Microeconometrics using Stata:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
College Station, Tex.
Stata Press
2010
|
Ausgabe: | Rev. ed. |
Schriftenreihe: | A Stata Press publication
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XLII, 706 S. graph. Darst. |
ISBN: | 9781597180733 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036094687 | ||
003 | DE-604 | ||
005 | 20210414 | ||
007 | t | ||
008 | 100324s2010 d||| |||| 00||| eng d | ||
020 | |a 9781597180733 |9 978-1-59718-073-3 | ||
035 | |a (OCoLC)739097894 | ||
035 | |a (DE-599)BVBBV036094687 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-N2 |a DE-M382 |a DE-739 |a DE-703 |a DE-20 |a DE-384 |a DE-11 |a DE-188 |a DE-473 |a DE-91 |a DE-945 |a DE-355 |a DE-521 |a DE-Re13 |a DE-858 |a DE-824 |a DE-634 |a DE-Aug4 |a DE-1028 |a DE-2070s |a DE-92 |a DE-91S |a DE-706 |a DE-83 |a DE-M158 | ||
050 | 0 | |a HB139 | |
082 | 0 | |a 338.5/015195 |2 22 | |
084 | |a MR 2200 |0 (DE-625)123489: |2 rvk | ||
084 | |a QC 100 |0 (DE-625)141244: |2 rvk | ||
084 | |a QH 320 |0 (DE-625)141568: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a WIR 017f |2 stub | ||
100 | 1 | |a Cameron, Adrian Colin |d 1956- |e Verfasser |0 (DE-588)12870022X |4 aut | |
245 | 1 | 0 | |a Microeconometrics using Stata |c A. Colin Cameron ; Pravin K. Trivedi |
250 | |a Rev. ed. | ||
264 | 1 | |a College Station, Tex. |b Stata Press |c 2010 | |
300 | |a XLII, 706 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a A Stata Press publication | |
650 | 0 | 7 | |a Mikroökonomie |0 (DE-588)4039225-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökonometrisches Modell |0 (DE-588)4043212-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stata |0 (DE-588)4617285-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikroökonomisches Modell |0 (DE-588)4125908-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ökonometrisches Modell |0 (DE-588)4043212-9 |D s |
689 | 0 | 1 | |a Mikroökonomie |0 (DE-588)4039225-9 |D s |
689 | 0 | 2 | |a Stata |0 (DE-588)4617285-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mikroökonomisches Modell |0 (DE-588)4125908-7 |D s |
689 | 1 | 1 | |a Stata |0 (DE-588)4617285-3 |D s |
689 | 1 | |5 DE-188 | |
700 | 1 | |a Trivedi, Pravin K. |d 1943- |e Verfasser |0 (DE-588)118054791 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018985212&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018985212&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-018985212 |
Datensatz im Suchindex
_version_ | 1804141159682932736 |
---|---|
adam_text | Contents
List of tables
xxxv
List of figures
xxxvii
Preface to the Revised Edition
xxxix
Preface to the First Edition
xli
Stata
basics
1
1.1
Interactive use
..............................
і
1.2
Documentation
.............................. 2
1.2.1
Stata
manuals
.......................... 2
1.2.2
Additional
Stata
resources
................... 3
1.2.3
The help command
....................... 3
1.2.4
The search, findit, and hsearch commands
.......... 4
1.3
Command syntax and operators
..................... 5
1.3.1
Basic command syntax
..................... 5
1.3.2
Example: The summarize command
............. 6
1.3.3
Example: The regress command
................ 7
1.3.4
Factor variables
......................... 9
1.3.5
Abbreviations, case sensitivity, and wildcards
........ 11
1.3.6
Arithmetic, relational, and logical operators
......... 12
1.3.
í
Error messages
......................... 12
1.4
Do-files and log files
........................... 13
1.4.1
Writing a do-file
...................,..... 13
1.4.2
Running do-files
......................... 14
1.4.3
Log files
............................. 14
1.4.4
A three-step process
...................... 15
1.4.5
Comments and long lines
.................... 16
1.4.6
Different implementations of
Stata
.............. 17
1.5
Scalars and matrices
........................... 17
1.5.1
Scalars
.............................. 17
1.5.2
Matrices
............................. 18
1.6
Using results from
Stata
commands
................... 18
1.6.1
Using results from the r-class command summarize
..... 18
1.6.2
Using results from the
е
-class command regress
....... 19
1.7
Global and local macros
......................... 21
1.7.1
Global macros
.......................... 21
1.7.2
Local macros
.......................... 22
1.7.3
Scalar or macro?
........................ 23
1.8
Looping commands
............................ 24
1.8.1
The foreach loop
........................ 25
1.8.2
The forvalues loop
....................... 26
1.8.3
The while loop
......................... 26
1.8.4
The continue command
..................... 27
1.9
Some useful commands
.......................... 27
1.10
Template do-file
.............................. 27
1.11
User-written commands
......................... 28
1.12
Stata
resources
.............................. 29
1.13
Exercises
.................................. 29
Data management and graphics
31
2.1
Introduction
................................ 31
2.2
Types of data
............................... 31
2.2.1
Text or ASCII data
....................... 32
2.2.2
Internal numeric data
...................... 32
2.2.3
String data
........................... 33
2.2.4
Formats for displaying numeric data
............. 33
2.3
Inputting data
.............................. 34
2.3.1
General principles
........................ 34
2.3.2
Inputting data already in
Stata
format
............ 35
2.3.3
Inputting data from the keyboard
............... 36
2.3.4
Inputting nontext data
..................... 36
2.3.5
Inputting text data from a spreadsheet
............ 37
2.3.6
Inputting text data in free format
............. . . 32
2.3.7
Inputting text data in fixed format
. . . ,........ . . 38
2.3.8
Dictionary files
......................... 39
2.3.9
Common pitfalls
........................ 39
2.4
Data management
............................ 40
2.4.1
PSID example
.......................... 40
2.4.2
Naming and labeling variables
................. 43
2.4.3
Viewing data
.......................... 44
2.4.4
Using original documentation
................. 45
2.4.5
Missing values
.......................... 45
2.4.6
Imputing missing data
..................... 47
2.4.7
Transforming data (generate, replace,
egen.
recode).....
48
The generate and replace commands
............. 48
The
egen
command
....................... 49
The
recode
command
...................... 49
The by prefix
.......................... 49
Indicator variables
....................... 50
Set of indicator variables
.,...,..............
óO
Interactions
...........,...............
ül
Demeaning
............................ 62
2.4.8
Saving data
........................... 52
2.4.9
Selecting the sample
...................... 63
2.5
Manipulating
datasets
.......................... 54
2.5.1
Ordering observations and variables
.............. 55
2.5.2
Preserving and restoring
a
dataset ..............
