Essential biochemistry:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2011
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVII, 704 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036439123 | ||
003 | DE-604 | ||
005 | 20110512 | ||
007 | t | ||
008 | 100505s2011 xxud||| |||| 00||| eng d | ||
020 | |z 9780470504772 |9 978-0-470-50477-2 | ||
035 | |a (OCoLC)699646615 | ||
035 | |a (DE-599)BVBBV036439123 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-11 |a DE-29T |a DE-188 |a DE-19 | ||
084 | |a WD 4010 |0 (DE-625)148176: |2 rvk | ||
084 | |a CHE 800f |2 stub | ||
100 | 1 | |a Pratt, Charlotte W. |e Verfasser |0 (DE-588)124312233 |4 aut | |
245 | 1 | 0 | |a Essential biochemistry |c Charlotte W. Pratt ; Kathleen Cornely |
250 | |a 2. ed. | ||
264 | 1 | |a Hoboken, NJ |b Wiley |c 2011 | |
300 | |a XXVII, 704 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a biochemistry |2 cabt | |
650 | 0 | 7 | |a Biochemie |0 (DE-588)4006777-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Biochemie |0 (DE-588)4006777-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cornely, Kathleen |e Verfasser |4 aut | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020311507&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020311507 |
Datensatz im Suchindex
_version_ | 1804142920724381696 |
---|---|
adam_text | CONTENTS PART ONE MOLECULAR STRUCTUREAND FUNCTION 1 THE CHEMICAL BASIS
OF LIFE 1 1-1 WHAT IS BIOCHEMISTRY? 2 1-2 BIOLOGICAL MOLECULES 3 CELLS
CONTAIN FOUR MAJOR TYPES OFBIOMOLECULES 4 THERE ARE THREE MAJOR KINDS
OFBIOLOGICAL POLYMERS 6 1-3 ENERGY AND METABOLISM 10 FREE ENERGY,
ENTHALPY, AND ENTROPY 10 WHATMAKES A PROCESS SPONTANEOUS? 11 WHY IS LIFE
THERMODYNAMICALLY POSSIBLE? 12 1-4 THE ORIGIN AND EVOLUTION OF LIFE 14
THE PREBIOTIC WORLD 14 ORIGINS OFMODERN CELLS 16 BOX 1-AA CLOSER LOOK:
QUANTITATIVE BIOCHEMISTRY 7 BOX 1-BACLOSER LOOK: HOW DOES EVOLUTIONWORK?
16 BIOINFORMATICS PROJECT 1:THE BIOCHEMICAL LITERATURE 19 2 AQUEOUS
CHEMISTRY 24 2-1 WATERMOLECULESFORM HYDROGEN BONDS 25 HYDROGEN BONDS ARE
ONE TYPE OF ELECTROSTATIC FORCE 26 WATER DISSOLVES MANYCOMPOUNDS 28 2-2
THE HYDROPHOBIC EFFECT 30 AMPHIPHILIC MOLECULES EXPERIENCE BOTH
HYDROPHILIC INTERACTIONS AND THE HYDROPHOBIC EFFECT 31 THE HYDROPHOBIC
CORE OF A LIPID BILAYER IS A BARRIER TO DIFFUSION 32 2-3 ACID-BASE
CHEMISTRY 33 [H ] AND [OH-] ARE INVERSELY RELATED 34 THEPH OFA SOLUTION
CAN BE ALTERED 35 A PKVALUE DESCRIBES AN ACIDS TENDENCY TO IONIZE 35
THEPH OFA SOLUTION OFACID IS RELATED TO THEPK 37 2-4 TOOLS AND
TECHNIQUES: BUFFERS 40 BOX 2-AA CLOSER LOOK:WHY FLUORINE? 29 BOX 2-BA
CLOSER LOOK: SWEAT AND EXERCISE 33 BOX 2-CA CLOSER LOOK:WHAT DOES
ATMOSPHERICC02 HAVE TO DOWITH CORAL REEFS? 36 BOX 2-D CLINICAL NOTES:
ACID-BASE BALANCE IN HUMANS 43 3 FROM GENES TO PROTEINS 51 3-1 DNA IS
THE GENETIC MATERIAL 52 NUCLEIC ACIDS ARE POLYMERS OFNUCLEOTIDES 53 SOME
NUCLEOTIDES HAVE OTHER FUNCTIONS 54 DNA IS A DOUBLE HELIX 56 RNA IS
SINGLE-STRANDED 59 DNA CAN BE DENATURED AND RENATURED 59 3-2 GENES
ENCODE PROTEINS 61 A MUTATED GENE CAN CAUSE DISEASE 62 3-3 GENOMICS 65
GENE NUMBER IS ROUGHLY CORRELATED WITH ORGANISMAL COMPLEXITY 67 HOW ARE
GENES IDENTIFIED? 68 WHAT DO GENOME DATA TELL US? 70 OTHER GENETIC
VARIATIONS HAVE BEEN LINKED TO DISEASES 71 3-4 TOOLSAND TECHNIQUES:
