Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Providence, R.I.
American Math. Soc.
2010
|
Schriftenreihe: | Memoirs of the American Mathematical Society
961 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Volume 204, number 961(end of volume) Literaturverz.: S. 121 - 123 |
Beschreibung: | VI, 123 S. |
ISBN: | 9780821849033 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV036084742 | ||
003 | DE-604 | ||
005 | 20130301 | ||
007 | t | ||
008 | 100318s2010 xxu |||| 00||| eng d | ||
010 | |a 2009050034 | ||
020 | |a 9780821849033 |c alk. paper |9 978-0-8218-4903-3 | ||
035 | |a (OCoLC)489441279 | ||
035 | |a (DE-599)BVBBV036084742 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-29T |a DE-83 | ||
050 | 0 | |a QA613.619 | |
082 | 0 | |a 515/.353 | |
245 | 1 | 0 | |a Non-divergence equations structured on Hörmander vector fields |b heat kernels and Harnack inequalities |c Marco Bramanti ... |
264 | 1 | |a Providence, R.I. |b American Math. Soc. |c 2010 | |
300 | |a VI, 123 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v 961 | |
500 | |a Volume 204, number 961(end of volume) | ||
500 | |a Literaturverz.: S. 121 - 123 | ||
650 | 4 | |a Vector fields | |
650 | 4 | |a Differential inequalities | |
650 | 4 | |a Heat equation | |
650 | 4 | |a Partial differential operators | |
650 | 0 | 7 | |a Vektorfeld |0 (DE-588)4139571-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeleitungsgleichung |0 (DE-588)4188859-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialungleichung |0 (DE-588)4149785-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 0 | 1 | |a Differentialungleichung |0 (DE-588)4149785-5 |D s |
689 | 0 | 2 | |a Wärmeleitungsgleichung |0 (DE-588)4188859-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bramanti, Marco |d 1963- |e Sonstige |0 (DE-588)140795340 |4 oth | |
830 | 0 | |a Memoirs of the American Mathematical Society |v 961 |w (DE-604)BV008000141 |9 961 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018975726&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018975726 |
Datensatz im Suchindex
_version_ | 1804141144445026304 |
---|---|
adam_text | Contents
Introduction
Part I: Operators with constant coefficients
7
1.
Overview of Part I
7
2.
Global extension of
Hörmander s
vector fields and geometric
properties of the CC-distance
9
2.1.
Some global geometric properties of CC-distances
10
2.2.
Global extension of
Hörmander s
vector fields
13
3.
Global extension of the operator Ha and existence of a fundamental
solution
15
4.
Uniform Gevray estimates and upper bounds of fundamental
solutions for large
d
(χ,
y)
18
5.
Fractional integrals and uniform I? bounds of fundamental solutions
for large
d
(χ,
y)
25
6.
Uniform global upper bounds for fundamental solutions
30
Homogeneous groups
31
6.2.
Upper bounds on fundamental solutions
37
7.
Uniform lower bounds for fundamental solutions
54
8.
Uniform upper bounds for the derivatives of the fundamental
solutions
57
9.
Uniform upper bounds on the difference of the fundamental solutions
of two operators
60
Part II: Fundamental solution for operators with Holder continuous
coefficients
67
10.
Assumptions, main results and overview of Part II
67
11.
Fundamental solution for H: the
Levi
method
74
12.
The Cauchy problem
86
13.
Lower bounds for fundamental solutions
89
14.
Regularity results
93
Part III: Harnack inequality for operators with Holder continuous
coefficients
99
15.
Overview of Part III
99
16.
Green function for operators with smooth coefficients on regular
domains
101
iv
CONTENTS
17.
Harnack inequality for operators with smooth coefficients
108
18.
Harnack inequality in the non-smooth case 111
Epilogue
115
19.
Applications to operators which are defined only locally
115
20.