55
2.5.3
Wide and long forms for
a
dataset
.............. 55
2.5.4
Merging
datasets
........................ 56
2.5.5
Appending
datasets
....................... 58
2.6
Graphical display of data
........................ 58
2.6.1
Stata
graph commands
..................... 59
Example graph commands
................... 59
Saving and exporting graphs
.................. 60
Learning how to use graph commands
............ 61
2.6.2
Box-and-whisker plot
...................... 61
2.6.3
Histogram
............................ 63
2.6.4
Kernel density plot
....................... 63
2.6.5
Twoway scatterplots and fitted lines
............. 66
2.6.6
Lowess, kernel, local linear, and nearest-neighbor regression
67
2.6.7
Multiple scatterplots
...................... 69
2.7
Stata
resources
.............................. 70
2.8
Exercises
.................................. 70
Linear regression basics
73
3.1
Introduction
................................ 73
3.2
Data and data summary
......................... 73
3.2.1
Data description
........................ 73
3.2.2
Variable description
....................... 74
3.2.3
Summary statistics
....................... 76
3.2.4
More-detailed summary statistics
............... 76
3.2.5
Tables for data
......................... 77
3.2.6
Statistical tests
......................... 80
3.2.7
Data plots
............................ 80
3.3
Regression in levels and logs
....................... 81
3.3.1
Basic regression theory
..................... 81
3.3.2
OLS regression and matrix algebra
.............. 82
3.3.3
Properties of the OLS estimator
................ 83
3.3.4
Heteľoskedasticity-ľobust
standard errors
.......... 84
3.3.5
Cluster-robust standard errors
................ 84
3.3.6
Regression in logs
........................
8o
3.4
Basic regression analysis
..................... . . , . 86
3.4.1
Correlations
........................... 86
3.4.2
The regress command
..................... 87
3.4.3
Hypothesis tests
......................... 88
3.4.4
Tables of output from several regressions
........... 89
3.4.5
Even better tables of regression output
............ 90
3.4.6
Factor variables for categorical variables and interactions
. . 92
3.5
Specification analysis
........................... 94
3.5.1
Specification tests and model diagnostics
........... 94
3.5.2
Residual diagnostic plots
.................... 95
3.5.3
Influential observations
..................... 96
3.5.4
Specification tests
........................ 97
Test of omitted variables
.................... 98
Test of the
Box
-Сох
model
.................. 98
Test of the functional form of the conditional mean
..... 99
Heteroskedasticity test
..................... 100
Omnibus test
.......................... 10 ?
3.5.5
Tests have power in more than one direction
......... 102
3.6
Prediction
................................. 104
3.6.1
In-sample prediction
....................... 104
3.6.2
MEs and elasticities
....................... 106
3.6.3
Prediction in logs: The retransformation problem
...... 108
3.6.4
Prediction exercise
....................... 109
3.7
Sampling weights
.............................
Ill
3.7.1
Weights
.............................
Ill
3.7.2
Weighted mean
......................... 112
3.7.3
Weighted regression
....................... 113
3.7.4
Weighted prediction and MEs
................. 114
3.8
OLS using
Mata
............................. 115
3.9
Stata
resources
.............................. 117
3.10
Exercises
.................................. 117
Simulation
119
4.1
Introduction
................................ 119
4.2
Pseudorandom-number generators: Introduction
........... 120
4.2.1
Uniform random-number generation
............. 120
4.2.2
Draws from normal
....................... 122
4.2.3
Draws from t, chi-squared, F. gamma, and beta
....... 123
4.2.4
Draws from binomial.
Poisson,
and negative binomial
.... 124
Independent (but not identically distributed) draws from
binomial
........................ 124
Independent (but not identically distributed) draws from
Poisson
........................ 125
Histograms and density plots
................. 126
4.3
Distribution of the sample mean
.................... 127,
4.3.1
Stata
program
.......................... 128
4.3.2
The simulate command
..................... 129
4.3.3
Central limit theorem simulation
............... 129
4.3.4
The
postfile
command
..................... 130
4.3.5
Alternative central limit theorem simulation
......... 131
4.4
Pseudorandom-number generators: Further details
......... . 131
4.4.1
Inverse-probability transformation
............... 132
4.4.2
Direct transformation
...................... 133
4.4.3
Other methods
......................... 133
4.4.4
Draws from truncated normal
................. 134
4.4.5
Draws from multivariate normal
................ 135
Direct draws from multivariate normal
............ 135
Transformation using Cholesky decomposition
........ 136
4.4.6
Draws using Markov chain Monte Carlo method
....... 136
4.5
Computing integrals
........................... 138
4.5.1
Quadrature
........................... 139
4.5.2
Monte Carlo integration
.................... 139
4.5.3
Monte Carlo integration using different
S
........... 140
4.6
Simulation for regression: Introduction
................. 141
4.6.1
Simulation example: OLS with
χ2
errors
........... 141
4.6.2
Interpreting simulation output
................. 144
ünbiasedness
of estimator
.................. . 144
Standard errors
......................... 144
t
statistic
............................ 144
Test size
............................. 145
Number of simulations
..................... 146
4.6.3
Variations
............................ 146
Different sample size and number of simulations
....... 146
Test power
............................ 146
Different error distributions
.................. 147
4.6.4
Estimator inconsistency
.................... 147
4.6.5
Simulation with endogenous regressors
............ 148
4.7
Stata
resources
.............................. 150
4.8
Exercises
.................................. 150
GLS regression
158
5.1
Introduction
............................ . . . . 153
5.2
GLS and FGLS regression
..................,.,,,. 153
5.2.1
GLS for heterockedastic errors
................ , 153
5.2.2
GLS and FGLS
.........................
io4
5.2.3
Weighted least squares and
robuüt
.■
standard
errore
.....
loo
5.2.4
Leading examples
........................
15ο
5.3
¿Modeling heteroskedastic data
...................... 156
5.3.1
Simulated
dataset
........................ 156
5.3.2
OLS
estimation
......................... 157
5.3.3
Detecting heteroskedasticity
.................. 158
5.3.4
FGLS estimation
........................ 160
5.3.5
WLS estimation
......................... 162
5.4
System of linear regressions
....................... 162
5.4.1
SUR
model
........................... 162
5.4.2
The sureg command
...................... 163
5.4.3
Application to two categories of expenditures
........ 164
5.4.4
Robust standard errors
..................... 166
5.4.5
Testing cross-equation constraints
............... 167
5.4.6
Imposing cross-equation constraints
.............. 168
5.5
Survey data: Weighting, clustering, and stratification
......... 169
5.5.1
Survey design
.......................... 170
5.5.2
Survey mean estimation
.................... 173
5.5.3
Survey linear regression
.................... 173
5.6
Stata
resources
.............................. 175
5.7
Exercises
.................................. 175
Linear instrumental-variables regression
177
6.1
Introduction
................................ 177
6.2
IV estimation
............................... 177
6.2.1
Basic IV theory
......................... 177
6.2.2
Model setup
........................... 179
6.2.3
IV estimators: IV. 2SLS. and GUM
............. 180
6.2.4
Instrument validity and relevance
............... 181
6.2.5
Robust standard-error estimates
................ 182
6.3
IV example
................................ 183
6.3.1
The ivregress command
.................... 183
6.3.2
Medical expenditures with one endogenous regressor
.... 184
6.3.3
Available instruments
...................... 185
6.3.4
IV estimation of an exactly identified model
......... 186
6.3.5
IV
estimation
of an overidentified model...........
