Transport Equations and Multi-D Hyperbolic Conservation Laws:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer-Verlag Berlin Heidelberg
2008
|
Schriftenreihe: | Lecture notes of the Unione Matematica Italiana
5 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 UER01 UPA01 Volltext Inhaltsverzeichnis |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783540767817 |
DOI: | 10.1007/978-3-540-76781-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV036492402 | ||
003 | DE-604 | ||
005 | 20230104 | ||
006 | a |||| 10||| | ||
007 | cr|uuu---uuuuu | ||
008 | 100609s2008 |||| o||u| ||||||eng d | ||
020 | |a 9783540767817 |9 978-3-540-76781-7 | ||
035 | |a (OCoLC)1184394301 | ||
035 | |a (DE-599)BVBBV036492402 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-703 |a DE-29 |a DE-91 |a DE-384 |a DE-83 |a DE-739 | ||
082 | 0 | |a 515.3535 |2 22//ger | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ambrosio, Luigi |d 1963- |e Verfasser |0 (DE-588)133791408 |4 aut | |
245 | 1 | 0 | |a Transport Equations and Multi-D Hyperbolic Conservation Laws |c by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg |
264 | 1 | |a Berlin, Heidelberg |b Springer-Verlag Berlin Heidelberg |c 2008 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes of the Unione Matematica Italiana |v 5 | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematical optimization | |
650 | 0 | 7 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare hyperbolische Differentialgleichung |0 (DE-588)4228136-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2005 |z Bologna |2 gnd-content | |
689 | 0 | 0 | |a Nichtlineare hyperbolische Differentialgleichung |0 (DE-588)4228136-2 |D s |
689 | 0 | 1 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Crippa, Gianluca |e Sonstige |4 oth | |
700 | 1 | |a Westdickenberg, Michael |d 1972- |e Sonstige |0 (DE-588)1044329165 |4 oth | |
700 | 1 | |a Otto, Felix |d 1966- |e Sonstige |0 (DE-588)135534305 |4 oth | |
700 | 1 | |a De Lellis, Camillo |d 1976- |e Sonstige |0 (DE-588)122562321 |4 oth | |
830 | 0 | |a Lecture notes of the Unione Matematica Italiana |v 5 |w (DE-604)BV035421262 |9 5 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-76781-7 |x Verlag |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020414991&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020414991 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-540-76781-7 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-76781-7 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-76781-7 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-76781-7 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-76781-7 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-76781-7 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804143054583496704 |
---|---|
adam_text | CONTENTS PARTI EXISTENCE, UNIQUENESS, STABILITY AND DIFFERENTIABILITY
PROPERTIES OF THE FLOW ASSOCIATED TO WEAKLY DIFFERENTIABLE VECTOR FIELDS
3 LUIGI AMBROSIO AND GIANLUCA CRIPPA 1 INTRODUCTION 3 2 THE CONTINUITY
EQUATION 5 3 THE CONTINUITY EQUATION WITHIN THE CAUCHY-LIPSCHITZ
FRAMEWORK 7 4 (ODE) UNIQUENESS VS. (PDE) UNIQUENESS 11 5 THE FLOW
ASSOCIATED TO SOBOLEV OR BV VECTOR FIELDS 19 6 MEASURE-THEORETIC
DIFFERENTIALS 32 7 DIFFERENTIABILITY OF THE FLOW IN THE W L 1 CASE 38
8 DIFFERENTIABILITY AND COMPACTNESS OF THE FLOW IN THE W LP CASE 40 9
BIBLIOGRAPHICAL NOTES AND OPEN PROBLEMS 52 REFERENCES 54 PARTLL A NOTE
ON ALBERTI S RANK-ONE THEOREM 61 CAMILLO DE LELLIS 1 INTRODUCTION 61 2
DIMENSIONAL REDUCTION 63 3 A BLOW-UP ARGUMENT LEADING TO A PARTIAL
RESULT 65 4 THE FUNDAMENTAL LEMMA 66 5 PROOF OF THEOREM 1.1 IN THE
PLANAR CASE 68 REFERENCES 74 GESCANNT DURCH BIBLIOGRAFISCHE
INFORMATIONEN HTTP://D-NB.INFO/987389114 DIGITALISIERT DURCH EXISTENCE,
UNIQUENESS, STABILITY AND DIFFERENTIABILITY PROPERTIES OF THE FLOW
ASSOCIATED TO WEAKLY DIFFERENTIABLE VECTOR FIELDS LUIGI AMBROSIO AND
GIANLUCA CRIPPA SCUOLA NORMALE SUPERIORE, PIAZZA DEI CAVALIERI 7, 56126
PISA, ITALY E-MAIL: L.AMBROSIO@SNS.IT, G.CRIPPA@SNS.IT URL:
HTTP://CVGMT.SNS.IT/PEOPLE/AMBROSIO/ 1 INTRODUCTION 3 2 THE CONTINUITY
EQUATION 5 3 THE CONTINUITY EQUATION WITHIN THE CAUCHY*LIPSCHITZ
FRAMEWORK 7 4 (ODE) UNIQUENESS VS. (PDE) UNIQUENESS 11 5 THE FLOW
ASSOCIATED TO SOBOLEV OR BV VECTOR FIELDS 19 6 MEASURE-THEORETIC
DIFFERENTIALS 32 7 DIFFERENTIABILITY OF THE FLOW IN THE W M CASE 38 8