MANIPULATINGDNA 71 DNA SEQUENCING USESDNA POLYMERASE TO MAKE A
COMPLEMENTARY STRAND 71 THE POLYMERASE CHAIN REACTION AMPLIFIESDNA 74
RESTRICTION ENZYMES CUTDNA AT SPECIFIC SEQUENCES 75 DNA FRAGMENTS ARE
JOINED TO PRODUCE RECOMBINANT DNA 77 CLONED GENES YIELD VALUABLE
PRODUCTS 79 GENETICALLY MODIFIED ORGANISMS HAVE PRACTICAL APPLICATIONS
79 GENE THERAPY HAS HAD LIMITED SUCCESS 81 BOX 3-A A CLOSER LOOK:SOME
MODEL ORGANISMS 66 BOX 3-B A CLOSER LOOK:TRANSCRIPTOMICSAND PROTEOMICS
69 BOX 3-C A CLOSER LOOK:DNA FINGERPRINTING 76 BIOINFORMATICS PROJECT 2:
NUCLEOTIDE SEQUENCES 83 4 PROTEIN STRUCTURE 87 4-1 PROTEINSARE CHAINS
OFAMINOACIDS 89 THE 20 AMINO ACIDS HAVE DIFFERENT CHEMICAL PROPERTIES 89
PEPTIDE BONDS LINK AMINO ACIDS IN PROTEINS 92 THE AMINO ACID SEQUENCE IS
THE FIRST LEVEL OFPROTEIN STRUCTURE 95 4-2 SECONDARY STRUCTURE:THE
CONFORMATION OFTHE PEPTIDE GROUP 96 THE A HELIX EXHIBITS A TWISTED
BACKBONE CONFORMATION 97 THE P SHEET CONTAINS MULTIPLE POLYPEPTIDE
STRANDS 97 PROTEINS ALSO CONTAIN IRREGULAR SECONDARY STRUCTURE 98 ! XI
4-3 TERTIARY STRUCTURE AND PROTEIN STABILITY 99 PROTEINS HAVE
HYDROPHOBIC CORES 100 PROTEIN STRUCTURES ARE STABILIZED MAINLY BY THE
HYDROPHOBIC EFFECT 101 CROSS-LINKS HELP STABILIZE PROTEINS 103 PROTEIN
FOLDING BEGINS WITH, THE FORMATION OFSECONDARY STRUCTURES 104 4-4
QUATERNARYSTRUCTURE 108 4-5 TOOLS AND TECHNIQUES: ANALYZINGPROTEIN
STRUCTURE 109 CHROMATOGRAPHY TAKES ADVANTAGE OFA POLYPEPTIDE S UNIQUE
PROPERTIES 109 EDMAN DEGRADATION AND MASS SPECTROMETRY REVEAL AMINO ACID
SEQUENCES 111 PROTEIN STRUCTURES ARE DETERMINED BYX-RAY CRYSTALLOGRAPHY,
ELECTRON CRYSTALLOGRAPHY, ANDNMR SPECTROSCOPY 113 BOX 4-A ACLOSER LOOK:
CHIRALITY IN NATURE 91 BOX 4-B CLINICAL NOTES: PROTEIN MISFOLDINGAND
DISEASE 105 BIOINFORMATICS PROJECT 3: PROTEIN STRUCTURES 114 5 PROTEIN
FUNCTION 120 5-1 MYOGLOBIN AND HEMOGLOBIN: OXYGEN-BINDING PROTEINS 121
OXYGEN BINDING TO MYOGLOBIN DEPENDS ON THE OXYGEN CONCENTRATION 122
MYOGLOBIN AND HEMOGLOBIN ARE RELATED BY EVOLUTION 123 OXYGEN BINDS
COOPERATIVELY TO HEMOGLOBIN 125 A CONFORMATIONAL SHIFT EXPLAINS
HEMOGLOBIN S COOPERATIVE BEHAVIOR 126 H IONS AND BISPHOSPHOGLYCERATE
REGULATE OXYGEN BINDING TO HEMOGLOBIN IN VIVO 127 5-2 STRUCTURAL
PROTEINS 131 MICROFILAMENTS ARE MADE OF ACTIN 131 MICROFILAMENTS
CONTINUOUSLY EXTEND AND RETRACT 132 TUBULIN FORMS HOLLOW MICROTUBULES
134 SOME DRUGS AFFECT MICROTUBULES 135 KERATIN IS AN INTERMEDIATE
FILAMENT 136 COLLAGEN IS A TRIPLE HELIX 138 COLLAGEN MOLECULES ARE
COVALENTLY CROSS-LINKED 139 5-3 MOTOR PROTEINS 141 MYOSIN HAS TWO HEADS
AND A LONG TAIL 141 MYOSIN OPERATES THROUGH A LEVER MECHANISM 143
KINESIN IS A MICROTUBULE-ASSOCIATED MOTOR PROTEIN 143 KINESIN IS A
PROCESSIVE MOTOR 147 BOX 5-A CLINICAL NOTES: HEMOGLOBIN MUTATIONS 127
BOX 5-B A CLOSER LOOK:GENETICCOLLAGEN DISEASES 141 BOX 5-C A CLOSER
LOOK: MYOSIN MUTATIONSAND DEAFNESS 145 6 HOW ENZYMES WORK 154 6-1 WHAT
IS AN ENZYME? 155 ENZYMES ARE USUALLY NAMED AFTER THE REACTION THEY
CATALYZE 157 6-2 THE CHEMISTRY OFCATALYSIS 158 A CATALYST PROVIDES A
REACTION PATHWAY WITH A LOWER ACTIVATION ENERGY BARRIER 160 ENZYMES USE
CHEMICAL CATALYTIC MECHANISMS 160 THE CATALYTIC TRIAD OFCHYMOTRYPSIN
PROMOTES PEPTIDE BOND HYDROLYSIS 164 6-3 THE UNIQUE PROPERTIES OFENZYME
CATALYSTS 167 ENZYMES STABILIZE THE TRANSITION STATE 167 EFFICIENT
