Hyperbolic conservation laws in continuum physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Heidelberg [u.a.]
Springer
2010
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
325 |
Schlagworte: | |
Online-Zugang: | DE-634 DE-91 DE-384 DE-19 DE-703 DE-20 DE-29 DE-739 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783642040481 |
DOI: | 10.1007/978-3-642-04048-1 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV036492781 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 100609s2010 |||| o||u| ||||||eng d | ||
020 | |a 9783642040481 |c Online |9 978-3-642-04048-1 | ||
024 | 7 | |a 10.1007/978-3-642-04048-1 |2 doi | |
035 | |a (OCoLC)604234503 | ||
035 | |a (DE-599)BVBBV036492781 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-20 |a DE-703 |a DE-29 |a DE-91 |a DE-19 |a DE-384 |a DE-83 |a DE-739 | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UF 2000 |0 (DE-625)145568: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dafermos, Constantine M. |d 1941- |e Verfasser |0 (DE-588)121360229 |4 aut | |
245 | 1 | 0 | |a Hyperbolic conservation laws in continuum physics |c Constantine M. Dafermos |
250 | |a 3. ed. | ||
264 | 1 | |a Heidelberg [u.a.] |b Springer |c 2010 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 325 | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mechanical engineering | |
650 | 4 | |a Structural Mechanics | |
650 | 4 | |a Continuum Mechanics and Mechanics of Materials | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Materials | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Partial Differential Equations | |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erhaltungssatz |0 (DE-588)4131214-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontinuumsphysik |0 (DE-588)4165166-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 0 | 1 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | 2 | |a Kontinuumsphysik |0 (DE-588)4165166-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kontinuumsphysik |0 (DE-588)4165166-2 |D s |
689 | 1 | 1 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 1 | 2 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-642-04047-4 |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 325 |w (DE-604)BV049758308 |9 325 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-04048-1 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA | ||
966 | e | |u https://doi.org/10.1007/978-3-642-04048-1 |l DE-634 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-04048-1 |l DE-91 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-04048-1 |l DE-384 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-04048-1 |l DE-19 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-04048-1 |l DE-703 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-04048-1 |l DE-20 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-04048-1 |l DE-29 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-04048-1 |l DE-739 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805079047325089792 |
---|---|
adam_text | |
any_adam_object | |
author | Dafermos, Constantine M. 1941- |
author_GND | (DE-588)121360229 |
author_facet | Dafermos, Constantine M. 1941- |
author_role | aut |
author_sort | Dafermos, Constantine M. 1941- |
author_variant | c m d cm cmd |
building | Verbundindex |
bvnumber | BV036492781 |
classification_rvk | SK 560 SK 950 UF 2000 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)604234503 (DE-599)BVBBV036492781 |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-3-642-04048-1 |
edition | 3. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 cb4500</leader><controlfield tag="001">BV036492781</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100609s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642040481</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-04048-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-04048-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)604234503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036492781</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 2000</subfield><subfield code="0">(DE-625)145568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dafermos, Constantine M.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121360229</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic conservation laws in continuum physics</subfield><subfield code="c">Constantine M. Dafermos</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">325</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Mechanics and Mechanics of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsphysik</subfield><subfield code="0">(DE-588)4165166-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontinuumsphysik</subfield><subfield code="0">(DE-588)4165166-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kontinuumsphysik</subfield><subfield code="0">(DE-588)4165166-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-642-04047-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">325</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">325</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-04048-1</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4179998-7 Monografische Reihe gnd-content |
genre_facet | Monografische Reihe |
id | DE-604.BV036492781 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:38:46Z |
institution | BVB |
isbn | 9783642040481 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020415370 |
oclc_num | 604234503 |
open_access_boolean | |
owner | DE-634 DE-20 DE-703 DE-29 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-83 DE-739 |
owner_facet | DE-634 DE-20 DE-703 DE-29 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-83 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Springer |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Dafermos, Constantine M. 1941- Verfasser (DE-588)121360229 aut Hyperbolic conservation laws in continuum physics Constantine M. Dafermos 3. ed. Heidelberg [u.a.] Springer 2010 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften 325 Mathematik Mechanical engineering Structural Mechanics Continuum Mechanics and Mechanics of Materials Mechanics Thermodynamics Mathematics Materials Differential equations, partial Partial Differential Equations Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Kontinuumsphysik (DE-588)4165166-2 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 s Hyperbolische Differentialgleichung (DE-588)4131213-2 s Kontinuumsphysik (DE-588)4165166-2 s DE-604 Hyperbolisches System (DE-588)4191897-6 s 1\p DE-604 Erscheint auch als Druckausgabe 978-3-642-04047-4 Grundlehren der mathematischen Wissenschaften 325 (DE-604)BV049758308 325 https://doi.org/10.1007/978-3-642-04048-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dafermos, Constantine M. 1941- Hyperbolic conservation laws in continuum physics Grundlehren der mathematischen Wissenschaften Mathematik Mechanical engineering Structural Mechanics Continuum Mechanics and Mechanics of Materials Mechanics Thermodynamics Mathematics Materials Differential equations, partial Partial Differential Equations Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Erhaltungssatz (DE-588)4131214-4 gnd Hyperbolisches System (DE-588)4191897-6 gnd Kontinuumsphysik (DE-588)4165166-2 gnd |
subject_GND | (DE-588)4131213-2 (DE-588)4131214-4 (DE-588)4191897-6 (DE-588)4165166-2 |
title | Hyperbolic conservation laws in continuum physics |
title_auth | Hyperbolic conservation laws in continuum physics |
title_exact_search | Hyperbolic conservation laws in continuum physics |
title_full | Hyperbolic conservation laws in continuum physics Constantine M. Dafermos |
title_fullStr | Hyperbolic conservation laws in continuum physics Constantine M. Dafermos |
title_full_unstemmed | Hyperbolic conservation laws in continuum physics Constantine M. Dafermos |
title_short | Hyperbolic conservation laws in continuum physics |
title_sort | hyperbolic conservation laws in continuum physics |
topic | Mathematik Mechanical engineering Structural Mechanics Continuum Mechanics and Mechanics of Materials Mechanics Thermodynamics Mathematics Materials Differential equations, partial Partial Differential Equations Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Erhaltungssatz (DE-588)4131214-4 gnd Hyperbolisches System (DE-588)4191897-6 gnd Kontinuumsphysik (DE-588)4165166-2 gnd |
topic_facet | Mathematik Mechanical engineering Structural Mechanics Continuum Mechanics and Mechanics of Materials Mechanics Thermodynamics Mathematics Materials Differential equations, partial Partial Differential Equations Hyperbolische Differentialgleichung Erhaltungssatz Hyperbolisches System Kontinuumsphysik |
url | https://doi.org/10.1007/978-3-642-04048-1 |
volume_link | (DE-604)BV049758308 |
work_keys_str_mv | AT dafermosconstantinem hyperbolicconservationlawsincontinuumphysics |