Optimization of power system operation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley [u.a.]
2009
|
Schriftenreihe: | IEEE Press series on power engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 603 S. graph. Darst. |
ISBN: | 9780470298886 047029888X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036343276 | ||
003 | DE-604 | ||
005 | 20110617 | ||
007 | t | ||
008 | 100423s2009 d||| |||| 00||| eng d | ||
020 | |a 9780470298886 |9 978-0-470-29888-6 | ||
020 | |a 047029888X |9 0-470-29888-X | ||
024 | 3 | |a 9780470298886 | |
035 | |a (OCoLC)699274029 | ||
035 | |a (DE-599)BSZ311272967 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 621.31015196 | |
084 | |a ZN 8510 |0 (DE-625)157629: |2 rvk | ||
100 | 1 | |a Zhu, Jizhong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimization of power system operation |c Jizhong Zhu |
264 | 1 | |a Hoboken, NJ |b Wiley [u.a.] |c 2009 | |
300 | |a XVIII, 603 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a IEEE Press series on power engineering | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Electric power systems / Mathematical models | |
650 | 4 | |a Mathematical optimization | |
650 | 0 | 7 | |a Elektrisches Energiesystem |0 (DE-588)4134933-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrisches Energiesystem |0 (DE-588)4134933-7 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020217688&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020217688 |
Datensatz im Suchindex
_version_ | 1804142810852491264 |
---|---|
adam_text | OPTIMIZATION OF POWER SYSTEM OPERATION JIZHONG ZHU, PH.D PRINCIPAL
ENGINEER, AREVA T&D INC. REDMOND, WA, USA ADVISORY PROFESSOR, CHONGQING
UNIVERSITY, CHONGQING, CHINA IEEE ; PRESS SERIES * 0N POWER ENGINEERING
MOHAMED E. EL-HAWARY, SERIES EDITOR CELEBRATING 125 YEARS OF ENGINEERING
THE FUTURE WILEY A JOHN WILEY & SONS, INC., PUBLICATION TABLE OF
CONTENTS PREFACE XVII 1 INTRODUCTION 1 1.1 CONVENTIONAL METHODS / 2
1.1.1 UNCONSTRAINED OPTIMIZATION APPROACHES / 2 1.1.2 LINEAR PROGRAMMING
/ 3 1.1.3 NONLINEAR PROGRAMMING / 3 1.1.4 QUADRATIC PROGRAMMING / 3
1.1.5 NEWTON S METHOD / 4 1.1.6 INTERIOR POINT METHODS / 4 1.1.7
MIXED-INTEGER PROGRAMMING / 4 1.1.8 NETWORK FLOW PROGRAMMING / 5 1.2
INTELLIGENT SEARCH METHODS / 5 1.2.1 OPTIMIZATION NEURAL NETWORK / 5
1.2.2 EVOLUTIONARY ALGORITHMS / 5 1.2.3 TABU SEARCH / 6 1.2.4 PARTICLE
SWARM OPTIMIZATION / 6 1.3 APPLICATION OF FUZZY SET THEORY / 6
REFERENCES / 7 2 POWER FLOW ANALYSIS 2.1 MATHEMATICAL MODEL OF POWER
FLOW / 9 2.2 NEWTON-RAPHSON METHOD / 12 2.2.1 PRINCIPLE OF
NEWTON-RAPHSON METHOD / 12 2.2.2 POWER FLOW SOLUTION WITH POLAR
COORDINATE SYSTEM / 14 2.2.3 POWER FLOW SOLUTION WITH RECTANGULAR