187
6.3.6
Testing for
regressoľ endogeiieity
............... 188
6.3.7
Tests of overidentifying restrictions
.............. 191
6.3.8
IV estimation with a binary endogenous regressor
..,,., 19?
6.4
Weak instruments
............................ . 194
6.4.1
Finite-sample properties of IV estimators
........... 194
6.4.2
Weak instruments
........................ 196
Diagnostics for weak instruments
............... 195
Formal tests for weak instruments
............... 196
6.4.3
The
estât firststage
command
................. 197
6.4.4
Just-identified model
...................... 197
6.4.5
Overidentified model
...................... 199
6.4.6
More than one endogenous regressor
............. 200
6.4.7
Sensitivity to choice of instruments
.............. 200
6.5
Better inference with weak instruments
................. 202
6.5.1
Conditional tests and confidence intervals
.......... 202
6.5.2
LIML estimator
......................... 204
6.5.3
Jackknife IV estimator
..................... 204
6.5.4
Comparison of 2SLS. LIML. JIVE, and GMM
........ 205
6.6
3SLS systems estimation
......................... 206
6.7
Stata
resources
.............................. 208
6.8
Exercises
.................................. 208
Quantile regression VLl
7.1
Introduction
................................ 211
7.2
QR
.........................., ,......... 2.1.1
7 .2.1
Conditional quantiles
...................... 212
7.2.2
Computation of QR estimates and standard errors
..... 213
7.2.3
The qreg. bsqreg. and sqreg commands
............ 213
7.3
QR for medical expenditures data
.................... 214
7.3.1
Data
summan
......................... 214
7.3.2
QR estimates
.......................... 215
7.3.3
Interpretation of conditional quantile coefficients
...... 216
7.3.4
Retransformation
........................ 217
7.3.5
Comparison of estimates at different quantiles
........ 218
7.3.6
Heteroskedasticity test
..................... 219
7.3.7
Hypothesis tests
......................... 220
7.3.8
Graphical display of coefficients over quantiles
........ 221
7.4
QR for generated heteroskedastic data
................. 222
7.4.1
Simulated
dataset
........................ 222
7.4.2
QR estimates
.......................... 225
7.5
QR for count data
............................ 226
7.5.1
Quantile count regression
................... 227
7.5.2
The qcount command
...................... 228
7.5.3
Summary of doctor visits data
................. 228
7.5.4
Results from QCR
....................... 230
7.6
Stata
resources
.............................. 232
7.7
Exercises
.................................. 232
Linear panel-data models: Basics
235
8.1
Introduction
................................ 235
8.2
Panel-data methods overview
...................... 235
8.2.1
Some basic considerations
................... 236
8.2.2
Some basic panel models
.................... 237
Individual-effects model
.................... 237
Fixed-effects model
....................... 237
Random-effects model
..................... 238
Pooled model or population-averaged model
......... 238
Two-way-effects model
..................... 238
Mixed linear models
...................... 239
8.2.3
Cluster-robust inference
.................... 239
8.2.4
The xtreg command
...................... 239
8.2.5
Stata linear
panel-data commands
............... 240
8.3
Panel-data summary
........................... 240
8.3.1
Data description and summary statistics
........... 240
8.3.2
Panel-data organization
.................... 242
8.3.3
Panel-data description
..................... 243
8.3.4
Within and between variation
................. 244
8.3.5
Time-series plots for each individual
............. 247
8.3.6
Overall scatterplot
....................... 248
8.3.7
Within scatterplot
....................... 249
8.3.8
Pooled OLS regression with cluster-robust standard errors
. 250
8.3.9
Time-series autocorrelations for panel data
.......... 251
8.3.10
Error correlation in the RE model
............... 253
8.4
Pooled or population-averaged estimators
............... 254
8.4.1
Pooled OLS estimator
..................... 254
8.4.2
Pooled FGLS estimator or population-averaged estimator
. 254
8.4.3
The xtreg. pa command
.................... 255
8.4.4
Application of the xtreg, pa command
............ 256
8.5
Within estimator
............................. 257
8.5.1
Within estimator
........................ 257
8.5.2
The xtreg. fe command
..................... 257
8.5.3
Application of the xtreg. fe command
.............
2Ó8
8.5.4
Least-squares dummy-variables regression
.......... 259
8.6
Between estimator
............................ 260
8.6.1
Between estimator
....................... 260
8.6.2
Application of the xtreg. be command
............ 261
8.7
RE estimator
............................... 261
8.7.1
RE estimator
.......................... 262
8.7.2
The xtreg, re command
..................... 262
8.7.3
Application of the xtreg. re command
............. 263
8.8
Comparison of estimators
........................ 264
8.8.1
Estimates of variance components
............... 264
8.8.2
Within and between R-squared
................ 264
8.8.3
Estimator comparison
..................... 265
8.8.4
Fixed effects versus random effects
.............. 266
8.8.5
Hausman test for fixed effects
................. 266
The hausman command
.................... 267
Robust Hausman test
...................... 267
8.8.6
Prediction
............................ 268
8.9
First-difference estimator
........................ 269
8.9.1
First-difference estimator
.................... 270
8.9.2
Strict and weak exogeneity
................... 271
8.10
Long panels
................................ 271
8.10.1
Long-panel
dataset
....................... 271
8.10.2
Pooled OLS and PFGLS
.................... 273
8.10.3
The xtpcse and xtgls commands
................ 273
8.10.4
Application of the xtgls, xtpcse, and xtscc commands
.... 274
8.10.5
Separate regressions
...................... 276
8.10.6
FE and RE models
....................... 277
8.10.7
Unit roots and
cointegration
.................. 278
8.11
Panel-data management
......................... 280
8.11.1
Wide-form data
......................... 280
8.11.2
Convert wide form to long form
................ 280
8.11.3
Convert long form to wide form
................ 281
8.11.4
An alternative wide-form data
................. 282
8.12
Stata
resources
.............................. 284
8.13
Exercises
.................................. 284
Linear panel-data models: Extensions
287
9.1
Introduction
................................ 287
9.2
Panel IV estimation
........................... 287
9.2.1
Panel
IV
............................. 287
9.2.2
The xtivreg
command
..................... 288
9.2.3
Application of the
xtivreg
command
............. 288
9.2.4
Panel IV extensions
....................... 290
9.3
Hausman-Taylor estimator
....................... 290
9.3.1
Hausman-Taylor estimator
.................. 290
9.3.2
The xthtaylor command
.................... 291
9.3.3
Application of the xthtaylor command
............ 291
9.4
Arellano-Bond estimator
........................ 293
9.4.1
Dynamic model
......................... 293
9.4.2
IV estimation in the FD model
................ 294
9.4.3
The xtabond command
..................... 295
9.4.4
Arellano-Bond estimator: Pure time series
.......... 296
9.4.5
Arellano-Bond estimator: Additional regressors
....... 298
9.4.6
Specification tests
........................ 300
9.4.7
The xtdpdsys command
.................... 301
9.4.8
The xtdpd command
...................... 303
9.5
Mixed linear models
........................... 305
9.5.1
Mixed linear model
....................... 305
9.5.2
The xtmixed command
..................... 306
9.5.3
Random-intercept model
.................... 306
9.5.4
Cluster-robust standard errors
................ 30?