CATALYSIS DEPENDS ON PROXIMITY AND ORIENTATION EFFECTS 169 THE ACTIVE
SITE MICROENVIRONMENT PROMOTES CATALYSIS 169 6-4 SOME ADDITIONAL
FEATURES OFENZYMES 170 NOT ALL SERINE PROTEASES ARE RELATED BY EVOLUTION
170 ENZYMES WITH SIMILAR MECHANISMS EXHIBIT DIFFERENT SUBSTRATE
SPECIFICITY 171 CHYMOTRYPSIN IS ACTIVATED BY PROTEOLYSIS 172 PROTEASE
INHIBITORS LIMIT PROTEASE ACTIVITY 175 BOX 6-A A CLOSER LOOK: DEPICTING
REACTION MECHANISMS 163 BOX 6-B CLINICAL NOTES: BLOOD COAGULATION
REQUIRES A CASCADE OF PROTEASES 173 7 ENZYME KINETICS AND INHIBITION 183
7-1 INTRODUCTION TO ENZYME KINETICS 184 7-2 DERIVATION AND MEANINGOFTHE
MICHAELIS-MENTEN EQUATION 185 RATE EQUATIONS DESCRIBE CHEMICAL PROCESSES
185 THE MICHAELIS-MENTEN EQUATION IS A RATE EQUATION FOR AN
ENZYME-CATALYZED REACTION 186 KYI IS THE SUBSTRATE CONCENTRATION AT
WHICH VELOCITY IS HALF-MAXIMAL 189 THE CATALYTIC CONSTANT DESCRIBESHOW
QUICKLY AN ENZYME CAN ACT 190 KAJK^ INDICATES CATALYTIC EFFICIENCY 190
KM AND VMAX ARE EXPERIMENTALLY DETERMINED 191 NOT ALL ENZYMES FIT THE
SIMPLE MICHAELIS-MENTEN MODEL 192 7-3 ENZYME INHIBITION 195 SOME
INHIBITORS ACT IRREVERSIBLY 195 COMPETITIVE INHIBITION IS THE MOSTCOMMON
FORM OF REVERSIBLE ENZYME INHIBITION 197 TRANSITION STATE ANALOGS
INHIBIT ENZYMES 199 OTHER TYPES OFINHIBITORS AFFECT VMGX 203 ALLOSTERIC
ENZYME REGULATION INCLUDES INHIBITION AND ACTIVATION 205 SEVERAL FACTORS
MAY INFLUENCE ENZYME ACTIVITY 207 BOX 7-A A CLOSER LOOK: DRUG
DEVELOPMENT 195 BOX 7-BA CLOSER LOOK: INHIBITORS OFHIV ENZYMES 201 XII I
CONTENTS 8 LIPIDS AND MEMBRANES 215 8-1 LIPIDS 216 FATTY ACIDS CONTAIN
LONG HYDROCARBON CHAINS 216 SOME LIPIDS CONTAIN POLAR HEAD GROUPS 218
LIPIDS PERFORM A VARIETY OFPHYSIOLOGICAL FUNCTIONS 219 8-2 THE LIPID
BILAYER 222 THE BILAYER IS A FLUID STRUCTURE 223 NATURAL BILAYERS ARE
ASYMMETRIC 225 8-3 MEMBRANE PROTEINS 226 INTEGRAL MEMBRANE PROTEINS SPAN
THE BILAYER 226 AN A HELIX CAN CROSS THE BILAYER 226 A TRANSMEMBRANE P
SHEETFORMS A BARREL 227 LIPID-LINKED PROTEINS ARE ANCHORED IN THE
MEMBRANE 228 8-4 THE FLUID MOSAICMODEL 229 MEMBRANE GLYCOPROTEINS FACE
THE CELL EXTERIOR 230 BOX 8-AA CLOSER LOOK: THE LIPID VITAMINS A, D, E,
AND K 221 BOX 8-B A CLOSER LOOK: LIPOSOMESAS DRUG-DELIVERY VEHICLES 223
9 MEMBRANE TRANSPORT 235 9-1 THETHERMODYNAMICS OFMEMBRANETRANSPORT 236
ION MOVEMENTS ALTERMEMBRANE POTENTIAL 236 TRANSPORTERS MEDIATE
TRANSMEMBRANE ION MOVEMENT 239 9-2 PASSIVETRANSPORT 240 PORINS ARE B
BARREL PROTEINS 240 ION CHANNELS ARE HIGHLY SELECTIVE 241 GATED CHANNELS
UNDERGO CONFORMATIONAL CHANGES 243 SOME TRANSPORT PROTEINS ALTERNATE
BETWEEN CONFORMATIONS 244 9-3 ACTIVETRANSPORT 245 THE NA,K-ATPASE
CHANGES CONFORMATION AS ITPUMPS IONS ACROSS THE MEMBRANE 245 ABC
TRANSPORTERS MEDIATE DRUG RESISTANCE 247 SECONDARY ACTIVE TRANSPORT
EXPLOITS EXISTING GRADIENTS 247 9-4 MEMBRANE FUSION 248 SNARES LINK
VESICLE AND PLASMA MEMBRANES 249 MEMBRANE FUSION REQUIRES CHANGES IN
BILAYER CURVATURE 251 BOX 9-AA CLOSER LOOK: AQUAPORINS ARE
WATER-SPECIFIC PORES 242 BOX 9-BA CLOSER LOOK: SOME DRUGS INTERFEREWITH
NEURONAL SIGNALING 250 10 SIGNALING 257 10-1 GENERAL FEATURES
OFSIGNALING PATHWAYS 258 A LIGAND BINDS TO A RECEPTOR WITH A
CHARACTERISTIC AFFINITY 258 MOST SIGNALING OCCURS THROUGH TWO TYPES OF
RECEPTORS 260 THE EFFECTS OFSIGNALING ARE LIMITED 261 10-2 G PROTEIN