COORDINATE SYSTEM / 19 2.3 GAUSS-SEIDEL METHOD / 27 2.4 P-Q DECOUPLING
METHOD / 29 VII VUEI TABLE OF CONTENTS 2.4.1 FAST DECOUPLED POWER FLOW /
29 2.4.2 DECOUPLED POWER FLOW WITHOUT MAJOR APPROXIMATION / 37 2.5 DC
POWER FLOW / 39 REFERENCES / 41 3 SENSITIVITY CALCULATION 43 3.1
INTRODUCTION / 43 3.2 LOSS SENSITIVITY CALCULATION / 45 3.3 CALCULATION
OF CONSTRAINED SHIFT SENSITIVITY FACTORS / 49 3.3.1 DEFINITION OF
CONSTRAINT SHIFT FACTORS / 49 3.3.2 COMPUTATION OF CONSTRAINT SHIFT
FACTORS / 51 3.3.3 CONSTRAINT SHIFT FACTORS WITH DIFFERENT REFERENCES /
59 3.3.4 SENSITIVITIES FOR THE TRANSFER PATH / 60 3.4 PERTURBATION
METHOD FOR SENSITIVITY ANALYSIS / 62 3.4.1 LOSS SENSITIVITY / 62 3.4.2
GENERATOR SHIFT FACTOR SENSITIVITY / 62 3.4.3 SHIFT FACTOR SENSITIVITY
FOR THE PHASE SHIFTER / 63 3.4.4 LINE OUTAGE DISTRIBUTION FACTOR / 63
3.4.5 OUTAGE TRANSFER DISTRIBUTION FACTOR / 64 3.5 VOLTAGE SENSITIVITY
ANALYSIS / 65 3.6 REAL-TIME APPLICATION OF SENSITIVITY FACTORS / 67 3.7
SIMULATION RESULTS / 68 3.7.1 SAMPLE COMPUTATION FOR LOSS SENSITIVITY
FACTORS / 68 3.7.2 SAMPLE COMPUTATION FOR CONSTRAINED SHIFT FACTORS / 77
3.7.3 SAMPLE COMPUTATION FOR VOLTAGE SENSITIVITY ANALYSIS / 80 3.8
CONCLUSION / 80 REFERENCES / 83 4 CLASSIC ECONOMIC DISPATCH 85 4.1
INTRODUCTION / 85 4.2 INPUT-OUTPUT CHARACTERISTIC OF GENERATOR UNITS /
85 4.2.1 INPUT-OUTPUT CHARACTERISTIC OF THERMAL UNITS / 85 4.2.2
CALCULATION OF INPUT-OUTPUT CHARACTERISTIC PARAMETERS / 87 4.2.3
INPUT-OUTPUT CHARACTERISTIC OF HYDROELECTRIC UNITS / 90 TABLE OF
CONTENTS JX 4.3 THERMAL SYSTEM ECONOMIC DISPATCH NEGLECTING NETWORK
LOSSES / 91 4.3.1 PRINCIPLE OF EQUAL INCREMENTAL RATE / 91 4.3.2
ECONOMIC DISPATCH WITHOUT NETWORK LOSSES / 94 4.4 CALCULATION OF
INCREMENTAL POWER LOSSES / 100 4.5 THERMAL SYSTEM ECONOMIC DISPATCH WITH
NETWORK LOSSES / 103 4.6 HYDROTHERMAL SYSTEM ECONOMIC DISPATCH / 104
4.6.1 NEGLECT NETWORK LOSSES / 104 4.6.2 CONSIDER NETWORK LOSSES / 110
4.7 ECONOMIC DISPATCH BY GRADIENT METHOD /112 4.7.1 INTRODUCTION / 112
4.7.2 GRADIENT SEARCH IN ECONOMIC DISPATCH / 112 4.8 CLASSIC ECONOMIC
DISPATCH BY GENETIC ALGORITHM / 120 4.8.1 INTRODUCTION / 120 4.8.2
GA-BASED ED SOLUTION / 121 4.9 CLASSIC ECONOMIC DISPATCH BY HOPFIELD
NEURAL NETWORK / 124 4.9.1 HOPFIELD NEURAL NETWORK MODEL / 124 4.9.2
MAPPING OF ECONOMIC DISPATCH TO HNN / 126 4.9.3 SIMULATION RESULTS / 129
APPENDIX: OPTIMIZATION METHODS USED IN ECONOMIC OPERATION / 130
REFERENCES / 139 5 SECURITY-CONSTRAINED ECONOMIC DISPATCH 141 5.1
INTRODUCTION / 141 5.2 LINEAR PROGRAMMING METHOD / 141 5.2.1
MATHEMATICAL MODEL OF ECONOMIC DISPATCH WITH SECURITY / 141 5.2.2
LINEARIZATION OF ED MODEL / 142 5.2.3 LINEAR PROGRAMMING MODEL / 146