DIFFERENTIABILITY AND COMPACTNESS OF THE FLOW IN THE W L * CASE 40 9
BIBLIOGRAPHICAL NOTES AND OPEN PROBLEMS 52 REFERENCES 54 REFERENCES 74 A
NOTE ON ALBERTI S RANK-ONE THEOREM CAMILLO DE LELLIS INSTITUT
FURMATHEMATIK, UNIVERSITAT ZURICH, WINTERTHURERSTRASSE 190, CH-8057
ZURICH, SWITZERLAND E-MAIL: DELELLIS@MATH.UNIZH.CH URL:
HTTP://WWW.MATH.UNIZH.CH/ 1 INTRODUCTION 61 2 DIMENSIONAL REDUCTION 63 3
A BLOW-UP ARGUMENT LEADING TO A PARTIAL RESULT 65 4 THE FUNDAMENTAL
LEMMA 66 5 PROOF OF THEOREM 1.1 IN THE PLANARCASE 68 77 REGULARIZING
EFFECT OF NONLINEARITY IN MULTIDIMENSIONAL SCALAR CONSERVATION LAWS
GIANLUCA CRIPPA 1 , FELIX OTTO 2 , AND MICHAEL WESTDICKENBERG 3 SCUOLA
NORMALE SUPERIORE, PIAZZA DEI CAVALIERI 7,1-56126 PISA, ITALY E-MAIL:
G.CRIPPA@SNS.IT 2 INSTIRUT FUR ANGEWANDTE MATHEMATIK, UNIVERSITAT BONN,
WEGELERSTRABE 10, D-53115 BONN, GERMANY E-MAIL: OTTO@IAM.UNI-BONN.DE 3
SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, 686 CHERRY
STREET, ATLANTA, GEORGIA 30332-0160, U.S.A. E-MAIL:
MWEST@MATH.GATECH.EDU URL: HTTP://WWW.MATHPHYS.IAM.UNIBONN.DE/~OTTO/
URL: HTTP://WWW.MATH.GATECH.EDU/~MWEST/ 1 INTRODUCTION 77 2 BACKGROUND
MATERIAL 79 3 ENTROPY SOLUTIONS WITH BV-REGULARIRY 84 4 STRUCTURE OF
ENTROPY SOLUTIONS 87 5 KINETIC FORMULATION, BLOW-UPS AND SPLIT STATES 91
6 CLASSIFICATION OF SPLIT STATES 98 6.1 SPECIAL SPLIT STATES: NO ENTROPY
DISSIPATION 98 6.2 SPECIAL SPLIT STATES: V SUPPORTED ON A HYPERPLANE 101
6.3 SPECIAL SPLIT STATES: V SUPPORTED ON HAIFA HYPERPLANE 103 6.4
CLASSIFICATION OF GENERAL SPLIT STATES 105 7 PROOF OF THE MAIN THEOREM
106 8 PROOFS OF THE REGULARITY THEOREMS 112 REFERENCES 127
|
any_adam_object | 1 |
author | Ambrosio, Luigi 1963- |
author_GND | (DE-588)133791408 (DE-588)1044329165 (DE-588)135534305 (DE-588)122562321 |
author_facet | Ambrosio, Luigi 1963- |
author_role | aut |
author_sort | Ambrosio, Luigi 1963- |
author_variant | l a la |
building | Verbundindex |
bvnumber | BV036492402 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)1184394301 (DE-599)BVBBV036492402 |
dewey-full | 515.3535 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.3535 |
dewey-search | 515.3535 |
dewey-sort | 3515.3535 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-540-76781-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03357nmm a2200673zcb4500</leader><controlfield tag="001">BV036492402</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230104 </controlfield><controlfield tag="006">a |||| 10||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100609s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540767817</subfield><subfield code="9">978-3-540-76781-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184394301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036492402</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3535</subfield><subfield code="2">22//ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ambrosio, Luigi</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133791408</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transport Equations and Multi-D Hyperbolic Conservation Laws</subfield><subfield code="c">by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer-Verlag Berlin Heidelberg</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2005</subfield><subfield code="z">Bologna</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crippa, Gianluca</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Westdickenberg, Michael</subfield><subfield code="d">1972-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1044329165</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otto, Felix</subfield><subfield code="d">1966-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135534305</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Lellis, Camillo</subfield><subfield code="d">1976-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)122562321</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV035421262</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020414991&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020414991</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2005 Bologna gnd-content |
genre_facet | Konferenzschrift 2005 Bologna |
id | DE-604.BV036492402 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:41:34Z |
institution | BVB |
