Thermal nanosystems and nanomaterials:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Heidelberg [u.a.]
Springer
2009
|
Schriftenreihe: | Topics in applied physics
118 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 587 S. Ill., graph. Darst. 235 mm x 155 mm |
ISBN: | 9783642042577 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV036062890 | ||
003 | DE-604 | ||
005 | 20110214 | ||
007 | t | ||
008 | 100304s2009 ad|| |||| 00||| eng d | ||
015 | |a 09N360770 |2 dnb | ||
016 | 7 | |a 996064354 |2 DE-101 | |
020 | |a 9783642042577 |c GB. : EUR 149.75 (freier Pr.), sfr 217.50 (freier Pr.) |9 978-3-642-04257-7 | ||
035 | |a (OCoLC)640130519 | ||
035 | |a (DE-599)DNB996064354 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-11 |a DE-91G | ||
082 | 0 | |a 536.2 |2 22/ger | |
084 | |a PHY 644f |2 stub | ||
084 | |a MTA 720f |2 stub | ||
084 | |a 530 |2 sdnb | ||
084 | |a WER 035f |2 stub | ||
245 | 1 | 0 | |a Thermal nanosystems and nanomaterials |c Sebastian Volz ed. |
264 | 1 | |a Heidelberg [u.a.] |b Springer |c 2009 | |
300 | |a XX, 587 S. |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Topics in applied physics |v 118 | |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeübertragung |0 (DE-588)4064211-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Wärmeübertragung |0 (DE-588)4064211-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wärmeübertragung |0 (DE-588)4064211-2 |D s |
689 | 1 | 1 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Volz, Sebastian |4 edt | |
830 | 0 | |a Topics in applied physics |v 118 |w (DE-604)BV008007504 |9 118 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018954331&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018954331 |
Datensatz im Suchindex
_version_ | 1804141108350943232 |
---|---|
adam_text | CONTENTS PART I NANOMATERIALS 1 INTRODUCTION . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
SEBASTIAN VOLZ 1.1 NANOSTRUCTURES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 SCIENTIFIC AND
TECHNOLOGICAL STAKES . . . . . . . . . . . . . . . . . . . . . . . . . .
5 1.3 PHYSICAL MECHANISMS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 8 1.3.1 RAREFACTION. SURFACE REFLECTION
AND TRANSMISSION AT INTERFACES . . . . . . . . . . . . . . . . . . . . .
. . 9 1.3.2 CONFINEMENT . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 10 1.3.3 DENSITIES OF STATES AND
DIMENSIONALITY . . . . . . . . . . . . . . . . 12 1.3.4 NON-FOURIER
EFFECTS AND THERMAL CONDUCTIVITY . . . . . . . . . 13 1.4 CONCLUSION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 15 REFERENCES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2
NANOSTRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 17 PATRICE CHANTRENNE, KARL JOULAIN, AND
DAVID LACROIX 2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 MODELLING HEAT
TRANSFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 18 2.2.1 THE PHYSICS OF PHONON TRANSFER . . . . . . . . . . . . .
. . . . . . . . 18 2.2.2 SEMI-ANALYTIC MODELS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 27 2.3 NANOFILMS, NANOWIRES, AND
NANOTUBES. . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1
DETERMINISTIC MODEL: BTE AND THE DISCRETE ORDINATE METHOD . . . . . . .
. . . . . . . . 31 2.3.2 STATISTICAL MODEL: BTE AND THE MONTE CARLO
METHOD . . . . 33 2.3.3 MECHANICAL MODEL: MOLECULAR DYNAMICS . . . . . .
. . . . . . . . 40 2.4 COMPARISON AND LIMITATIONS OF THE MODELS . . . .
. . . . . . . . . . . . . . . . 49 2.4.1 EXAMPLES OF CONFINEMENT IN A
NANOFILM . . . . . . . . . . . . . . 50 2.4.2 EXAMPLES OF CONFINEMENT IN
A NANOWIRE AND A NANOTUBE . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 54 VII VIII CONTENTS 2.5 CONCLUSION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 57 APPENDIX: MEASURING THERMAL PROPERTIES . . . . . . . . . .