SIGNALING PATHWAYS 262 G PROTEIN*COUPLED RECEPTORS INCLUDE SEVEN
TRANSMEMBRANE HELICES 262 THE RECEPTOR ACTIVATES AG PROTEIN 263
ADENYLATE CYCLASE GENERATES THE SECOND MESSENGER CYCLIC AMP 264
CYCLICAMP ACTIVATES PROTEIN KINASEA 264 SIGNALING PATHWAYS ARE ALSO
SWITCHED OFF 266 THE PHOSPHOINOSITIDE SIGNALING PATHWAY GENERATES TWO
SECOND MESSENGERS 267 CALMODULIN MEDIATES SOME CA + SIGNALS 268 10-3
RECEPTORTYROSINE KINASES 268 THE INSULIN RECEPTOR HAS TWO LIGAND-BINDING
SITES 268 THE RECEPTOR UNDERGOES AUTOPHOSPHORYLATION 269 10-4
LIPIDHORMONE SIGNALING 272 EICOSANOIDS ARE SHORT-RANGE SIGNALS 273 BOX
10-AA CLOSER LOOK: BACTERIAL QUORUM SENSING 259 BOX 10-B A CLOSER LOOK:
CELL SIGNALING AND CANCER 271 BOX 10-C A CLOSER LOOK: ASPIRIN AND OTHER
INHIBITORS OFCYCLOOXYGENASE 274 11 CARBOHYDRATES 279 11-1
MONOSACCHARIDES 280 MOST CARBOHYDRATES ARE CHIRAL COMPOUNDS 280
CYCLIZATION GENERATES A AND B ANOMERS 281 MONOSACCHARIDES CAN BE
DERIVATIZED IN MANY DIFFERENT WAYS 282 11-2 POLYSACCHARIDES 284 LACTOSE
AND SUCROSE ARE THE MOSTCOMMON DISACCHARIDES 284 STARCH AND GLYCOGEN ARE
FUEL-STORAGE MOLECULES 285 CELLULOSE AND CHITIN PROVIDE STRUCTURAL
SUPPORT 286 BACTERIAL POLYSACCHARIDES FORM A BIOFILM 288 11-3
GLYCOPROTEINS 288 A^-LINKED OLIGOSACCHARIDES UNDERGO PROCESSING 288
O-LINKED OLIGOSACCHARIDES TEND TO BE LARGE 289 WHAT IS THE PURPOSE OF
THE OLIGOSACCHARIDE GROUPS? 289 PROTEOGLYCANS CONTAIN LONG
GLYCOSAMINOGLYCAN CHAINS 290 BACTERIAL CELL WALLS ARE MADE
OFPEPTIDOGLYCAN 292 BOX 11-A A CLOSER LOOK: PLANT POLYSACCHARIDES 287
BOX 11-B A CLOSER LOOK: THEABO BLOOD GROUP SYSTEM 291 CONTENTS I XIII
PART TWO METABOLIC REACTIONS 12 OVERVIEW OF METABOLISM AND FREE ENERGY
296 12-1 FOOD AND FUEL 297 CELLS TAKE UP THE PRODUCTS OFDIGESTION 297
MONOMERS ARE STORED AS POLYMERS 299 FUELS ARE MOBILIZED AS NEEDED 300
12-2 METABOLICPATHWAYS 302 SOME MAJOR METABOLIC PATHWAYS SHARE A
FEWCOMMON INTERMEDIATES 302 MANY METABOLIC PATHWAYS INCLUDE
OXIDATION-REDUCTION REACTIONS 304 METABOLIC PATHWAYS ARE COMPLEX 306
HUMAN METABOLISM DEPENDS ON VITAMINS 308 12-3 FREE ENERGYCHANGES IN
METABOLIC REACTIONS 311 THE FREE ENERGY CHANGE DEPENDS ON REACTANT
CONCENTRATIONS 311 UNFAVORABLE REACTIONS ARE COUPLED TO FAVORABLE
REACTIONS 313 WHAT S SO SPECIAL ABOUTATP? 314 FREE ENERGY CAN TAKE
DIFFERENT FORMS 315 REGULATION OCCURS AT THE STEPS WITH THE LARGEST FREE
ENERGY CHANGES 317 BOX 12-A A CLOSER LOOK: THEMETABOLOME REVEALS A
CELL S METABOLIC ACTIVITY 308 BOX 12-BA CLOSER LOOK: POWERINGHUMAN
MUSCLES 316 BIOINFORMATICS PROJECT 4: METABOLIC PATHWAYS 319 13 GLUCOSE
METABOLISM 324 13-1 GLYCOLYSIS 326 REACTIONS 1*5 ARE THE
ENERGY-INVESTMENT PHASE OF GLYCOLYSIS 328 REACTIONS 6*10 ARE THE
ENERGY-PAYOFFPHASE OF GLYCOLYSIS 332 PYRUVATE IS CONVERTED TO OTHER
SUBSTANCES 337 13-2 GLUCONEOGENESIS 341 FOUR GLUCONEOGENIC ENZYMES PLUS
SOME GLYCOLYTIC ENZYMES CONVERT PYRUVATE TO GLUCOSE 342 GLUCONEOGENESIS
IS REGULATED AT THE FRUCTOSE BISPHOSPHATASE STEP 343 13-3 GLYCOGEN
SYNTHESISAND DEGRADATION 344 GLYCOGEN SYNTHESIS CONSUMES THE FREE ENERGY
OFUTP 345 GLYCOGEN PHOSPHORYLASE CATALYZES GLYCOGENOLYSIS 347 13-4 THE
PENTOSE PHOSPHATE PATHWAY 348 THE OXIDATIVE REACTIONS OFTHE PENTOSE
PHOSPHATE PATHWAY PRODUCENADPH 349 ISOMERIZATION AND INTERCONVERSION