5.2.4 IMPLEMENTATION / 146 5.2.5 PIECEWISE LINEAR APPROACH / 149 5.3
QUADRATIC PROGRAMMING METHOD / 152 5.3.1 QP MODEL OF ECONOMIC DISPATCH /
152 5.3.2 QP ALGORITHM / 153 5.3.3 IMPLEMENTATION / 156 5.4 NETWORK FLOW
PROGRAMMING METHOD / 159 5.4.1 INTRODUCTION / 159 5.4.2 OUT-OF-KILTER
ALGORITHM / 159 5.4.3 N SECURITY ECONOMIC DISPATCH MODEL / 167 5.4.4
CALCULATION OF N* 1 SECURITY CONSTRAINTS / 171 X TABLE OF CONTENTS 5.4.5
N- 1 SECURITY ECONOMIC DISPATCH / 172 5.4.6 IMPLEMENTATION / 174 5.5
NONLINEAR CONVEX NETWORK FLOW PROGRAMMING METHOD / 180 5.5.1
INTRODUCTION / 180 5.5.2 NLCNFP MODEL OF EDC / 180 5.5.3 SOLUTION METHOD
/ 185 5.5.4 IMPLEMENTATION / 191 5.6 TWO-STAGE ECONOMIC DISPATCH
APPROACH / 194 5.6.1 INTRODUCTION / 194 5.6.2 ECONOMIC POWER
DISPATCH*STAGE ONE / 194 5.6.3 ECONOMIC POWER DISPATCH*STAGE TWO / 195
5.6.4 EVALUATION OF SYSTEM TOTAL FUEL CONSUMPTION / 197 5.7
SECURITY-CONSTRAINED ED BY GENETIC ALGORITHMS / 199 APPENDIX: NETWORK
FLOW PROGRAMMING / 201 REFERENCES / 209 6 MULTIAREA SYSTEM ECONOMIC
DISPATCH 211 6.1 INTRODUCTION / 211 6.2 ECONOMY OF MULTIAREA
INTERCONNECTION / 212 6.3 WHEELING / 217 6.3.1 CONCEPT OF WHEELING / 217
6.3.2 COST MODELS OF WHEELING / 220 6.4 MULTIAREA WHEELING / 223 6.5
MAED SOLVED BY NONLINEAR CONVEX NETWORK FLOW PROGRAMMING / 224 6.5.1
INTRODUCTION / 224 6.5.2 NLCNFP MODEL OF MAED / 224 6.5.3 SOLUTION
METHOD / 229 6.5.4 TEST RESULTS / 230 6.6 NONLINEAR OPTIMIZATION NEURAL
NETWORK APPROACH / 233 6.6.1 INTRODUCTION / 233 6.6.2 THE PROBLEM OF
MAED / 233 6.6.3 NONLINEAR OPTIMIZATION NEURAL NETWORK ALGORITHM / 235
6.6.4 TEST RESULTS / 239 6.7 TOTAL TRANSFER CAPABILITY COMPUTATION IN
MULTIAREAS / 242 6.7.1 CONTINUATION POWER FLOW METHOD / 243 6.7.2
MULTIAREA TTC COMPUTATION / 245 APPENDIX: COMPARISON OF TWO OPTIMIZATION
NEURAL NETWORK MODELS / 246 REFERENCES / 248 TABLE OF CONTENTS XI 7 UNIT
COMMITMENT 251 7.1 INTRODUCTION / 251 7.2 PRIORITY METHOD / 252 7.3
DYNAMIC PROGRAMMING METHOD / 254 7.4 LAGRANGE RELAXATION METHOD / 258
7.5 EVOLUTIONARY PROGRAMMING-BASED TABU SEARCH METHOD / 264 7.5.1
INTRODUCTION / 264 7.5.2 TABU SEARCH METHOD / 264 7.5.3 EVOLUTIONARY
PROGRAMMING / 265 7.5.4 EP-BASED TS FOR UNIT COMMITMENT / 268 7.6
PARTICLE SWARM OPTIMIZATION FOR UNIT COMMITMENT / 268 7.6.1 ALGORITHM /
268 7.6.2 IMPLEMENTATION / 271 7.7 ANALYTIC HIERARCHY PROCESS / 273
7.7.1 EXPLANATION OF PROPOSED SCHEME / 273 7.7.2 FORMULATION OF OPTIMAL
GENERATION SCHEDULING / 275 7.7.3 APPLICATION OF AHP TO UNIT COMMITMENT
/ 278 REFERENCES / 293 8 OPTIMAL POWER FLOW 297 8.1 INTRODUCTION / 297
8.2 NEWTON METHOD / 298 8.2.1 NEGLECT LINE SECURITY CONSTRAINTS / 298
8.2.2 CONSIDER LINE SECURITY CONSTRAINTS / 304 8.3 GRADIENT METHOD / 307
