFERENTIAL EQUATIONS . . . . . . . . . . . . . . 426
15.3.5 INTEGRATING FACTOR . . . . . . . . . . . . . . . . . . . 430
15.3.6 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 433
IMAGE 7
CONTENTS XV
15.4 PHASE DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . 433
15.4.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 436
15.5 SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS . . . . . . . . . . 436
15.5.1 TWO DISTINCT REAL ROOTS . . . . . . . . . . . . . . . . 437
15.5.2 REPEATED ROOT . . . . . . . . . . . . . . . . . . . . . 439
15.5.3 COMPLEX ROOTS . . . . . . . . . . . . . . . . . . . . . 442
15.5.4 PARTICULAR INTEGRAL . . . . . . . . . . . . . . . . . . . 443
15.5.5 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 446
15.6 COMPUTER SOLUTION OF DIFFERENTIAL EQUATIONS . . . . . . . . . . 447
15.7 NUMERICAL ANALYSIS OF DIFFERENTIAL EQUATIONS . . . . . . . . . 448
15.7.1 THE EULER METHOD . . . . . . . . . . . . . . . . . . . 448
15.7.2 RUNGE-KUTTA METHODS . . . . . . . . . . . . . . . . . 450
15.7.3 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 452
16 DIFFERENCE EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . .
. 453
16.1 AN OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 454
16.2 EXAMPLES OF DISCRETE DYNAMIC ECONOMIC MODELS . . . . . . . 457
16.2.1 ADAPTIVE EXPECTATIONS . . . . . . . . . . . . . . . . . 458
16.2.2 PARTIAL ADJUSTMENT . . . . . . . . . . . . . . . . . . . 459
16.2.3 HALL'S CONSUMPTION FUNCTION . . . . . . . . . . . . . 460
16.2.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 461
16.3 FIRST-ORDER LINEAR DIFFERENCE EQUATIONS . . . . . . . . . . . . 462
16.3.1 SOLUTION OF FIRST-ORDER LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS .
. . . . . . . . . . . . . . . . . 462
16.3.2 SOLUTION OF FIRST-ORDER NONHOMOGENEOUS EQUATIONS . 465 16.3.3
EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 472
16.4 SECOND-ORDER LINEAR DIFFERENCE EQUATIONS . . . . . . . . . . . 472
16.4.1 SOLUTION OF SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS
. . . . . . . . . 473
16.4.2 BEHAVIOR OF THE SOLUTION OF SECOND-ORDER EQUATION . 475 16.4.3
COMPUTER SOLUTION OF DIFFERENCE EQUATIONS . . . . . . 481 16.4.4 THE LAG
OPERATOR . . . . . . . . . . . . . . . . . . . 482
16.4.5 SOLUTION OF SECOND-ORDER NONHOMOGENEOUS DIFFERENCE EQUATIONS . .
. . . . . . . . . . . . . . . . 485
16.4.6 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 490
16.5 N -TH-ORDER DIFFERENCE EQUATIONS . . . . . . . . . . . . . . . .
491
16.5.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 493
17 DYNAMIC SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . .
495
17.1 SYSTEMS OF DIFFERENTIAL EQUATIONS . . . . . . . . . . . . . . . 495
17.1.1 EQUIVALENCE OF A SECOND-ORDER LINEAR DIFFERENTIAL EQUATION AND A
SYSTEM OF TWO FIRST-ORDER LINEAR EQUATIONS . . . . . . . . . . . . . 497
17.1.2 LINEARIZING NONLINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 500 17.2
THE JORDAN CANONICAL FORM . . . . . . . . . . . . . . . . . . . 502
17.2.1 DIAGONALIZATION OF A MATRIX WITH DISTINCT REAL EIGENVALUES . . .
. . . . . . . . . . . . . . . . . 502
IMAGE 8
XVI CONTENTS
17.2.2 BLOCK DIAGONAL FORM OF A MATRIX WITH COMPLEX EIGENVALUES . . . .
. . . . . . . . . . 504
17.2.3 AN ALTERNATIVE FORM FOR A MATRIX WITH COMPLEX ROOTS . . . . . . .
. . . . . . . . . . . . . . 505
17.2.4 DECOMPOSITION OF A MATRIX WITH REPEATED ROOTS . . . 506 17.2.5
EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 508
17.3 EXPONENTIAL OF A MATRIX . . . . . . . . . . . . . . . . . . . . .
509
17.3.1 REAL DISTINCT ROOTS . . . . . . . . . . . . . . . . . . 510
17.3.2 COMPLEX ROOTS . . . . . . . . . . . . . . . . . . . . . 511
17.3.3 REPEATED ROOTS . . . . . . . . . . . . . . . . . . . . 513
17.3.4 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 515
17.4 SOLUTION OF SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS . . . . . 515
17.4.1 DECOUPLED SYSTEMS . . . . . . . . . . . . . . . . . . 516
17.4.2 SYSTEMS WITH REAL AND DISTINCT ROOTS . . . . . . . . . 518
17.4.3 SYSTEMS WITH COMPLEX ROOTS . . . . . . . . . . . . . 519
17.4.4 SYSTEMS WITH REPEATED ROOTS . . . . . . . . . . . . . 520
17.4.5 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 521
17.5 NUMERICAL ANALYSIS OF SYSTEMS OF DIFFERENTIAL EQUATIONS . . . 521
17.5.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 523
17.6 THE PHASE PORTRAIT . . . . . . . . . . . . . . . . . . . . . . . .
523
17.6.1 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . 527
SOLUTIONS TO SELECTED PROBLEMS . . . . . . . . . . . . . . . . . . . . .