REACTIONS GENERATE A VARIETY OFMONOSACCHARIDES 350 ASUMMARY OFGLUCOSE
METABOLISM 352 BOX 13-AACLOSER LOOK: CATABOLISM OFOTHERSUGARS 337 BOX
13-BA CLOSER LOOK: ALCOHOL METABOLISM 339 BOX 13-CA CLOSER LOOK:THE
SYNTHESIS OFOTHER SACCHARIDES 346 BOX 13-D CLINICAL NOTES:GLYCOGEN
STORAGE DISEASES 347 14 THE CITRIC ACID CYCLE 359 14-1 THE PYRUVATE
DEHYDROGENASE REACTION 360 THE PYRUVATE DEHYDROGENASE COMPLEX CONTAINS
MULTIPLE COPIES OFTHREE DIFFERENT ENZYMES 361 PYRUVATE DEHYDROGENASE
CONVERTS PYRUVATE TO ACETYL-COA 361 14-2 THE EIGHT REACTIONSOFTHE
CITRICACID CYCLE 364 1. CITRATE SYNTHASE ADDS AN ACETYL GROUP TO
OXALOACETATE 364 2. ACONITASE ISOMERIZES CITRATE TO ISOCITRATE 366 3.
ISOCITRATE DEHYDROGENASE RELEASES THE FIRST C02 366 4. A-KETOGLUTARATE
DEHYDROGENASE RELEASES THE SECOND C02 367 5. SUCCINYL-COA SYNTHETASE
CATALYZES SUBSTRATE-LEVEL PHOSPHORYLATION 369 6. SUCCINATE DEHYDROGENASE
GENERATES UBIQUINOL 371 7. FUMARASE CATALYZES A HYDRATION REACTION 371
8. MALATE DEHYDROGENASE REGENERATES OXALOACETATE 371 THE CITRIC ACID
CYCLE IS AN ENERGY-GENERATING CATALYTIC CYCLE 372 THE CITRIC ACID CYCLE
IS REGULATED AT THREE STEPS 372 THE CITRIC ACID CYCLE PROBABLY EVOLVED
AS A SYNTHETIC PATHWAY 373 14-3 ANABOLICAND CATABOLIC FUNCTIONS OFTHE
CITRIC ACID CYCLE 374 CITRIC ACID CYCLE INTERMEDIATES ARE PRECURSORS
OFOTHER MOLECULES 374 ANAPLEROTIC REACTIONS REPLENISH CITRIC ACID CYCLE
INTERMEDIATES 377 BOX 14-AA CLOSER LOOK:ASYMMETRY IN THE CITRIC ACID
CYCLE 368 BOX 14-BA CLOSER LOOK:THE GLYOXYLATEPATHWAY 376 15 OXIDATIVE
PHOSPHORYLATION 384 15-1 THETHERMODYNAMICS OFOXIDATION-REDUCTION
REACTIONS 385 REDUCTION POTENTIAL INDICATES A SUBSTANCE S TENDENCY TO
ACCEPT ELECTRONS 386 THE FREE ENERGY CHANGE CAN BE CALCULATED FROM THE
CHANGE IN REDUCTION POTENTIAL 387 15-2 MITOCHONDRIAL ELECTRON TRANSPORT
389 MITOCHONDRIALMEMBRANES DEFINE TWO COMPARTMENTS 389 COMPLEX I
TRANSFERS ELECTRONS FROMNADH TO UBIQUINONE 391 OTHER OXIDATION REACTIONS
CONTRIBUTE TO THE UBIQUINOL POOL 393 XIV I CONTENTS COMPLEX III
TRANSFERS ELECTRONS FROM UBIQUINOL TO CYTOCHROME C 394 COMPLEXIV
OXIDIZES CYTOCHROME CAND REDUCES 02 396 15-3 CHEMIOSMOSIS 398
CHEMIOSMOSIS LINKS ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION 398
THE PROTON GRADIENT IS AN ELECTROCHEMICAL GRADIENT 398 15-4 ATPSYNTHASE
400 ATP SYNTHASE ROTATES AS IT TRANSLOCATES PROTONS 400 THE BINDING
CHANGE MECHANISM EXPLAINS HOW ATP IS MADE 401 THE P:0 RATIO DESCRIBES
THE STOICHIOMETRY OFOXIDATIVE PHOSPHORYLATION 402 THE RATE OFOXIDATIVE
PHOSPHORYLATION DEPENDS ON THE RATE OFFUEL CATABOLISM 402 BOX 15-AA
CLOSER LOOK: UNCOUPLINGAGENTS PREVENT ATP SYNTHESIS 403 16
PHOTOSYNTHESIS 409 16-1 CHLOROPLASTS AND SOLAR ENERGY 410 PIGMENTS
ABSORB LIGHT OFDIFFERENT WAVELENGTHS 411 LIGHT-HARVESTING COMPLEXES
TRANSFER ENERGY TO THE REACTION CENTER 413 16-2 THE LIGHT REACTIONS 414
PHOTOSYSTEM II IS A LIGHT-ACTIVATED OXIDATION-REDUCTION ENZYME 415 THE
OXYGEN-EVOLVING COMPLEX OFPHOTOSYSTEM II OXIDIZES WATER 416 CYTOCHROME
B$F LINKS PHOTOSYSTEMS I AND II 417 A SECOND PHOTOOXIDATION OCCURS AT
PHOTOSYSTEM I 418 CHEMIOSMOSIS PROVIDES THE FREE ENERGY FORATP SYNTHESIS
421 16-3 CARBON FIXATION 422 RUBISCO CATALYZES C02 FIXATION 422 THE
CALVIN CYCLE REARRANGES SUGAR MOLECULES 424 THE AVAILABILITY OFLIGHT
REGULATES CARBON FIXATION 427 CALVIN CYCLE PRODUCTS ARE USED TO