8.3.1 OPF PROBLEM WITHOUT INEQUALITY CONSTRAINTS / 307 8.3.2 CONSIDER
INEQUALITY CONSTRAINTS / 311 8.4 LINEAR PROGRAMMING OPF / 313 8.5
MODIFIED INTERIOR POINT OPF / 315 8.5.1 INTRODUCTION / 315 8.5.2 OPF
FORMULATION / 316 8.5.3 IP OPF ALGORITHMS / 318 8.6 OPF WITH PHASE
SHIFTER / 330 8.6.1 PHASE SHIFTER MODEL / 331 8.6.2 RULE-BASED OPF WITH
PHASE SHIFTER SCHEME / 332 8.7 MULTIPLE-OBJECTIVES OPF / 339 8.7.1
FORMULATION OF COMBINED ACTIVE AND REACTIVE DISPATCH / 339 8.7.2
SOLUTION ALGORITHM / 345 XUE TABLE OF CONTENTS 8.8 PARTICLE SWARM
OPTIMIZATION FOR OPF / 347 8.8.1 MATHEMATICAL MODEL / 347 8.8.2 PSO
METHODS / 349 8.8.3 OPF CONSIDERING VALVE LOADING EFFECTS / 355
REFERENCES / 360 9 STEADY-STATE SECURITY REGIONS 365 9.1 INTRODUCTION /
365 9.2 SECURITY CORRIDORS / 366 9.2.1 CONCEPT OF SECURITY CORRIDOR /
366 9.2.2 CONSTRUCTION OF SECURITY CORRIDOR / 369 9.3 TRADITIONAL
EXPANSION METHOD / 372 9.3.1 POWER FLOW MODEL / 372 9.3.2 SECURITY
CONSTRAINTS / 373 9.3.3 DEFINITION OF STEADY-STATE SECURITY REGIONS /
373 9.3.4 ILLUSTRATION OF CALCULATION OF STEADY-STATE SECURITY REGION /
374 9.3.5 NUMERICAL EXAMPLES / 375 9.4 ENHANCED EXPANSION METHOD / 375
9.4.1 INTRODUCTION / 375 9.4.2 EXTENDED STEADY-STATE SECURITY REGION /
376 9.4.3 STEADY-STATE SECURITY REGIONS WITH N-L SECURITY / 378 9.4.4
CONSIDERATION OF FAILURE PROBABILITY OF BRANCH TEMPORARY OVERLOAD / 378
9.4.5 IMPLEMENTATION / 379 9.4.6 TEST RESULTS AND ANALYSIS / 381 9.5
FUZZY SET AND LINEAR PROGRAMMING / 386 9.5.1 INTRODUCTION / 386 9.5.2
STEADY-STATE SECURITY REGIONS SOLVED BY LP / 387 9.5.3 NUMERICAL
EXAMPLES / 390 APPENDIX: LINEAR PROGRAMMING / 393 REFERENCES / 405 10
REACTIVE POWER OPTIMIZATION 409 10.1 INTRODUCTION / 409 10.2 CLASSIC
METHOD FOR REACTIVE POWER DISPATCH / 410 10.2.1 REACTIVE POWER BALANCE /
410 10.2.2 REACTIVE POWER ECONOMIC DISPATCH / 411 10.3 LINEAR
PROGRAMMING METHOD OF VAR OPTIMIZATION / 415 TABLE OF CONTENTS XUEI
10.3.1 VAR OPTIMIZATION MODEL / 416 10.3.2 LINEAR PROGRAMMING METHOD
BASED ON SENSITIVITY / 418 10.4 INTERIOR POINT METHOD FOR VAR
OPTIMIZATION PROBLEM / 420 10.4.1 INTRODUCTION / 420 10.4.2 OPTIMAL VAR
CONTROL MODEL / 420 10.4.3 CALCULATION OF WEIGHTING FACTORS BY AHP / 420
10.4.4 HOMOGENEOUS SELF-DUAL INTERIOR POINT METHOD / 421 10.5 NLONN
APPROACH / 426 10.5.1 PLACEMENT OF VAR COMPENSATION / 426 10.5.2 VAR
CONTROL OPTIMIZATION / 429 10.5.3 SOLUTION METHOD / 430 10.5.4 NUMERICAL
SIMULATIONS / 431 10.6 VAR OPTIMIZATION BY EVOLUTIONARY ALGORITHM / 433
10.6.1 MATHEMATICAL MODEL / 433 10.6.2 EVOLUTIONARY ALGORITHM OF
MULTIOBJECTIVE OPTIMIZATION / 434 10.7 VAR OPTIMIZATION BY PARTICLE
SWARM OPTIMIZATION ALGORITHM / 438 10.8 REACTIVE POWER PRICING
