Loop Spaces, Characteristic Classes and Geometric Quantization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2008
|
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780817647315 |
DOI: | 10.1007/978-0-8176-4731-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV036492500 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 100609s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780817647315 |9 978-0-8176-4731-5 | ||
035 | |a (OCoLC)699584270 | ||
035 | |a (DE-599)BVBBV036492500 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-703 |a DE-91 |a DE-384 |a DE-83 |a DE-739 | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brylinski, Jean-Luc |e Verfasser |4 aut | |
245 | 1 | 0 | |a Loop Spaces, Characteristic Classes and Geometric Quantization |c by Jean-Luc Brylinski |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2008 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Algebra | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Topology | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 0 | 7 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geradenbündel |0 (DE-588)4156783-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schleifenraum |0 (DE-588)4179711-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |D s |
689 | 0 | 1 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |D s |
689 | 1 | 1 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |D s |
689 | 1 | 2 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Geradenbündel |0 (DE-588)4156783-3 |D s |
689 | 2 | 1 | |a Schleifenraum |0 (DE-588)4179711-5 |D s |
689 | 2 | 2 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-4731-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020415089 | ||
966 | e | |u https://doi.org/10.1007/978-0-8176-4731-5 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-8176-4731-5 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-8176-4731-5 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-8176-4731-5 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-8176-4731-5 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804143054696742912 |
---|---|
any_adam_object | |
author | Brylinski, Jean-Luc |
author_facet | Brylinski, Jean-Luc |
author_role | aut |
author_sort | Brylinski, Jean-Luc |
author_variant | j l b jlb |
building | Verbundindex |
bvnumber | BV036492500 |
classification_rvk | SK 300 SK 320 SK 370 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)699584270 (DE-599)BVBBV036492500 |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-4731-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02715nmm a2200673zc 4500</leader><controlfield tag="001">BV036492500</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100609s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647315</subfield><subfield code="9">978-0-8176-4731-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699584270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036492500</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brylinski, Jean-Luc</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Loop Spaces, Characteristic Classes and Geometric Quantization</subfield><subfield code="c">by Jean-Luc Brylinski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geradenbündel</subfield><subfield code="0">(DE-588)4156783-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schleifenraum</subfield><subfield code="0">(DE-588)4179711-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Geradenbündel</subfield><subfield code="0">(DE-588)4156783-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Schleifenraum</subfield><subfield code="0">(DE-588)4179711-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020415089</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV036492500 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:41:34Z |
institution | BVB |
isbn | 9780817647315 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020415089 |
oclc_num | 699584270 |
open_access_boolean | |
owner | DE-634 DE-703 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
owner_facet | DE-634 DE-703 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Brylinski, Jean-Luc Verfasser aut Loop Spaces, Characteristic Classes and Geometric Quantization by Jean-Luc Brylinski Boston, MA Birkhäuser Boston 2008 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Mathematik Algebra Mathematics Topology Differential Geometry Global differential geometry Category Theory, Homological Algebra Garbe Mathematik (DE-588)4019261-1 gnd rswk-swf Kohomologie (DE-588)4031700-6 gnd rswk-swf Charakteristische Klasse (DE-588)4194231-0 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Geradenbündel (DE-588)4156783-3 gnd rswk-swf Schleifenraum (DE-588)4179711-5 gnd rswk-swf Charakteristische Klasse (DE-588)4194231-0 s Garbe Mathematik (DE-588)4019261-1 s DE-604 Kohomologie (DE-588)4031700-6 s Geradenbündel (DE-588)4156783-3 s Schleifenraum (DE-588)4179711-5 s Geometrische Quantisierung (DE-588)4156720-1 s https://doi.org/10.1007/978-0-8176-4731-5 Verlag Volltext |
spellingShingle | Brylinski, Jean-Luc Loop Spaces, Characteristic Classes and Geometric Quantization Mathematik Algebra Mathematics Topology Differential Geometry Global differential geometry Category Theory, Homological Algebra Garbe Mathematik (DE-588)4019261-1 gnd Kohomologie (DE-588)4031700-6 gnd Charakteristische Klasse (DE-588)4194231-0 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Geradenbündel (DE-588)4156783-3 gnd Schleifenraum (DE-588)4179711-5 gnd |
subject_GND | (DE-588)4019261-1 (DE-588)4031700-6 (DE-588)4194231-0 (DE-588)4156720-1 (DE-588)4156783-3 (DE-588)4179711-5 |
title | Loop Spaces, Characteristic Classes and Geometric Quantization |
title_auth | Loop Spaces, Characteristic Classes and Geometric Quantization |
title_exact_search | Loop Spaces, Characteristic Classes and Geometric Quantization |
title_full | Loop Spaces, Characteristic Classes and Geometric Quantization by Jean-Luc Brylinski |
title_fullStr | Loop Spaces, Characteristic Classes and Geometric Quantization by Jean-Luc Brylinski |
title_full_unstemmed | Loop Spaces, Characteristic Classes and Geometric Quantization by Jean-Luc Brylinski |
title_short | Loop Spaces, Characteristic Classes and Geometric Quantization |
title_sort | loop spaces characteristic classes and geometric quantization |
topic | Mathematik Algebra Mathematics Topology Differential Geometry Global differential geometry Category Theory, Homological Algebra Garbe Mathematik (DE-588)4019261-1 gnd Kohomologie (DE-588)4031700-6 gnd Charakteristische Klasse (DE-588)4194231-0 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Geradenbündel (DE-588)4156783-3 gnd Schleifenraum (DE-588)4179711-5 gnd |
topic_facet | Mathematik Algebra Mathematics Topology Differential Geometry Global differential geometry Category Theory, Homological Algebra Garbe Mathematik Kohomologie Charakteristische Klasse Geometrische Quantisierung Geradenbündel Schleifenraum |
url | https://doi.org/10.1007/978-0-8176-4731-5 |
work_keys_str_mv | AT brylinskijeanluc loopspacescharacteristicclassesandgeometricquantization |