SYNTHESIZE SUCROSE AND STARCH 427 BOX 16-AA CLOSER LOOK:THE C4 PATHWAY
425 17 LIPID METABOLISM 433 17-1 FATTY ACID OXIDATION 436 FATTY ACIDS
ARE ACTIVATED BEFORE THEY ARE DEGRADED 436 EACH ROUND OF (3 OXIDATION
HAS FOUR REACTIONS 437 DEGRADATION OFUNSATURATED FATTY ACIDS REQUIRES
ISOMERIZATION AND REDUCTION 440 OXIDATION OFODD-CHAIN FATTY ACIDS YIELDS
PROPIONYL-COA 441 SOME FATTY ACID OXIDATION OCCURS IN PEROXISOMES 443
17-2 FATTYACID SYNTHESIS 445 ACETYL-COA CARBOXYLASE CATALYZES THE FIRST
STEP OFFATTY ACID SYNTHESIS 445 FATTY ACID SYNTHASE CATALYZES SEVEN
REACTIONS 446 OTHER ENZYMES ELONGATE AND DESATURATE NEWLY SYNTHESIZED
FATTY ACIDS 449 FATTY ACID SYNTHESIS CAN BE ACTIVATED AND INHIBITED 450
ACETYL-COA CAN BE CONVERTED TO KETONE BODIES 452 17-3 SYNTHESIS OFOTHER
LIPIDS 454 TRIACYLGLYCEROLS AND PHOSPHOLIPIDS ARE BUILT FROM ACYL-COA
GROUPS 454 CHOLESTEROL SYNTHESIS BEGINS WITH ACETYL-COA 457 CHOLESTEROL
CAN BE USED IN SEVERAL WAYS 457 ASUMMARY OF LIPID METABOLISM 460 BOX
17-A A CLOSER LOOK: FATS, DIET, AND HEART DISEASE 450 BOX 17-B A CLOSER
LOOK: TRICLOSAN, AN INHIBITOROF FATTY ACID SYNTHESIS 451 18 NITROGEN
METABOLISM 466 18-1 NITROGEN FIXATION AND ASSIMILATION 467 NITROGENASE
CONVERTS N2 TO NH3 467 AMMONIA IS ASSIMILATED BY GLUTAMINE SYNTHETASE
AND GLUTAMATE SYNTHASE 467 TRANSAMINATION MOVES AMINO GROUPS BETWEEN
COMPOUNDS 469 18-2 AMINO ACID BIOSYNTHESIS 471 SEVERAL AMINO ACIDS ARE
EASILY SYNTHESIZED FROM COMMON METABOLITES 471 AMINO ACIDS WITH SULFUR,
BRANCHED CHAINS, OR AROMATIC GROUPS ARE MORE DIFFICULT TO SYNTHESIZE 473
AMINO ACIDS ARE THE PRECURSORS OFSOME SIGNALING MOLECULES 477 18-3
NUCLEOTIDE BIOSYNTHESIS 480 PURINE NUCLEOTIDE SYNTHESIS YIELDS IMP AND
THENAMP ANDGMP 480 PYRIMIDINE NUCLEOTIDE SYNTHESIS YIELDSUTP ANDCTP 481
RIBONUCLEOTIDE REDUCTASE CONVERTS RIBONUCLEOTIDES TO
DEOXYRIBONUCLEOTIDES 482 THYMIDINE NUCLEOTIDES ARE PRODUCED BY
METHYLATION 483 NUCLEOTIDE DEGRADATION PRODUCES URIC ACID OR AMINO ACIDS
485 18-4 AMINO ACID CATABOLISM 486 AMINO ACIDS ARE GLUCOGENIC,
KETOGENIC, OR BOTH 487 18-5 NITROGEN DISPOSAL:THE UREA CYCLE 490
GLUTAMATE SUPPLIES NITROGEN TO THE UREA CYCLE 491 THE UREA CYCLE
CONSISTS OFFOUR REACTIONS 492 BOX 18-AA CLOSER LOOK: NITRIC OXIDE 479
BOX 18-BA CLOSER LOOK: INBORN ERRORS OFMETABOLISM 490 19 REGULATION OF
MAMMALIAN FUEL METABOLISM 500 19-1 INTEGRATION OF FUEL METABOLISM 501
ORGANS ARE SPECIALIZED FOR DIFFERENT FUNCTIONS 501 METABOLITES TRAVEL
BETWEEN ORGANS 503 19-2 HORMONAL CONTROL OF FUEL METABOLISM 505 INSULIN
IS RELEASED IN RESPONSE TO GLUCOSE 505 INSULIN PROMOTES FUEL USE AND
STORAGE 506 CONTENTS I XV GLUCAGONAND EPINEPHRINE TRIGGER FUEL
MOBILIZATION 508 ADDITIONAL HORMONES AFFECT FUEL METABOLISM 509
AMP-DEPENDENT PROTEIN KINASE ACTS AS A FUEL SENSOR 509 19-3 DISORDERS OF
FUEL METABOLISM 510 THE BODY GENERATES GLUCOSEAND KETONE BODIES DURING
STARVATION 510 20 DNA REPLICATION AND REPAIR 520 20-1 DNASUPERCOIIING
521 TOPOISOMERASES ALTERDNA SUPERCOILING 522 20-2 THEDNA REPLICATION
MACHINERY 524 REPLICATION OCCURS IN FACTORIES 524 HELICASES CONVERT
DOUBLE-STRANDEDDNA TO SINGLE- STRANDEDDNA 525 DNA POLYMERASE FACES TWO
PROBLEMS 526 DNA POLYMERASES SHARE ACOMMON STRUCTURE AND MECHANISM 528
DNA POLYMERASE PROOFREADS NEWLY SYNTHESIZED DNA 530 AN RNASE AND A