CALCULATION / 440 10.8.1 INTRODUCTION / 440 10.8.2 REACTIVE POWER
PRICING / 442 10.8.3 MULTIAREA VAR PRICING PROBLEM / 444 REFERENCES /
452 11 OPTIMAL LOAD SHEDDING 455 11.1 INTRODUCTION / 455 11.2
CONVENTIONAL LOAD SHEDDING / 456 11.3 INTELLIGENT LOAD SHEDDING / 459
11.3.1 DESCRIPTION OF INTELLIGENT LOAD SHEDDING / 459 11.3.2 FUNCTION
BLOCK DIAGRAM OF THE ILS / 461 11.4 FORMULATION OF OPTIMAL LOAD SHEDDING
/ 461 11.4.1 OBJECTIVE FUNCTION*MAXIMIZATION OF BENEFIT FUNCTION / 462
11.4.2 CONSTRAINTS OF LOAD CURTAILMENT / 462 11.5 OPTIMAL LOAD SHEDDING
WITH NETWORK CONSTRAINTS / 463 11.5.1 CALCULATION OF WEIGHTING FACTORS
BY AHP / 463 11.5.2 NETWORK FLOW MODEL / 464 11.5.3 IMPLEMENTATION AND
SIMULATION / 465 XJV TABLE OF CONTENTS 11.6 OPTIMAL LOAD SHEDDING
WITHOUT NETWORK CONSTRAINTS / 471 11.6.1 EVERETT METHOD / 471 11.6.2
CALCULATION OF INDEPENDENT LOAD VALUES / 473 11.7 DISTRIBUTED
INTERRUPTIBLE LOAD SHEDDING / 479 11.7.1 INTRODUCTION / 479 11.7.2 DILS
METHODS / 480 11.8 UNDERVOLTAGE LOAD SHEDDING / 486 11.8.1 INTRODUCTION
/ 486 11.8.2 UNDERVOLTAGE LOAD SHEDDING USING DISTRIBUTED CONTROLLERS /
487 11.8.3 OPTIMAL LOCATION OF INSTALLING CONTROLLER / 490 11.9
CONGESTION MANAGEMENT / 492 11.9.1 INTRODUCTION / 492 11.9.2 CONGESTION
MANAGEMENT IN U.S. POWER INDUSTRY / 493 11.9.3 CONGESTION MANAGEMENT
METHOD / 495 REFERENCES / 500 12 OPTIMAL RECONFIGURATION OF ELECTRICAL
DISTRIBUTION NETWORK 503 12.1 INTRODUCTION / 503 12.2 MATHEMATICAL MODEL
OF DNRC / 505 12.3 HEURISTIC METHODS / 507 12.3.1 SIMPLE BRANCH EXCHANGE
METHOD / 507 12.3.2 OPTIMAL FLOW PATTERN / 507 12.3.3 ENHANCED OPTIMAL
FLOW PATTERN / 508 12.4 RULE-BASED COMPREHENSIVE APPROACH / 509 12.4.1
RADIAL DISTRIBUTION NETWORK LOAD FLOW / 509 12.4.2 DESCRIPTION OF
RULE-BASED COMPREHENSIVE METHOD / 510 12.4.3 NUMERICAL EXAMPLES / 511
12.5 MIXED-INTEGER LINEAR PROGRAMMING APPROACH / 513 12.5.1 SELECTION OF
CANDIDATE SUBNETWORKS / 514 12.5.2 SIMPLIFIED MATHEMATICAL MODEL / 521
12.5.3 MIXED-INTEGER LINEAR MODEL / 522 12.6 APPLICATION OF GA TO DNRC /
524 12.6.1 INTRODUCTION / 524 12.6.2 REFINED GA APPROACH TO DNRC PROBLEM
/ 526 12.6.3 NUMERICAL EXAMPLES / 528 12.7 MULTIOBJECTIVE EVOLUTION
PROGRAMMING TO DNRC / 530 12.7.1 MULTIOBJECTIVE OPTIMIZATION MODEL / 530
12.7.2 EP-BASED MULTIOBJECTIVE OPTIMIZATION APPROACH / 531 TABLE OF
CONTENTS XV 12.8 GENETIC ALGORITHM BASED ON MATROID THEORY / 535 12.8.1
NETWORK TOPOLOGY CODING METHOD / 535 12.8.2 GA WITH MATROID THEORY / 537
REFERENCES / 541 13 UNCERTAINTY ANALYSIS IN POWER SYSTEMS 545 13.1
INTRODUCTION / 545 13.2 DEFINITION OF UNCERTAINTY / 546 13.3 UNCERTAINTY
LOAD ANALYSIS / 547 13.3.1 PROBABILITY REPRESENTATION OF UNCERTAINTY
LOAD / 547 13.3.2 FUZZY SET REPRESENTATION OF UNCERTAINTY LOAD / 554