9.5.5
Random-slopes model
..................... 308
9.0.6
Random-coefficients model
................... 310
9.5.7
Two-way random-effects model
................ 311
9.6
Clustered data
.............................. 312
9.6.1
Clustered
dataset
........................ 312
9.6.2
Clustered data using noupanel commands
.......... 313
9.6.3
Clustered data using panel commands
............ 314
9.6.4
Hierarchical linear models
................... 316
9.7
Stata
resources
.............................. 317
9.8
Exercises
.................................. 318
10
Nonlinear regression methods
319
10.1
Introduction
................................ 319
10.2
Nonlinear example: Doctor visits
.................... 320
10.2.1
Data description
........................ 320
10.2.2
Poisson
model description
................... 321
10.3
Nonlinear regression methods
...................... 322
10.3.1
MLE
............................... 322
10.3.2
The
poisson
command
..................... 323
10.3.3
Postestimation
commands
................... 324
10.3.4
NLS
............................... 325
10.3.5
The nl command
........................ 325
10.3.6
GLM
............................... 327
10.3.7
The glm command
....................... 327
10.3.8
The gmm command
....................... 328
10.3.9
Other estimators
........................ 330
10.4
Different estimates of the VCE
..................... 330
10.4.1
General framework
....................... 330
10.4.2
The vce() option
........................ 331
10.4.3
Application of the vce() option
................ 332
10.4.4
Default estimate of the VCE
.................. 333
10.4.5
Robust estimate of the VCE
.................. 334
10.4.6
Cluster-robust estimate of the VCE
............. 335
10.4.7
Heteroskedasticity- and autocorrelation-consistent estimate
of the VCE
........................... 335
10.4.8
Bootstrap standard errors
................... 336
10.4.9
Statistical inference
....................... 336
10.5
Prediction
................................. 336
10.5.1
The predict and predictnl commands
............. 337
10.5.2
Application
of predict and predictnl
.............. 337
10.5.3
Out-of-sample prediction
.................... 338
10.5.4
Prediction at a specified value of one of the regressors
. . . 339
10.5.5
Prediction at a specified value of all the regressors
..... 340
10.5.6
Prediction of other quantities
................ . 341
10.5.7
The margins command for prediction
........., , , . 341
10.6
Marginal effects
.............................. 343
10.6.1
Calculus and finite-difference methods
............ 343
10.6.2
MEs estimates
AME,
MEM. and
MER
............. 344
10.6.3
Elasticities and semielasticities
................ 344
10.6.4
Simple interpretations of coefficients in single-index models
345
10.6.5
The margins command for marginal effects
.......... 346
10.6.6
MEM: Marginal effect at mean
................ 347
Comparison of calculus and finite-difference methods
.... 348
10.6.7
MER:
Marginal effect at representative value
........ 348
10.6.8
AME:
Average marginal effect
................. 349
10.6.9
Elasticities and semielasticities
................ 351
10.6.10
AME
computed manually
................... 352
10.6.11
Polynomial regressors
...................... 354
10.6.12
Interacted regressors
...................... 355
10.6.13
Complex interactions and nonlinearities
........... 356
10.7
Model diagnostics
............................. 307
10.7.1
Goodness-of-fit measures
...............,,.,, 35 <
10.7.?,
Information criteria for model comparison
.......... 359
10.7.3
Residuals
.......,......... . , ,........
3o9
10.7.4
Model-specification tests
...,....,..,........ 361
10.8
Stata
resources
................,,,..,,...,,,. 361
10.9
Exercises
............................,..... 361
11
Nonlinear optimization methods
368
11.1
Introduction
................................ 363
11.2
Newton—
Raphson
method
........................ 363
11.2.1
NR
method
........................... 363
11.2.2
NR
method for
Poisson.....................
364
11.2.3
Poisson
NR
example using
Mata
............... 365
Core
Mata
code for
Poisson
NR
iterations
.......... 365
Complete
Stata
and
Mata
code for
Poisson
NR
iterations
. 365
11.3
Gradient methods
............................. 367
11.3.1
Maximization options
...................... 367
11.3.2
Gradient methods
........................ 368
11.3.3
Messages during iterations
................... 369
11.3.4
Stopping criteria
........................ 369
11.3.5
Multiple
maximums
....................... 369
11.3.6
Numerical derivatives
...................... 370
11.4
The ml command: If method
...................... 371
11.4.1
The ml command
........................ 372
11.4.2
The If method
.......................... 372
11.4.3
Poisson
example: Single-index model
............. 373
11.4.4
Negative binomial example: Two-index model
........ 375
11.4.5
NLS example: Nonlikelihood model
.............. 376
11.5
Checking the program
.......................... 376
11.5.1
Program debugging using ml check and ml trace
....... 377
11.5.2
Getting the program to run
.................. 378
11.5.3
Checking the data
........................ 379
11.5.4
Multicollinearity and near collinearity
............ 379
11.5.5
Multiple optimums
....................... 380
11.5.6
Checking parameter estimation
................ 381
11.5.7
Checking standard-error estimation
.............. 382
11.6
The ml command: dO. dl. d2, lfO, lfl. and 1£2 methods
........ 383
11.6.1
Evaluator
functions
....................... 383
11.6.2
The dO method
......................... 385
11.6.3
The dl
method
......................... 386
11.6.4
The
Ifi
method with the robust estimate of the
Л<ГСЕ
.... 387
11.6.5
The d2 and If2 methods
.................... 388
11.7
The
Mata
optimizeQ function
...................... 389
11.7.1
Type
d
and gf evaluators
.................... 389
11.7.2
Optimize functions
....................... 390
11.7.3
Poisson
example
......................... 390
Evaluator
program for
Poisson MLE
............. 390
The optimizeQ function for
Poisson MLE
.......... 391
11.8
Generalized method of moments
.................... 392
11.8.1
Definition
............................ 393
11.8.2
Nonlinear IV example
..................... 393
11.8.3
GMM using the
Mata optimize()
function
.......... 394
11.9
Stata
resources
.............................. 396
11.10
Exercises
.................................. 396
12
Testing methods
399
12.1
Introduction
................................ 399
12.2
Critical values and p-values
....................... 399
12.2.1
Standard normal compared with Student s
t
......... 400
12.2.2
Chi-squared. compared with
F
................ , 400
12.2.3
Plotting densities
........................ 400
12.2.4
Computing p-values and critical values;
............
