Geometric analysis of hyperbolic differential equations: an introduction
"Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK [u.a.]
Cambridge Univ. Press
2010
|
Ausgabe: | 1. publ. |
Schriftenreihe: | London Mathematical Society lecture note series
374 |
Schlagworte: | |
Zusammenfassung: | "Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required"--Provided by publisher "The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hormander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hormander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher |
Beschreibung: | IX, 118 S. |
ISBN: | 9780521128223 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV036097680 | ||
003 | DE-604 | ||
005 | 20100713 | ||
007 | t | ||
008 | 100325s2010 |||| 00||| eng d | ||
020 | |a 9780521128223 |9 978-0-521-12822-3 | ||
035 | |a (OCoLC)489001674 | ||
035 | |a (DE-599)BVBBV036097680 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-91G |a DE-824 | ||
050 | 0 | |a QA927 | |
082 | 0 | |a 515/.3535 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a PHY 041f |2 stub | ||
084 | |a MAT 357f |2 stub | ||
100 | 1 | |a Alinhac, Serge |d 1948- |e Verfasser |0 (DE-588)143378716 |4 aut | |
245 | 1 | 0 | |a Geometric analysis of hyperbolic differential equations |b an introduction |c S. Alinhac |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge, UK [u.a.] |b Cambridge Univ. Press |c 2010 | |
300 | |a IX, 118 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series |v 374 | |
520 | 3 | |a "Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required"--Provided by publisher | |
520 | 3 | |a "The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hormander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hormander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Differential equations, Hyperbolic | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Nonlinear wave equations | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Nichtlineare Wellengleichung |0 (DE-588)4042104-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | 1 | |a Nichtlineare Wellengleichung |0 (DE-588)4042104-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a London Mathematical Society lecture note series |v 374 |w (DE-604)BV000000130 |9 374 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-018988137 |
Datensatz im Suchindex
_version_ | 1804141164643745792 |
---|---|
any_adam_object | |
author | Alinhac, Serge 1948- |
author_GND | (DE-588)143378716 |
author_facet | Alinhac, Serge 1948- |
author_role | aut |
author_sort | Alinhac, Serge 1948- |
author_variant | s a sa |
building | Verbundindex |
bvnumber | BV036097680 |
callnumber-first | Q - Science |
callnumber-label | QA927 |
callnumber-raw | QA927 |
callnumber-search | QA927 |
callnumber-sort | QA 3927 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 540 SK 560 |
classification_tum | PHY 041f MAT 357f |
ctrlnum | (OCoLC)489001674 (DE-599)BVBBV036097680 |
dewey-full | 515/.3535 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.3535 |
dewey-search | 515/.3535 |
dewey-sort | 3515 43535 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03590nam a2200517 cb4500</leader><controlfield tag="001">BV036097680</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100713 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100325s2010 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521128223</subfield><subfield code="9">978-0-521-12822-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)489001674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036097680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA927</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.3535</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 041f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 357f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alinhac, Serge</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143378716</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric analysis of hyperbolic differential equations</subfield><subfield code="b">an introduction</subfield><subfield code="c">S. Alinhac</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 118 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">374</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required"--Provided by publisher</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hormander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hormander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear wave equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Wellengleichung</subfield><subfield code="0">(DE-588)4042104-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Wellengleichung</subfield><subfield code="0">(DE-588)4042104-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">374</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">374</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018988137</subfield></datafield></record></collection> |
id | DE-604.BV036097680 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:11:31Z |
institution | BVB |
isbn | 9780521128223 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018988137 |
oclc_num | 489001674 |
open_access_boolean | |
owner | DE-20 DE-91G DE-BY-TUM DE-824 |
owner_facet | DE-20 DE-91G DE-BY-TUM DE-824 |
physical | IX, 118 S. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | London Mathematical Society lecture note series |
series2 | London Mathematical Society lecture note series |
spelling | Alinhac, Serge 1948- Verfasser (DE-588)143378716 aut Geometric analysis of hyperbolic differential equations an introduction S. Alinhac 1. publ. Cambridge, UK [u.a.] Cambridge Univ. Press 2010 IX, 118 S. txt rdacontent n rdamedia nc rdacarrier London Mathematical Society lecture note series 374 "Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required"--Provided by publisher "The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hormander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hormander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher Quantentheorie Differential equations, Hyperbolic Geometry, Differential Nonlinear wave equations Quantum theory Nichtlineare Wellengleichung (DE-588)4042104-1 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 s Nichtlineare Wellengleichung (DE-588)4042104-1 s DE-604 London Mathematical Society lecture note series 374 (DE-604)BV000000130 374 |
spellingShingle | Alinhac, Serge 1948- Geometric analysis of hyperbolic differential equations an introduction London Mathematical Society lecture note series Quantentheorie Differential equations, Hyperbolic Geometry, Differential Nonlinear wave equations Quantum theory Nichtlineare Wellengleichung (DE-588)4042104-1 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
subject_GND | (DE-588)4042104-1 (DE-588)4131213-2 |
title | Geometric analysis of hyperbolic differential equations an introduction |
title_auth | Geometric analysis of hyperbolic differential equations an introduction |
title_exact_search | Geometric analysis of hyperbolic differential equations an introduction |
title_full | Geometric analysis of hyperbolic differential equations an introduction S. Alinhac |
title_fullStr | Geometric analysis of hyperbolic differential equations an introduction S. Alinhac |
title_full_unstemmed | Geometric analysis of hyperbolic differential equations an introduction S. Alinhac |
title_short | Geometric analysis of hyperbolic differential equations |
title_sort | geometric analysis of hyperbolic differential equations an introduction |
title_sub | an introduction |
topic | Quantentheorie Differential equations, Hyperbolic Geometry, Differential Nonlinear wave equations Quantum theory Nichtlineare Wellengleichung (DE-588)4042104-1 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
topic_facet | Quantentheorie Differential equations, Hyperbolic Geometry, Differential Nonlinear wave equations Quantum theory Nichtlineare Wellengleichung Hyperbolische Differentialgleichung |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT alinhacserge geometricanalysisofhyperbolicdifferentialequationsanintroduction |