. . . . . . . . . . . . . . . . . 58 REFERENCES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 59 3 GREEN*S FUNCTION METHODS FOR PHONON TRANSPORT THROUGH
NANO-CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 63 NATALIO MINGO 3.1 INTRODUCTION TO
GREEN*S FUNCTIONS FOR LATTICE THERMAL TRANSPORT . . 63 3.2 THE HARMONIC
PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 65 3.2.1 DYNAMICS OF NON-PERIODIC SYSTEMS . . . . . . . . . . .
. . . . . . . 65 3.2.2 THE HEAT CURRENT . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 68 3.2.3 DIFFERENT FORMULAS FOR THE
TRANSMISSION . . . . . . . . . . . . . . 71 3.2.4 WEAK COUPLING LIMIT:
THE LOW TEMPERATURE THERMAL CONDUCTANCE OF A WEAK JUNCTION . . . . . . .
. . . . . . . . . . . . . . 75 3.2.5 UPPER LIMITS TO THERMAL
CONDUCTANCE, ENTROPY FLOW, AND INFORMATION RATES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 77 3.3 THE ANHARMONIC PROBLEM . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.1
MANY-BODY HAMILTONIAN . . . . . . . . . . . . . . . . . . . . . . . . .
. . 82 3.3.2 THE HEAT CURRENT . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 83 3.3.3 COMPUTING THE INTERACTING PHONON
GREEN FUNCTIONS . . . . . 84 3.3.4 ANOTHER FORMULA FOR THE HEAT CURRENT
. . . . . . . . . . . . . . . . 89 3.3.5 CAN WE *SEE* THE PHONON
CURRENT? . . . . . . . . . . . . . . . . . . . 90 3.4 CONCLUDING REMARKS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 91 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 93 4 MACROSCOPIC
CONDUCTION MODELS BY VOLUME AVERAGING FOR TWO-PHASE SYSTEMS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
BENO* *T GOYEAU 4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 LOCAL VOLUME
AVERAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 96 4.3 AVERAGED EQUATIONS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 97 4.3.1 LOCAL THERMAL
EQUILIBRIUM AND THE SINGLE-EQUATION MODEL . . . . . . . . . . . . . . .
. . . . . . . 99 4.3.2 DEVIATION EQUATIONS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 100 4.3.3 CLOSURE PROBLEM . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.4 CLOSED
FORM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 104 4.3.5 LOCAL THERMAL NON-EQUILIBRIUM . . . . . . . . . . . .
. . . . . . . . . 105 REFERENCES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5
HEAT CONDUCTION IN COMPOSITES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 107 JEAN-YVES DUQUESNE 5.1 MICROCOMPOSITES AND
EFFECTIVE MEDIA . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.1 TAKING AVERAGES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 107 5.1.2 PARTICLE SHELL . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 110 5.1.3 EXPERIMENTAL
EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2
NANOCOMPOSITES AND PHONON SCATTERING . . . . . . . . . . . . . . . . . .
. . . . 114 5.2.1 LIMITATIONS OF EFFECTIVE MEDIUM THEORIES . . . . . . .
. . . . . . 114 5.2.2 KINETIC THEORY OF HEAT TRANSPORT IN SOLIDS . . . .
. . . . . . . . 115 CONTENTS IX 5.2.3 PHONON SCATTERING BY PARTICLES . .
. . . . . . . . . . . . . . . . . . . . 118 5.2.4 EXAMPLE OF A PURE BULK
MATERIAL . . . . . . . . . . . . . . . . . . . . 118 5.2.5 EXAMPLE OF A
DISORDERED ALLOY . . . . . . . . . . . . . . . . . . . . . . 120 5.3
CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 122 APPENDIX A. DEMONSTRATION OF (5.7) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 APPENDIX
B. EFFECTIVE MEDIUM AND INTERFACE RESISTANCE . . . . . . . . . . . . . .
123 APPENDIX C. CALCULATION PARAMETERS FOR SCATTERING BY PARTICLES . . .
. . . . . . 125 REFERENCES . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6
OPTICAL GENERATION AND DETECTION OF HEAT EXCHANGES IN METAL*DIELECTRIC
NANOCOMPOSITES . . . . . . . . . . . . . . . . . . . . . . . . . . . .
127 BRUNO PALPANT 6.1 OPTICAL PROPERTIES OF NOBLE METAL NANOPARTICLES
AND NANOCOMPOSITE MEDIA . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 128 6.1.1 DIELECTRIC FUNCTION OF NOBLE METALS . . . .