40Я
12.2.5
Which distributions does
Stata use?
............. 403
12.3 Wald
tests and confidence intervals
................... 403
12.3.1 Wald
test of linear hypotheses
......, , , . ,...... 403
12.3.2
The test command
....................... 405
Test single coefficient
...................... 406
Test several hypotheses
..................... 406
Test of overall significance
................... 407
Test calculated from retrieved coefficients and VCE
..... 407
12.3.3
One-sided
Wald
tests
...................... 408
12.3.4 Wald
test of nonlinear hypotheses (delta method)
...... 409
12.3.5
The testnl command
...................... 409
12.3.6 Wald
confidence intervals
.................... 410
12.3.7
The lincom command
...................... 410
12.3.8
The nlcom command (delta method)
............. 411
12.3.9
Asymmetric confidence intervals
................ 412
12.4
Likelihood-ratio tests
........................... 413
12.4.1
Likelihood-ratio tests
...................... 413
12.4.2
The litest command
...................... 415
12.4.3
Direct computation of LR tests
................ 415
12.5 Lagrange
multiplier test (or score test)
................. 416
12.5.1
LM tests
............................. 416
12.5.2
The
estât
command
....................... 417
12.5.3
LM test by auxiliary regression
................ 417
12.6
Test size and power
............................ 419
12.6.1
Simulation DGP: OLS with chi-squared errors
........ 419
12.6.2
Test size
............................. 420
12.6.3
Test power
............................ 421
12.6.4
Asymptotic test power
..................... 424
12.7
Specification tests
............................. 425
12.7.1
Moment-based tests
....................... 425
12.7.2
Information matrix test
.................... 42-5
12.7.3
Chi-squared goodness-of-fit test
................ 426
12.7
A Overidentifying restrictions test
................ 426
12.7.5
Hausman test
.......................... 426
12.7.6
Other tests
........................... 427
12.8
Stata
resources
.............................. 427
12.9
Exercises
.................................. 427
13
Bootstrap methods
429
13.1
Introduction
................................ 429
13.2
Bootstrap methods
....................,.,,.,,. 429
13.2.1
Bootstrap estimate of standard error
............. 429
13.2.2
Bootstrap methods
....................... 430
13.2.3
Asymptotic refinement
..................... 430
13.2.4
Use the bootstrap with caution
................ 430
13.3
Bootstrap pairs using the vce(bootstrap) option
............ 431
13.3.1
Bootstrap-pairs method to estimate VCE
.......... 431
13.3.2
The ^(bootstrap) option
................... 432
13.3.3
Bootstrap standard-errors example
.............. 432
13.3.4
How many bootstraps?
..................... 433
13.3.5
Clustered bootstraps
...................... 434
13.3.6
Bootstrap confidence intervals
................. 435
13.3.7
The
postestimation estât
bootstrap command
........ 436
13.3.8
Bootstrap confidence-intervals example
............ 437
13.3.9
Bootstrap estimate of bias
................... 437
13.4
Bootstrap pairs using the bootstrap command
............. 438
13.4.1
The bootstrap command
.................... 438
13.4.2
Bootstrap parameter estimate from
a Stata
estimation
command
............................ 439
13.4.3
Bootstrap standard error from
a Stata
estimation command
440
13.4.4
Bootstrap standard error from a user-written estimation
command
........................... 440
03.4.
о
Bootstrap two-step estimator
................. 441
13.4.6
Bootstrap Hausman test
.................... 44.3
13.4.
У
Bootstrap standard error of the coefficient of variation
. , , 444
13.5
Bootstraps with asymptotic refinement
................. 445
13.5.1
Percontile-t method
....................... 445
13.5.2
Percentile-t
Wald
test
..................... 446
13.5.3
Percentile-t
Wald
confidence interval
............. 447
13.6
Bootstrap pairs using bsample and simulate
.............. 448
13.6.1
The bsample command
..................... 448
13.6.2
The bsample command with simulate
............. 448
13.6.3
Bootstrap Monte Carlo exercise
................ 450
13.7
Alternative resampling schemes
..................... 450
13.7.1
Bootstrap pairs
......................... 451
13.7.2
Parametric bootstrap
...................... 451
13.7.3
Residual bootstrap
....................... 453
13.7.4
Wild bootstrap
......................... 454
13.7.5
Subsampling
........................... 455
13.8
Thejackknife
............................... 455
13.8.1
Jackknife method
........................ 455
13.8.2
The vce(jackknife) option and the jackknife command
. . . 456
13.9
Stata
resources
.............................. 456
13.10
Exercises
.................................. 456
14
Binary outcome models
459
14.1
Introduction
................................ 459
14.2
Some parametric models
......................... 459
14.2.1
Basic model
........................... 459
14.2.2
Logit.
probit,
linear probability, and clog-log models
.... 460
14.3
Estimation
................................. 460
14.3.1
Latent-variable interpretation and identification
....... 461
14.3.2
ML estimation
.......................... 461
14.3.3
The logit and
probit
commands
................ 462
14.3.4
Robust estimate of the VCE
.................. 462
14.3.5
OLS estimation of LPM
.................... 462
14.4
Example
.................................. 463
14.4.1
Data description
........................ 463
14.4.2
Logit regression
......................... 464
14.4.3
Comparison of binary models and parameter estimates
. . . 465
14.5
Hypothesis and specification tests
.................... 466
14.5.1 Wald
tests
............................ 467
14.5.2
Likelihood-ratio tests
...................... 46?
14.5.3
Additional model-specification tests
.............. 468
Lagrange
multiplier test of generalized logic
......... 468
Heteroskedastic
probit
regression
............... 469
14.5.4
Model comparison
........................ 470
14.6
Goodness of fit and prediction
...................... 471
14.6.1
Pseudo-
R2 measure
....................... 471
14.6.2
Comparing predicted probabilities with sample frequencies
. 471
14.6.3
Comparing predicted outcomes with actual outcomes
.... 473
14.6.4
The predict command for fitted probabilities
......... 474
14.6.5
The prvalue command for fitted probabilities
........ 475
14.7
Marginal effects
.............................. 476
14.7.1
Marginal effect at a representative value
(MER)
....... 476
14.7.2
Marginal effect at the mean (MEM)
............. 477
14.7.3
Average marginal effect
(AME)
................ 478
14.7.4
The prchange command
.................... 479
14.8
Endogenous regressors
.......................... 479
14.8.1
Example
............................. 480
14.8.9.
Л
-Iodei
assumptions
....................... 481
14.8.3
Structural-model approach
................... 481
The ivprobit command
..................... 482
Maximum likelihood estimates
................. 482
Two-step sequential estimates
................. 483
14.8.4
IVs approach
..........................