LIGASE ARE REQUIRED TO COMPLETE THE LAGGING STRAND 531 20-3 TELOMERES
533 TELOMERASE EXTENDS CHROMOSOMES 533 IS TELOMERASE ACTIVITY LINKED TO
CELL IMMORTALITY? 535 20-4 DNA DAMAGE AND REPAIR 536 DNA DAMAGE IS
UNAVOIDABLE 539 REPAIRENZYMES RESTORESOME TYPES OFDAMAGEDDNA 540 BASE
EXCISION REPAIR CORRECTS THE MOST FREQUENT DNA LESIONS 541 NUCLEOTIDE
EXCISION REPAIR TARGETS THE SECOND MOST COMMON FORM OFDNA DAMAGE 543
DOUBLE-STRAND BREAKS CANBE REPAIREDBYJOININGTHEENDS 543 RECOMBINATION
ALSO RESTORES BROKENDNAMOLECULES 544 20-5 DNA PACKAGING 546 THE
FUNDAMENTAL UNIT OFDNA PACKAGING IS THE NUCLEOSOME 546 HISTONES ARE
COVALENTLY MODIFIED 547 DNA ALSO UNDERGOES COVALENT MODIFICATION 548 BOX
20-A A CLOSER LOOK: HIVAND REVERSE TRANSCRIPTASE 534 BOX 20-B CLINICAL
NOTES: CANCER IS A GENETIC DISEASE 536 21 TRANSCRIPTION AND RNA 555 21-1
TRANSCRIPTION INITIATION 557 CHROMATIN REMODELINGMAY PRECEDE
TRANSCRIPTION 557 TRANSCRIPTION BEGINS AT PROMOTERS 559 TRANSCRIPTION
FACTORS RECOGNIZE EUKARYOTIC PROMOTERS 560 ENHANCERS AND SILENCERS ACT
AT A DISTANCE FROM THE PROMOTER 561 PROKARYOTIC OPERONS ALLOW
COORDINATED GENE EXPRESSION 564 OBESITY HAS MULTIPLE CAUSES 511 DIABETES
IS CHARACTERIZED BY HYPERGLYCEMIA 512 THE METABOLIC SYNDROME LINKS
OBESITY AND DIABETES 513 BOX 19-AA CLOSER LOOK:THE INTESTINAL MICROBIOME
CONTRIBUTES TOMETABOLISM 503 21-2 RNA POLYMERASE 566 RNA POLYMERASE IS A
PROCESSIVE ENZYME 568 TRANSCRIPTION ELONGATION REQUIRES A CONFORMATIONAL
CHANGE INRNA POLYMERASE 568 TRANSCRIPTION IS TERMINATED IN SEVERALWAYS
570 21-3 RNA PROCESSING 571 EUKARYOTICMRNAS RECEIVE A 5 CAP AND A 3
POLY(A) TAIL 571 SPLICING REMOVES INTRONS FROM EUKARYOTIC GENES 572 MRNA
TURNOVER ANDRNA INTERFERENCE LIMIT GENE EXPRESSION 575 RRNAANDTRNA
PROCESSING INCLUDES THE ADDITION, DELETION, AND MODIFICATION
OFNUCLEOTIDES 577 BOX 21-AA CLOSER LOOK: DNA-BINDING PROTEINS 563 BOX
21-BACLOSER LOOK: RNA:AVERSATILEMOLECULE 578 22 PROTEIN SYNTHESIS 585
22-1 TRNAAMINOACYLATION 587 TRNA AMINOACYLATION CONSUMESATP 587 SOME
SYNTHETASES HAVE PROOFREADING ACTIVITY 590 TRNA ANTICODONS PAIR WITHMRNA
CODONS 590 22-2 RIBOSOME STRUCTURE 591 22-3 TRANSLATION 594 INITIATION
REQUIRES AN INITIATORTRNA 594 THE APPROPRIATE TRNAS ARE DELIVERED TO THE
RIBOSOME DURING ELONGATION 596 THE PEPTIDYL TRANSFERASE ACTIVE SITE
CATALYZES PEPTIDE BOND FORMATION 598 RELEASE FACTORS MEDIATE TRANSLATION
TERMINATION 600 TRANSLATION IS EFFICIENT IN VIVO 602 22-4
POST-TRANSLATIONAL EVENTS 603 CHAPERONES PROMOTE PROTEIN FOLDING 603 THE
SIGNAL RECOGNITION PARTICLE TARGETS SOME PROTEINS FOR MEMBRANE
TRANSLOCATION 605 MANY PROTEINS UNDERGO COVALENT MODIFICATION 608 BOX
22-A A CLOSER LOOK: THE GENETIC CODE EXPANDED 591 BOX 22-B A CLOSER
LOOK: ANTIBIOTIC INHIBITORS OFPROTEIN SYNTHESIS 599 GLOSSARY 615
SOLUTIONS 629 INDEX 683 PART THREE MANAGEMENTOF GENETIC INFORMATION XVI
I CONTENTS
|
any_adam_object | 1 |
author | Pratt, Charlotte W. Cornely, Kathleen |
author_GND | (DE-588)124312233 |
author_facet | Pratt, Charlotte W. Cornely, Kathleen |
author_role | aut aut |
author_sort | Pratt, Charlotte W. |
author_variant | c w p cw cwp k c kc |
building | Verbundindex |
bvnumber | BV036439123 |
classification_rvk | WD 4010 |
classification_tum | CHE 800f |
ctrlnum | (OCoLC)699646615 (DE-599)BVBBV036439123 |