. . 529
INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 539 |
any_adam_object | 1 |
author | Dadkhah, Kamran |
author_facet | Dadkhah, Kamran |
author_role | aut |
author_sort | Dadkhah, Kamran |
author_variant | k d kd |
building | Verbundindex |
bvnumber | BV036493078 |
classification_rvk | QH 100 QH 110 SK 980 |
ctrlnum | (OCoLC)701477090 (DE-599)DNB1002540798 |
dewey-full | 330.0151 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.0151 |
dewey-search | 330.0151 |
dewey-sort | 3330.0151 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV036493078</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190114</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100609s2011 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N21</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1002540798</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642137471</subfield><subfield code="c">GB. : ca. EUR 149.75 (freier Pr.), ca. sfr 217.50 (freier Pr.)</subfield><subfield code="9">978-3-642-13747-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642137471</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">80015850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)701477090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1002540798</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M382</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.0151</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 100</subfield><subfield code="0">(DE-625)141530:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 110</subfield><subfield code="0">(DE-625)141531:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dadkhah, Kamran</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of mathematical and computational economics</subfield><subfield code="c">Kamran Dadkah</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 542 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">260 mm x 193 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)4066472-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftsmodell</subfield><subfield code="0">(DE-588)4079348-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wirtschaftsmodell</subfield><subfield code="0">(DE-588)4079348-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)4066472-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-13748-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3476839&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020415661&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020415661</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV036493078 |
illustrated | Illustrated |
indexdate | 2024-07-20T10:38:51Z |
institution | BVB |
isbn | 9783642137471 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020415661 |
oclc_num | 701477090 |
open_access_boolean | |
owner | DE-M382 DE-355 DE-BY-UBR DE-20 DE-384 DE-573 DE-N2 DE-19 DE-BY-UBM DE-92 |
owner_facet | DE-M382 DE-355 DE-BY-UBR DE-20 DE-384 DE-573 DE-N2 DE-19 DE-BY-UBM DE-92 |
physical | XVI, 542 S. graph. Darst. 260 mm x 193 mm |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
spelling | Dadkhah, Kamran Verfasser aut Foundations of mathematical and computational economics Kamran Dadkah 2. ed. Berlin [u.a.] Springer 2011 XVI, 542 S. graph. Darst. 260 mm x 193 mm txt rdacontent n rdamedia nc rdacarrier Wirtschaftsmathematik (DE-588)4066472-7 gnd rswk-swf Ökonometrie (DE-588)4132280-0 gnd rswk-swf Wirtschaftsmodell (DE-588)4079348-5 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Wirtschaftsmodell (DE-588)4079348-5 s Wirtschaftsmathematik (DE-588)4066472-7 s Ökonometrie (DE-588)4132280-0 s DE-604 Erscheint auch als Online-Ausgabe 978-3-642-13748-8 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3476839&prov=M&dok_var=1&dok_ext=htm Inhaltstext SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020415661&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dadkhah, Kamran Foundations of mathematical and computational economics Wirtschaftsmathematik (DE-588)4066472-7 gnd Ökonometrie (DE-588)4132280-0 gnd Wirtschaftsmodell (DE-588)4079348-5 gnd |
subject_GND | (DE-588)4066472-7 (DE-588)4132280-0 (DE-588)4079348-5 (DE-588)4123623-3 |
title | Foundations of mathematical and computational economics |
title_auth | Foundations of mathematical and computational economics |
title_exact_search | Foundations of mathematical and computational economics |
title_full | Foundations of mathematical and computational economics Kamran Dadkah |
title_fullStr | Foundations of mathematical and computational economics Kamran Dadkah |
title_full_unstemmed | Foundations of mathematical and computational economics Kamran Dadkah |
title_short | Foundations of mathematical and computational economics |
title_sort | foundations of mathematical and computational economics |
topic | Wirtschaftsmathematik (DE-588)4066472-7 gnd Ökonometrie (DE-588)4132280-0 gnd Wirtschaftsmodell (DE-588)4079348-5 gnd |
topic_facet | Wirtschaftsmathematik Ökonometrie Wirtschaftsmodell Lehrbuch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3476839&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020415661&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dadkhahkamran foundationsofmathematicalandcomputationaleconomics |