48o
14.9
Grouped data
................................ 486
14.9.1
Estimation with aggregate data
................ 487
14.9.2
Grouped-data application
................... 487
14.10
Stata
resources
.............................. 489
14.11
Exercises
.................................. 489
15
Multinomial models
491
15.1
Introduction
................................ 491
15.2
Multinomial models overview
...................... 491
15.2.1
Probabilities and MEs
..................... 491
15.2.2
Maximum likelihood estimation
................ 492
15.2.3
Case-specific and alternative-specific regressors
....... 493
15.2.4
Additive random-utility model
................. 493
15.2.5
Stata
multinomial model commands
............. 494
15.3
Multinomial example: Choice of fishing mode
............. 494
15.3.1
Data description
........................ 494
15.3.2
Case-specific regressors
..................... 497
15.3.3
Alternative-specific regressors
................. 497
15.4
Multinomial logit model
......................... 498
15.4.1
The mlogit command
...................... 498
15.4.2
Application of the mlogit command
.............. 499
15.4.3
Coefficient interpretation
.................... 500
15.4.4
Predicted probabilities
..................... 501
15.4.5
MEs
............................... 502
15.5
Conditional logit model
......................... 503
15.5.1
Creating long-form data from wide-form data
........ 503
15.5.2
The asclogit command
..................... 505
15.5.3
The
dogit
command
...................... 506
15.5.4
Application of the asclogit command
............. 506
15.5.5
Relationship to multinomial logit model
........... 507
15.5.6
Coefficient interpretation
.................... 507
15.5.7
Predicted probabilities
..................... 508
15.5.8
MEs
............................... 509
15.6
Nested logit model
............................ 511
15.6.1
Relaxing the independence of irrelevant alternatives as¬
sumption
............................. 511
15.6.2
NL model
............................
oil
15.6.3
The nlogit command
.......................
olí?
15.6.4
Model estimates
......................... 513
15.6.5
Predicted probabilities
..................... 516
15.6.6
MEs
............................... 516
15.6.7
Comparison of logit models
.................. 517
15.7
Multinomial
probit
model
........................ 517
15.7.1
MNP
............................... 517
15.7.2
The mprobit command
..................... 518
15.7.3
Maximum simulated likelihood
................ 519
15.7.4
The asmprobit command
.................... 519
15.7.5
Application of the asmprobit command
............ 520
15.7.6
Predicted probabilities and MEs
................ 522
15.8
Random-parameters logit
........................ 522
15.8.1
Random-parameters logit
................... 523
15.8.2
The mixlogit command
..................... 523
15.8.3
Data preparation for mixlogit
................. 524
15.8.4
Application of the mixlogit command
............. 524
15.9
Ordered outcome models
.........................
52ъ
15.9.1
Data summary
.........................
ó2o
15.9.2
Ordered outcomes
.......,................
o26
15.9.3
Application of the ologit command
..............
ó?. í
15.9.4
Predicted probabilities
.....................
o?8
15.9.5
MEs
.........................,,.,., 528
15.9.6
Other ordered models
...................... 529
15.10
Multivariate outcomes
.......................... 529
15.10.1
Bivariate
probit
......................... 529
15.10.2
Nonlinear
SUR
......................... 532
15.11
Stata
resources
.............................. 532
15.12
Exercises
.................................. 533
16
Tobit and selection models
535
16.1
Introduction
................................ 535
16.2
Tobit model
................................ 535
16.2.1
Regression with censored data
................. 535
16.2.2
Tobit model setup
........................ 536
16.2.3
Unknown censoring point
................... 537
16.2.4
Tobit estimation
........................ 537
16.2.5
ML estimation in
Stata
..................... 538
16.3
Tobit model example
........................... 538
16.3.1
Data summary
......................... 538
16.3.2
Tobit analysis
.......................... 539
16.3.3
Prediction after tobit
...................... 540
16.3.4
Marginal effects
......................... 541
Left-truncated, left-censored, and right-truncated examples
541
Left-censored case computed directly
............. 542
Marginal impact on probabilities
............... 543
16.3.5
The ivtobit command
...................... 544
16.3.6
Additional commands for censored regression
........ 545
16.4
Tobit for
lognormal
data
......................... 545
16.4.1
Data example
.......................... 546
16.4.2
Setting the censoring point for data in logs
.......... 546
16.4.3
Results
.............................. 547
16.4.4
Two-limit tobit
......................... 548
16.4.5
Model diagnostics
........................ 549
16.4.6
Tests of normality and homoskedasticity
........... 550
Generalized residuals and scores
................ 550
Test of normality
........................ 551
Test of homoskedasticity
.................... 552
16.4.7
Next step?
............................ 553
16.5
Two-part model in logs
.......................... 553
16.5.1
Model structure
......................... 553
16.5.2
Part
1
specification
....................... 554
16.5.3
Part
2
of the two-part model
.................. 555
16.6
Selection model
.............................. 556
16.6.1
Model structure and assumptions
............... 556
16.6.2
ML estimation of the sample-selection model
......... 558
16.6.3
Estimation without exclusion restrictions
........... 558
16.6.4
Two-step estimation
...................... 560
16.6.5
Estimation with exclusion restrictions
............ 561
16.7
Prediction from models with outcome in logs
............. 562
16.7.1
Predictions from tobit
..................... 563
16.7.2
Predictions from two-part model
............... 564
16.7.3
Predictions from selection model
............... 565
16.8
Stata
resources
.............................. 565
16.9
Exercises
.................................. 566
17
Count-data models
567
17.1
Introduction
................................ 567
17.2
Features of count data
......................... .
об/
17.2.1
Generated
Poisson data
.................... 568
17.2.2
Overdispersion and negative binomial data
......... .
o69
17.2.3
Modeling strategies
....................... 570
17.2.4
Estimation methods
...................... 571
17.3
Empirical example
1........................... 571
17.3.1
Data summary
......................... 571
17.3.2
Poisson
model
.......................... 572
Poisson
model results
...................... 573
Robust estimate of VCE for
Poisson MLE
.......... 574
Test of overdispersion
...................... 575
Coefficient interpretation and marginal effects
........ 576
17.3.3
NB2 model
........................... 577
NB2 model results
....................... 577
Fitted probabilities for
Poisson
and NB2 models
....... 579
The countfit command
..................... 579
The prvalue command
..................... 581
Discussion
............................ 581
Generalized NB model
..................... 581
17.3.4
Nonlinear least-squares estimation
.............. 582
17.3.5
Hurdle model
.......................... 583
Variants of the hurdle model
.................. 585
Application of the hurdle model
................ 585
17.3.6
Finite-mixture models
..................... 589
FMM specification
....................... 589
Simulated FMM sample with comparisons
.......... 589
ML estimation of the FMM
.................. 591
The fmm command
....................... 592
Application:
Poisson
finite-mixture model
.......... 592
Interpretation
.......................... 593
Comparing marginal effects
.................. 594
Application: NB finite-mixture model
............. 596
Model selection
......................... 598
Cautionary note
......................... 599
17.4
Empirical example
2........................... 599
17.4.1
Zero-inflated data
........................ 599
17.4.2
Models for zero-inflated data
................. 600
17.4.3
Results for the NB2 model
................... 601
The prcounts command
.................... 602
17.4.4
Results for ZINB
........................ 603
17.4.5 Model
comparison
........................ 604
The countfit command
..................... 604
Model comparison using countfit
............... 604
17.5
Models with endogenous regressors
...................