Further developments and open problems
117
References
121
|
any_adam_object | 1 |
author_GND | (DE-588)140795340 |
building | Verbundindex |
bvnumber | BV036084742 |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613.619 |
callnumber-search | QA613.619 |
callnumber-sort | QA 3613.619 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)489441279 (DE-599)BVBBV036084742 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02002nam a2200493 cb4500</leader><controlfield tag="001">BV036084742</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130301 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100318s2010 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009050034</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821849033</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8218-4903-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)489441279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036084742</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA613.619</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-divergence equations structured on Hörmander vector fields</subfield><subfield code="b">heat kernels and Harnack inequalities</subfield><subfield code="c">Marco Bramanti ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 123 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">961</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Volume 204, number 961(end of volume)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz.: S. 121 - 123</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeleitungsgleichung</subfield><subfield code="0">(DE-588)4188859-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialungleichung</subfield><subfield code="0">(DE-588)4149785-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialungleichung</subfield><subfield code="0">(DE-588)4149785-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wärmeleitungsgleichung</subfield><subfield code="0">(DE-588)4188859-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bramanti, Marco</subfield><subfield code="d">1963-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)140795340</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">961</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">961</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018975726&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018975726</subfield></datafield></record></collection> |
id | DE-604.BV036084742 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:11:12Z |
institution | BVB |
isbn | 9780821849033 |
language | English |
lccn | 2009050034 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018975726 |
oclc_num | 489441279 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-83 |
physical | VI, 123 S. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | American Math. Soc. |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Non-divergence equations structured on Hörmander vector fields heat kernels and Harnack inequalities Marco Bramanti ... Providence, R.I. American Math. Soc. 2010 VI, 123 S. txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society 961 Volume 204, number 961(end of volume) Literaturverz.: S. 121 - 123 Vector fields Differential inequalities Heat equation Partial differential operators Vektorfeld (DE-588)4139571-2 gnd rswk-swf Wärmeleitungsgleichung (DE-588)4188859-5 gnd rswk-swf Differentialungleichung (DE-588)4149785-5 gnd rswk-swf Vektorfeld (DE-588)4139571-2 s Differentialungleichung (DE-588)4149785-5 s Wärmeleitungsgleichung (DE-588)4188859-5 s DE-604 Bramanti, Marco 1963- Sonstige (DE-588)140795340 oth Memoirs of the American Mathematical Society 961 (DE-604)BV008000141 961 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018975726&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Non-divergence equations structured on Hörmander vector fields heat kernels and Harnack inequalities Memoirs of the American Mathematical Society Vector fields Differential inequalities Heat equation Partial differential operators Vektorfeld (DE-588)4139571-2 gnd Wärmeleitungsgleichung (DE-588)4188859-5 gnd Differentialungleichung (DE-588)4149785-5 gnd |
subject_GND | (DE-588)4139571-2 (DE-588)4188859-5 (DE-588)4149785-5 |
title | Non-divergence equations structured on Hörmander vector fields heat kernels and Harnack inequalities |
title_auth | Non-divergence equations structured on Hörmander vector fields heat kernels and Harnack inequalities |
title_exact_search | Non-divergence equations structured on Hörmander vector fields heat kernels and Harnack inequalities |
title_full | Non-divergence equations structured on Hörmander vector fields heat kernels and Harnack inequalities Marco Bramanti ... |
title_fullStr | Non-divergence equations structured on Hörmander vector fields heat kernels and Harnack inequalities Marco Bramanti ... |
title_full_unstemmed | Non-divergence equations structured on Hörmander vector fields heat kernels and Harnack inequalities Marco Bramanti ... |
title_short | Non-divergence equations structured on Hörmander vector fields |
title_sort | non divergence equations structured on hormander vector fields heat kernels and harnack inequalities |
title_sub | heat kernels and Harnack inequalities |
topic | Vector fields Differential inequalities Heat equation Partial differential operators Vektorfeld (DE-588)4139571-2 gnd Wärmeleitungsgleichung (DE-588)4188859-5 gnd Differentialungleichung (DE-588)4149785-5 gnd |
topic_facet | Vector fields Differential inequalities Heat equation Partial differential operators Vektorfeld Wärmeleitungsgleichung Differentialungleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018975726&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT bramantimarco nondivergenceequationsstructuredonhormandervectorfieldsheatkernelsandharnackinequalities |