13.4 UNCERTAINTY POWER FLOW ANALYSIS / 559 13.4.1 PROBABILISTIC POWER
FLOW / 559 13.4.2 FUZZY POWER FLOW / 560 13.5 ECONOMIC DISPATCH WITH
UNCERTAINTIES / 562 13.5.1 MIN-MAX OPTIMAL METHOD / 562 13.5.2
STOCHASTIC MODEL METHOD / 564 13.5.3 FUZZY ED ALGORITHM / 566 13.6
HYDROTHERMAL SYSTEM OPERATION WITH UNCERTAINTY / 573 13.7 UNIT
COMMITMENT WITH UNCERTAINTIES / 573 13.7.1 INTRODUCTION / 573 13.7.2
CHANCE-CONSTRAINED OPTIMIZATION MODEL / 574 13.7.3 CHANCE-CONSTRAINED
OPTIMIZATION ALGORITHM / 577 13.8 VAR OPTIMIZATION WITH UNCERTAIN
REACTIVE LOAD / 579 13.8.1 LINEARIZED VAR OPTIMIZATION MODEL / 579
13.8.2 FORMULATION OF FUZZY VAR OPTIMIZATION PROBLEM / 581 13.9
PROBABILISTIC OPTIMAL POWER FLOW / 581 13.9.1 INTRODUCTION / 581 13.9.2
TWO-POINT ESTIMATE METHOD FOR OPF / 582 13.9.3 CUMULANT-BASED
PROBABILISTIC OPTIMAL POWER FLOW / 588 13.10 COMPARISON OF DETERMINISTIC
AND PROBABILISTIC METHODS / 593 REFERENCES / 594 AUTHOR BIOGRAPHY INDEX
597 599
|
any_adam_object | 1 |
author | Zhu, Jizhong |
author_facet | Zhu, Jizhong |
author_role | aut |
author_sort | Zhu, Jizhong |
author_variant | j z jz |
building | Verbundindex |
bvnumber | BV036343276 |
classification_rvk | ZN 8510 |
ctrlnum | (OCoLC)699274029 (DE-599)BSZ311272967 |
dewey-full | 621.31015196 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.31015196 |
dewey-search | 621.31015196 |
dewey-sort | 3621.31015196 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01569nam a2200421 c 4500</leader><controlfield tag="001">BV036343276</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110617 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100423s2009 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470298886</subfield><subfield code="9">978-0-470-29888-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">047029888X</subfield><subfield code="9">0-470-29888-X</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780470298886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699274029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ311272967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.31015196</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8510</subfield><subfield code="0">(DE-625)157629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Jizhong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of power system operation</subfield><subfield code="c">Jizhong Zhu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley [u.a.]</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 603 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press series on power engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric power systems / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrisches Energiesystem</subfield><subfield code="0">(DE-588)4134933-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrisches Energiesystem</subfield><subfield code="0">(DE-588)4134933-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020217688&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020217688</subfield></datafield></record></collection> |