60o
17.5.1
Structural-model approach
................... 606
Model and assumptions
.................... 606
Two-step estimation
......................
60Y
Application
........................... 607
17.5.2
Nonlinear IV method
...................... 610
17.6
Stata
resources
.............................. 611
17.7
Exercises
.................................. 612
18
Nonlinear panel models
615
18.1
Introduction
................................ 615
18.2
Nonlinear panel-data overview
...................... 615
18.2.1
Some basic nonlinear panel models
.............. 615
FE models
............................ 616
RE models
............................ 616
Pooled models or population-averaged models
........ 616
Comparison of models
..................... 617
18.2.2
Dynamic models
........................ 61/
18.2.3
Stata
nonlinear panel commands
............... 617
18.3
Nonlinear panel-data example
...................... 618
18.3.1
Data description and summary statistics
........... 618
18.3.2
Panel-data, organization
.................... 620
18.3.3
Within and between variation
................. 620
18.3.4
FE or RE model for these data?
................ 621
18.4
Binary outcome models
......................... 621
18.4.1
Panel summary of the dependent variable
.......... 621
18.4.2
Pooled logit estimator
..................... 622
18.4.3
The xtlogit command
...................... 623
18.4.4
The xtgee command
...................... 624
18.4.5
PA logit estimator
....................... 624
18.4.6
RE logit estimator
....................... 625
18.4.7
FE logit estimator
....................... 627
18.4.8
Panel logit estimator comparison
............... 629
18.4.9
Prediction and marginal effects
................ 630
18.4.10
Mixed-effects logit estimator
.................. 630
18.5
Tobit model
................................ 631
1.8.5.1
Panel summary of the dependent variable
.......... 631
18.5.2
RE tobit model
......................... 631
18.5.3
Generalized tobit models
.................... 632
18.5.4
Parametric nonlinear panel models
.............. 633
18.6
Count-data models
............................ 633
18.6.1
The xtpoisson command
.................... 633
18.6.2
Panel summary of the dependent variable
.......... 634
18.6.3
Pooled
Poisson
estimator
.................... 634
18.6.4
PA
Poisson
estimator
...................... 635
18.6.5
RE
Poisson
estimators
..................... 636
18.6.6
FE
Poisson
estimator
...................... 638
18.6.7
Panel
Poisson
estimators comparison
............. 640
18.6.8
Negative binomial estimators
................. 641
18.7
Stata
resources
.............................. 642
18.8
Exercises
.................................. 643
A Programming in
Stata
645
A.I
Stata
matrix commands
......................... 645
A.
1.1
Stata
matrix overview
..................... 645
A.
1.2
Stata
matrix input and output
................ 645
Matrix input by hand
...................... 645
Matrix input from
Stata
estimation results
.......... 646
A.
1.3
Stata
matrix subscripts and combining matrices
....... 647
Α.
1.4 Matrix Operators........................ 648
Α.
1.5 Matrix
functions
........................ 648
Α.
1.6
Matrix accumulation commands
................ 649
A.
1.7
OLS using
Stata
matrix commands
.............. 650
A.
2
Programs
................................. 651
A.
2.1
Simple programs (no arguments or access to
resulta)
.... 651
A.
2.2
Modifying a program
......................
6o2
A.
2.3
Programs with positional arguments
............. 652
A.
2.4
Temporary variables
...................... 653
A.
2.5
Programs with named positional arguments
......... 653
A.
2.6
Storing and retrieving program results
............ 654
A.
2.7
Programs with arguments using standard
Stata
syntax
. . . 655
A.2.8 Ado-files
............................. 656
A.3 Program debugging
............................ 657
A.
3.1
Some simple tips
........................ 658
A.
3.2
Error messages and return code
................ 658
A.
3.3
Trace
............................... 659
Mata
661
B.I How to run
Mata
............................. 661
В.
1.1
Alata
commands in
Alata....................
661
8.
1.2
Alata
commands in
Stata
.................... 662
8.
1.3
Stata
commands
in
Mata
.................... 662
8.
1.4
Interactive versus batch
ase
.............. . . . . 662
В.
Lo Mata
help
............................
6(P
В.
2
Mata
matrix commands
.......................
, ,
663
В.
.2.1
Mata
matrix input
....................... 663
Matrix input by hand
...................... 663
Identity matrices, unit vectors, and matrices of constants
, , 664
Matrix input from
Stata data
................. 665
Matrix input from
Stata
matrix
................ 665
Stata
interface
functions
.................... 666
В.
2.2
Mata
matrix operators
..................... 666
Element-by-element operators
................. 666
B.2.3
Mata
functions
......................... 667
Scalar and matrix functions
.................. 667
Matrix inversion
......................... 668
B.2.4
Mata
cross products
...................... 669
B.2.5
Mata
matrix subscripts and combining matrices
....... 669
B.2.6 Transferring
Mata data
and matrices to
Stata
........ 671
Creating
Stata
matrices from
Mata
matrices
......... 671
Creating
Stata
data from
a Mata
vector
........... 671
B.3 Programming in
Mata
.......................... 672
8.
3.1
Declarations
........................... 672
8.
3.2
Mata
program
.......................... 672
8.
3.3
Mata
program with results output to
Stata
......... 673
8.
3.4
Stata
program that calls
a Mata
program
.......... 673
B.3.
5
Using
Mata
in ado-files
..................... 674
Glossary of abbreviations
675
References
679
Author index
687
Subject index
691
Aimed at both students and researchers o£ economics and related social sciences,
Microeconometrics Using
Stata,
Revised Edition provides the most complete and up-to-date
survey of microeconometric methods available in
Stata,
including linear regression, simulation,
instrumental-variables estimation, quantile regression, random- and fixed-effects models,
linear mixed models, analytical and bootstrap inference, and nonlinear models for binary,
multinomial, censored, and count outcomes for both cross-sectional and panel
datasets.
This
revised edition incorporates new features added in
Stata
11
that make it easier to implement
methods presented in the original edition of the book—factor variables, the margins
command for marginal effects, and the gnun command.
Colin Cameron is a professor of economics at the University of California-Davis where he
teaches econometrics at undergraduate and graduate levels, as well as an undergraduate
course in health economics. He has additionally taught several short courses in econometrics in
Europe and Australia. His research interests span a range of topics within microeconometrics.
He is a past director of the Center on Quantitative Social Science Research at UC-Davis and is
currently an associate editor of the
Stata
Journal.