isbn | 9783540767817 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020414991 |
oclc_num | 1184394301 |
open_access_boolean | |
owner | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
owner_facet | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer-Verlag Berlin Heidelberg |
record_format | marc |
series | Lecture notes of the Unione Matematica Italiana |
series2 | Lecture notes of the Unione Matematica Italiana |
spelling | Ambrosio, Luigi 1963- Verfasser (DE-588)133791408 aut Transport Equations and Multi-D Hyperbolic Conservation Laws by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg Berlin, Heidelberg Springer-Verlag Berlin Heidelberg 2008 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Lecture notes of the Unione Matematica Italiana 5 Mathematik Calculus of Variations and Optimal Control; Optimization Differential Equations Mathematics Measure and Integration Ordinary Differential Equations Partial Differential Equations Differential equations, partial Mathematical optimization Geometrische Maßtheorie (DE-588)4125258-5 gnd rswk-swf Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2005 Bologna gnd-content Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 s Geometrische Maßtheorie (DE-588)4125258-5 s 2\p DE-604 Crippa, Gianluca Sonstige oth Westdickenberg, Michael 1972- Sonstige (DE-588)1044329165 oth Otto, Felix 1966- Sonstige (DE-588)135534305 oth De Lellis, Camillo 1976- Sonstige (DE-588)122562321 oth Lecture notes of the Unione Matematica Italiana 5 (DE-604)BV035421262 5 https://doi.org/10.1007/978-3-540-76781-7 Verlag Volltext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020414991&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ambrosio, Luigi 1963- Transport Equations and Multi-D Hyperbolic Conservation Laws Lecture notes of the Unione Matematica Italiana Mathematik Calculus of Variations and Optimal Control; Optimization Differential Equations Mathematics Measure and Integration Ordinary Differential Equations Partial Differential Equations Differential equations, partial Mathematical optimization Geometrische Maßtheorie (DE-588)4125258-5 gnd Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd |
subject_GND | (DE-588)4125258-5 (DE-588)4228136-2 (DE-588)1071861417 |
title | Transport Equations and Multi-D Hyperbolic Conservation Laws |
title_auth | Transport Equations and Multi-D Hyperbolic Conservation Laws |
title_exact_search | Transport Equations and Multi-D Hyperbolic Conservation Laws |
title_full | Transport Equations and Multi-D Hyperbolic Conservation Laws by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg |
title_fullStr | Transport Equations and Multi-D Hyperbolic Conservation Laws by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg |
title_full_unstemmed | Transport Equations and Multi-D Hyperbolic Conservation Laws by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg |
title_short | Transport Equations and Multi-D Hyperbolic Conservation Laws |
title_sort | transport equations and multi d hyperbolic conservation laws |
topic | Mathematik Calculus of Variations and Optimal Control; Optimization Differential Equations Mathematics Measure and Integration Ordinary Differential Equations Partial Differential Equations Differential equations, partial Mathematical optimization Geometrische Maßtheorie (DE-588)4125258-5 gnd Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd |
topic_facet | Mathematik Calculus of Variations and Optimal Control; Optimization Differential Equations Mathematics Measure and Integration Ordinary Differential Equations Partial Differential Equations Differential equations, partial Mathematical optimization Geometrische Maßtheorie Nichtlineare hyperbolische Differentialgleichung Konferenzschrift 2005 Bologna |
url | https://doi.org/10.1007/978-3-540-76781-7 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020414991&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035421262 |
work_keys_str_mv | AT ambrosioluigi transportequationsandmultidhyperbolicconservationlaws AT crippagianluca transportequationsandmultidhyperbolicconservationlaws AT westdickenbergmichael transportequationsandmultidhyperbolicconservationlaws AT ottofelix transportequationsandmultidhyperbolicconservationlaws AT delelliscamillo transportequationsandmultidhyperbolicconservationlaws |