id | DE-604.BV036343276 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:37:41Z |
institution | BVB |
isbn | 9780470298886 047029888X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020217688 |
oclc_num | 699274029 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | XVIII, 603 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley [u.a.] |
record_format | marc |
series2 | IEEE Press series on power engineering |
spelling | Zhu, Jizhong Verfasser aut Optimization of power system operation Jizhong Zhu Hoboken, NJ Wiley [u.a.] 2009 XVIII, 603 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier IEEE Press series on power engineering Mathematisches Modell Electric power systems / Mathematical models Mathematical optimization Elektrisches Energiesystem (DE-588)4134933-7 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Elektrisches Energiesystem (DE-588)4134933-7 s Optimierung (DE-588)4043664-0 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020217688&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zhu, Jizhong Optimization of power system operation Mathematisches Modell Electric power systems / Mathematical models Mathematical optimization Elektrisches Energiesystem (DE-588)4134933-7 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4134933-7 (DE-588)4043664-0 |
title | Optimization of power system operation |
title_auth | Optimization of power system operation |
title_exact_search | Optimization of power system operation |
title_full | Optimization of power system operation Jizhong Zhu |
title_fullStr | Optimization of power system operation Jizhong Zhu |
title_full_unstemmed | Optimization of power system operation Jizhong Zhu |
title_short | Optimization of power system operation |
title_sort | optimization of power system operation |
topic | Mathematisches Modell Electric power systems / Mathematical models Mathematical optimization Elektrisches Energiesystem (DE-588)4134933-7 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Mathematisches Modell Electric power systems / Mathematical models Mathematical optimization Elektrisches Energiesystem Optimierung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020217688&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhujizhong optimizationofpowersystemoperation |