Pravin K. Trivedi is currently the J.H. Rudy professor in the Department of Economics at
Indiana University-Bloomington. During his academic career, he has taught undergraduate-
and graduate-level econometrics in the United States, Europe, and Australia. His research
interests are in microeconometrics and health economics. He served as
coeditor
of the
Econometrics Journal from
2000-2007
and has been on the editorial board of the Journal of
Applied Econometrics since
1988.
He has coauthored (with David
Zimmer)
Copula Modeling
in Econometrics: An Introduction for Practitioners
(2007).
Cameron and Trivedi s joint work includes research articles on econometric models and tests
for count data, the Econometric Society monograph Regression Analysis of Count Data, and
the graduate-level text Microeconometrics: Methods and Applications.
|
any_adam_object | 1 |
author | Cameron, Adrian Colin 1956- Trivedi, Pravin K. 1943- |
author_GND | (DE-588)12870022X (DE-588)118054791 |
author_facet | Cameron, Adrian Colin 1956- Trivedi, Pravin K. 1943- |
author_role | aut aut |
author_sort | Cameron, Adrian Colin 1956- |
author_variant | a c c ac acc p k t pk pkt |
building | Verbundindex |
bvnumber | BV036094687 |
callnumber-first | H - Social Science |
callnumber-label | HB139 |
callnumber-raw | HB139 |
callnumber-search | HB139 |
callnumber-sort | HB 3139 |
callnumber-subject | HB - Economic Theory and Demography |
classification_rvk | MR 2200 QC 100 QH 320 ST 601 |
classification_tum | WIR 017f |
ctrlnum | (OCoLC)739097894 (DE-599)BVBBV036094687 |
dewey-full | 338.5/015195 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 338 - Production |
dewey-raw | 338.5/015195 |
dewey-search | 338.5/015195 |
dewey-sort | 3338.5 515195 |
dewey-tens | 330 - Economics |
discipline | Informatik Soziologie Wirtschaftswissenschaften |
edition | Rev. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02469nam a2200529 c 4500</leader><controlfield tag="001">BV036094687</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210414 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100324s2010 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781597180733</subfield><subfield code="9">978-1-59718-073-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)739097894</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036094687</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-M382</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91S</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-M158</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HB139</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">338.5/015195</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2200</subfield><subfield code="0">(DE-625)123489:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 100</subfield><subfield code="0">(DE-625)141244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 320</subfield><subfield code="0">(DE-625)141568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 017f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameron, Adrian Colin</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12870022X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microeconometrics using Stata</subfield><subfield code="c">A. Colin Cameron ; Pravin K. Trivedi</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">College Station, Tex.</subfield><subfield code="b">Stata Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLII, 706 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Stata Press publication</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikroökonomie</subfield><subfield code="0">(DE-588)4039225-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stata</subfield><subfield code="0">(DE-588)4617285-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikroökonomisches Modell</subfield><subfield code="0">(DE-588)4125908-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikroökonomie</subfield><subfield code="0">(DE-588)4039225-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stata</subfield><subfield code="0">(DE-588)4617285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mikroökonomisches Modell</subfield><subfield code="0">(DE-588)4125908-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stata</subfield><subfield code="0">(DE-588)4617285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trivedi, Pravin K.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118054791</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018985212&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018985212&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018985212</subfield></datafield></record></collection> |
id | DE-604.BV036094687 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:11:27Z |
institution | BVB |
isbn | 9781597180733 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018985212 |
oclc_num | 739097894 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-N2 DE-M382 DE-739 DE-703 DE-20 DE-384 DE-11 DE-188 DE-473 DE-BY-UBG DE-91 DE-BY-TUM DE-945 DE-355 DE-BY-UBR DE-521 DE-Re13 DE-BY-UBR DE-858 DE-824 DE-634 DE-Aug4 DE-1028 DE-2070s DE-92 DE-91S DE-BY-TUM DE-706 DE-83 DE-M158 |
owner_facet | DE-19 DE-BY-UBM DE-N2 DE-M382 DE-739 DE-703 DE-20 DE-384 DE-11 DE-188 DE-473 DE-BY-UBG DE-91 DE-BY-TUM DE-945 DE-355 DE-BY-UBR DE-521 DE-Re13 DE-BY-UBR DE-858 DE-824 DE-634 DE-Aug4 DE-1028 DE-2070s DE-92 DE-91S DE-BY-TUM DE-706 DE-83 DE-M158 |
physical | XLII, 706 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Stata Press |
record_format | marc |
series2 | A Stata Press publication |
spelling | Cameron, Adrian Colin 1956- Verfasser (DE-588)12870022X aut Microeconometrics using Stata A. Colin Cameron ; Pravin K. Trivedi Rev. ed. College Station, Tex. Stata Press 2010 XLII, 706 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier A Stata Press publication Mikroökonomie (DE-588)4039225-9 gnd rswk-swf Ökonometrisches Modell (DE-588)4043212-9 gnd rswk-swf Stata (DE-588)4617285-3 gnd rswk-swf Mikroökonomisches Modell (DE-588)4125908-7 gnd rswk-swf Ökonometrisches Modell (DE-588)4043212-9 s Mikroökonomie (DE-588)4039225-9 s Stata (DE-588)4617285-3 s DE-604 Mikroökonomisches Modell (DE-588)4125908-7 s DE-188 Trivedi, Pravin K. 1943- Verfasser (DE-588)118054791 aut Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018985212&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018985212&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Cameron, Adrian Colin 1956- Trivedi, Pravin K. 1943- Microeconometrics using Stata Mikroökonomie (DE-588)4039225-9 gnd Ökonometrisches Modell (DE-588)4043212-9 gnd Stata (DE-588)4617285-3 gnd Mikroökonomisches Modell (DE-588)4125908-7 gnd |
subject_GND | (DE-588)4039225-9 (DE-588)4043212-9 (DE-588)4617285-3 (DE-588)4125908-7 |
title | Microeconometrics using Stata |
title_auth | Microeconometrics using Stata |
title_exact_search | Microeconometrics using Stata |
title_full | Microeconometrics using Stata A. Colin Cameron ; Pravin K. Trivedi |
title_fullStr | Microeconometrics using Stata A. Colin Cameron ; Pravin K. Trivedi |
title_full_unstemmed | Microeconometrics using Stata A. Colin Cameron ; Pravin K. Trivedi |
title_short | Microeconometrics using Stata |
title_sort | microeconometrics using stata |
topic | Mikroökonomie (DE-588)4039225-9 gnd Ökonometrisches Modell (DE-588)4043212-9 gnd Stata (DE-588)4617285-3 gnd Mikroökonomisches Modell (DE-588)4125908-7 gnd |
topic_facet | Mikroökonomie Ökonometrisches Modell Stata Mikroökonomisches Modell |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018985212&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018985212&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cameronadriancolin microeconometricsusingstata AT trivedipravink microeconometricsusingstata |