discipline | Biologie Chemie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01408nam a2200385 c 4500</leader><controlfield tag="001">BV036439123</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110512 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100505s2011 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780470504772</subfield><subfield code="9">978-0-470-50477-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699646615</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036439123</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 4010</subfield><subfield code="0">(DE-625)148176:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 800f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pratt, Charlotte W.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124312233</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Essential biochemistry</subfield><subfield code="c">Charlotte W. Pratt ; Kathleen Cornely</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 704 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">biochemistry</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biochemie</subfield><subfield code="0">(DE-588)4006777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biochemie</subfield><subfield code="0">(DE-588)4006777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cornely, Kathleen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020311507&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020311507</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV036439123 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:39:26Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020311507 |
oclc_num | 699646615 |
open_access_boolean | |
owner | DE-11 DE-29T DE-188 DE-19 DE-BY-UBM |
owner_facet | DE-11 DE-29T DE-188 DE-19 DE-BY-UBM |
physical | XXVII, 704 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley |
record_format | marc |
spelling | Pratt, Charlotte W. Verfasser (DE-588)124312233 aut Essential biochemistry Charlotte W. Pratt ; Kathleen Cornely 2. ed. Hoboken, NJ Wiley 2011 XXVII, 704 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier biochemistry cabt Biochemie (DE-588)4006777-4 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Biochemie (DE-588)4006777-4 s DE-604 Cornely, Kathleen Verfasser aut OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020311507&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pratt, Charlotte W. Cornely, Kathleen Essential biochemistry biochemistry cabt Biochemie (DE-588)4006777-4 gnd |
subject_GND | (DE-588)4006777-4 (DE-588)4123623-3 |
title | Essential biochemistry |
title_auth | Essential biochemistry |
title_exact_search | Essential biochemistry |
title_full | Essential biochemistry Charlotte W. Pratt ; Kathleen Cornely |
title_fullStr | Essential biochemistry Charlotte W. Pratt ; Kathleen Cornely |
title_full_unstemmed | Essential biochemistry Charlotte W. Pratt ; Kathleen Cornely |
title_short | Essential biochemistry |
title_sort | essential biochemistry |
topic | biochemistry cabt Biochemie (DE-588)4006777-4 gnd |
topic_facet | biochemistry Biochemie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020311507&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT prattcharlottew essentialbiochemistry AT cornelykathleen essentialbiochemistry |