. . . . . . . . . . . . . . 128 6.1.2 OPTICAL RESPONSE OF NANOCOMPOSITE
MEDIA . . . . . . . . . . . . 131 6.2 THERMO-OPTICAL RESPONSE . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.2.1
NOBLE METALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 132 6.2.2 NANOCOMPOSITES . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 133 6.2.3 CALCULATION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.3
HEAT EXCHANGE DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 136 6.3.1 ATHERMAL REGIME AND THE BOLTZMANN EQUATION .
. . . . . . . . 136 6.3.2 THERMAL REGIME AND THE THREE-TEMPERATURE MODEL
. . . . . 139 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7 MIE
THEORY AND THE DISCRETE DIPOLE APPROXIMATION. CALCULATING RADIATIVE
PROPERTIES OF PARTICULATE MEDIA, WITH APPLICATION TO NANOSTRUCTURED
MATERIALS . . . . . . . . . . . . . . . . . . . 151 FRANCK ENGUEHARD 7.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 151 7.2 ABSORPTION AND SCATTERING BY A
PARTICLE OF ARBITRARY SHAPE AND BY A POPULATION OF SUCH PARTICLES . . .
. . . . . . . . . . . . . . . . . . . . . 153 7.2.1 INCIDENT
ELECTROMAGNETIC FIELD, POYNTING VECTOR, AND ASSOCIATED POWER . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 153 7.2.2
ELECTROMAGNETIC FIELDS WITHIN AND SCATTERED BY THE PARTICLE . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.2.3
EXTINCTION, ABSORBED, AND SCATTERED POWER . . . . . . . . . . . . 155
7.2.4 EXPRESSING THE EXTINCTION AND SCATTERED POWERS IN TERMS OF THE
INCIDENT AND SCATTERED ELECTRIC FIELDS . . . 157 7.2.5 EXTINCTION,
ABSORPTION, AND SCATTERING CROSS-SECTIONS. ASSOCIATED EFFICIENCIES AND
SCATTERING PHASE FUNCTION. . . 159 7.2.6 DIRECTIONS OF PROPAGATION AND
POLARISATION . . . . . . . . . . . . 160 7.2.7 RADIATIVE PROPERTIES OF A
POPULATION OF PARTICLES . . . . . . . . 162 7.3 MIE THEORY . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 163 7.3.1 ANALYTIC SOLUTION TO MIE*S ELECTROMAGNETIC PROBLEM . . .
. 163 7.3.2 EXTINCTION AND SCATTERING CROSS-SECTIONS. SCATTERING PHASE
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 165 X
CONTENTS 7.3.3 A SPECIAL CASE: RAYLEIGH SCATTERING . . . . . . . . . . .
. . . . . . . 167 7.3.4 NUMERICAL CONSIDERATIONS . . . . . . . . . . . .
. . . . . . . . . . . . . . 169 7.3.5 RADIATIVE RESPONSE OF A POPULATION
OF SPHERICAL PARTICLES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 170 7.3.6 APPLICATION OF MIE THEORY TO THE RADIATIVE RESPONSE
OF A CLOUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 173 7.4 DISCRETE DIPOLE APPROXIMATION (DDA) . . . . .
. . . . . . . . . . . . . . . . . . 175 7.4.1 THE THEORY OF THE DDA . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.4.2 MODELS FOR
POLARISABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.4.3 APPLYING THE DISCRETE DIPOLE APPROXIMATION . . . . . . . . . . 191
7.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 205 APPENDIX: ANALYTICAL SOLUTION OF
MIE*S ELECTROMAGNETIC PROBLEM. . . . . . . 205 REFERENCES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 211 8 THERMAL CONDUCTIVITY OF NANOFLUIDS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 213 PAWEL KEBLINSKI 8.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 213 8.2 EXCITEMENT, CONTROVERSY, AND NEW
PHYSICS . . . . . . . . . . . . . . . . . . . . 214 8.2.1 BROWNIAN
MOTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
214 8.2.2 INTERFACIAL LIQUID LAYER . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 215 8.2.3 INTERFACIAL THERMAL RESISTANCE. . . . . . .
