Practical bifurcation and stability analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
2010
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Interdisciplinary applied mathematics
5 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBM01 UBT01 UBW01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781441917409 |
DOI: | 10.1007/978-1-4419-1740-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV036492770 | ||
003 | DE-604 | ||
005 | 20120822 | ||
007 | cr|uuu---uuuuu | ||
008 | 100609s2010 |||| o||u| ||||||eng d | ||
020 | |a 9781441917409 |c Online |9 978-1-4419-1740-9 | ||
024 | 7 | |a 10.1007/978-1-4419-1740-9 |2 doi | |
035 | |a (OCoLC)604231009 | ||
035 | |a (DE-599)BVBBV036492770 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-20 |a DE-703 |a DE-29 |a DE-91 |a DE-19 |a DE-384 |a DE-83 |a DE-739 | ||
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Seydel, Rüdiger |d 1947- |e Verfasser |0 (DE-588)13662782X |4 aut | |
245 | 1 | 0 | |a Practical bifurcation and stability analysis |c Rüdiger Seydel |
250 | |a 3. ed. | ||
264 | 1 | |a New York, NY [u.a.] |b Springer |c 2010 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Interdisciplinary applied mathematics |v 5 | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares Phänomen |0 (DE-588)4136065-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 1 | |a Nichtlineares Phänomen |0 (DE-588)4136065-5 |D s |
689 | 0 | 2 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | 3 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-4419-1739-3 |
830 | 0 | |a Interdisciplinary applied mathematics |v 5 |w (DE-604)BV039839973 |9 5 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-1740-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020415359 | ||
966 | e | |u https://doi.org/10.1007/978-1-4419-1740-9 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-1740-9 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-1740-9 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-1740-9 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-1740-9 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-1740-9 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-1740-9 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4419-1740-9 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804143055161262080 |
---|---|
any_adam_object | |
author | Seydel, Rüdiger 1947- |
author_GND | (DE-588)13662782X |
author_facet | Seydel, Rüdiger 1947- |
author_role | aut |
author_sort | Seydel, Rüdiger 1947- |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV036492770 |
classification_rvk | SK 520 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)604231009 (DE-599)BVBBV036492770 |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-1740-9 |
edition | 3. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02928nmm a2200673zcb4500</leader><controlfield tag="001">BV036492770</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120822 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100609s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441917409</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-1740-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-1740-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)604231009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036492770</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seydel, Rüdiger</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13662782X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical bifurcation and stability analysis</subfield><subfield code="c">Rüdiger Seydel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Phänomen</subfield><subfield code="0">(DE-588)4136065-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineares Phänomen</subfield><subfield code="0">(DE-588)4136065-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-4419-1739-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV039839973</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020415359</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4419-1740-9</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV036492770 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:41:34Z |
institution | BVB |
isbn | 9781441917409 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020415359 |
oclc_num | 604231009 |
open_access_boolean | |
owner | DE-634 DE-20 DE-703 DE-29 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-83 DE-739 |
owner_facet | DE-634 DE-20 DE-703 DE-29 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-83 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Springer |
record_format | marc |
series | Interdisciplinary applied mathematics |
series2 | Interdisciplinary applied mathematics |
spelling | Seydel, Rüdiger 1947- Verfasser (DE-588)13662782X aut Practical bifurcation and stability analysis Rüdiger Seydel 3. ed. New York, NY [u.a.] Springer 2010 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Interdisciplinary applied mathematics 5 Mathematik Mathematische Physik Mathematical Methods in Physics Mathematics Differentiable dynamical systems Numerical analysis Mathematical physics Numerical Analysis Dynamical Systems and Ergodic Theory Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Chaotisches System (DE-588)4316104-2 gnd rswk-swf Nichtlineares Phänomen (DE-588)4136065-5 gnd rswk-swf Dynamisches System (DE-588)4013396-5 gnd rswk-swf Dynamisches System (DE-588)4013396-5 s Nichtlineares Phänomen (DE-588)4136065-5 s Verzweigung Mathematik (DE-588)4078889-1 s Chaotisches System (DE-588)4316104-2 s DE-604 Erscheint auch als Druckausgabe 978-1-4419-1739-3 Interdisciplinary applied mathematics 5 (DE-604)BV039839973 5 https://doi.org/10.1007/978-1-4419-1740-9 Verlag Volltext |
spellingShingle | Seydel, Rüdiger 1947- Practical bifurcation and stability analysis Interdisciplinary applied mathematics Mathematik Mathematische Physik Mathematical Methods in Physics Mathematics Differentiable dynamical systems Numerical analysis Mathematical physics Numerical Analysis Dynamical Systems and Ergodic Theory Verzweigung Mathematik (DE-588)4078889-1 gnd Chaotisches System (DE-588)4316104-2 gnd Nichtlineares Phänomen (DE-588)4136065-5 gnd Dynamisches System (DE-588)4013396-5 gnd |
subject_GND | (DE-588)4078889-1 (DE-588)4316104-2 (DE-588)4136065-5 (DE-588)4013396-5 |
title | Practical bifurcation and stability analysis |
title_auth | Practical bifurcation and stability analysis |
title_exact_search | Practical bifurcation and stability analysis |
title_full | Practical bifurcation and stability analysis Rüdiger Seydel |
title_fullStr | Practical bifurcation and stability analysis Rüdiger Seydel |
title_full_unstemmed | Practical bifurcation and stability analysis Rüdiger Seydel |
title_short | Practical bifurcation and stability analysis |
title_sort | practical bifurcation and stability analysis |
topic | Mathematik Mathematische Physik Mathematical Methods in Physics Mathematics Differentiable dynamical systems Numerical analysis Mathematical physics Numerical Analysis Dynamical Systems and Ergodic Theory Verzweigung Mathematik (DE-588)4078889-1 gnd Chaotisches System (DE-588)4316104-2 gnd Nichtlineares Phänomen (DE-588)4136065-5 gnd Dynamisches System (DE-588)4013396-5 gnd |
topic_facet | Mathematik Mathematische Physik Mathematical Methods in Physics Mathematics Differentiable dynamical systems Numerical analysis Mathematical physics Numerical Analysis Dynamical Systems and Ergodic Theory Verzweigung Mathematik Chaotisches System Nichtlineares Phänomen Dynamisches System |
url | https://doi.org/10.1007/978-1-4419-1740-9 |
volume_link | (DE-604)BV039839973 |
work_keys_str_mv | AT seydelrudiger practicalbifurcationandstabilityanalysis |