. . . . . . . . . . . . . . . . 216 8.2.4 NEAR FIELD RADIATION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 216 8.2.5 PARTICLE
CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 217 8.3 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 218 REFERENCES . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 219 PART II NANOSYSTEMS 9 NANOENGINEERED MATERIALS
FOR THERMOELECTRIC ENERGY CONVERSION .. 225 ALI SHAKOURI AND MONA
ZEBARJADI 9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 225 9.2 THERMOELECTRIC
ENERGY CONVERSION. . . . . . . . . . . . . . . . . . . . . . . . . . .
226 9.3 THEORETICAL MODELLING . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 230 9.3.1 BOLTZMANN TRANSPORT AND
THERMOELECTRIC EFFECTS . . . . . . . 230 9.3.2 THEORY OF THERMOELECTRIC
TRANSPORT IN MULTILAYERS AND SUPERLATTICES. . . . . . . . . . . . . . .
. . . . . . . 233 9.3.3 MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN
THERMOELECTRIC LAYERS . . . . . . . . . . . . . . . . . . . . . . . . .
. . 235 9.3.4 NON-EQUILIBRIUM GREEN FUNCTION FOR THERMOELECTRIC
TRANSPORT . . . . . . . . . . . . . . . . . . . . . . . . 236 9.3.5
PHONON TRANSPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 237 9.3.6 THERMOELECTRIC TRANSPORT IN STRONGLY CORRELATED
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
238 9.3.7 WAVE OR PARTICLE PICTURE FOR ELECTRONS AND PHONONS? . . . .
239 9.3.8 WHY IS THERE A TRADE-OFF BETWEEN ELECTRICAL CONDUCTIVITY AND
SEEBECK COEFFICIENT? . . . . . . . . . . . . . . . 240 9.3.9
LOW-DIMENSIONAL THERMOELECTRICS . . . . . . . . . . . . . . . . . . .
241 CONTENTS XI 9.4 THERMIONIC ENERGY CONVERSION . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 244 9.4.1 VACUUM THERMIONIC ENERGY
CONVERSION . . . . . . . . . . . . . . 244 9.4.2 NANOMETER GAPS AND
THERMOTUNNELING . . . . . . . . . . . . . . . 244 9.4.3 INVERSE
NOTTINGHAM EFFECT AND CARBON NANOTUBE EMITTERS . . . . . . . . . . . . .
. . . . . . . . . 245 9.4.4 SINGLE BARRIER SOLID-STATE THERMIONIC ENERGY
CONVERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 246 9.4.5 MULTILAYER SOLID-STATE THERMIONIC ENERGY CONVERSION . . 247
9.4.6 CONSERVATION OF TRANSVERSE MOMENTUM IN THERMIONIC EMISSION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 248 9.4.7 ELECTRON GROUP
VELOCITY AND THE ELECTRONIC DENSITY OF STATES . . . . . . . . . . . . .
. . . . . 249 9.4.8 REVERSIBLE THERMOELECTRICS . . . . . . . . . . . . .
. . . . . . . . . . . . 251 9.5 REDUCTION OF PHONON THERMAL CONDUCTIVITY
. . . . . . . . . . . . . . . . . . . 251 9.5.1 THERMAL CONDUCTIVITY OF
SUPERLATTICES . . . . . . . . . . . . . . . . 252 9.5.2 THERMAL
CONDUCTIVITY OF NANOWIRES . . . . . . . . . . . . . . . . . . 255 9.6
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 255 9.6.1 HETEROSTRUCTURE INTEGRATED
THERMOELECTRIC/THERMIONIC MICROREFRIGERATORS ON A CHIP . . . . . . . . .
. . . . . . . . . . . . . . . 255 9.6.2 SIGE AND SIGEC SUPERLATTICE
OPTIMIZATION . . . . . . . . . . . . 262 9.6.3 POTENTIAL
METAL/SEMICONDUCTOR HETEROSTRUCTURE SYSTEMS . 264 9.6.4 INGAALAS
EMBEDDED WITH ERAS NANOPARTICLES . . . . . . . . . 265 9.6.5
METAL/SEMICONDUCTOR MULTILAYERS BASED ON NITRIDES . . . . 270 9.7
SCALING UP PRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 271 9.7.1 THIN-FILM POWER GENERATION MODULES . .
. . . . . . . . . . . . . . 272 9.7.2 OPTOELECTRONIC AND ELECTRONIC
APPLICATIONS . . . . . . . . . . . . 273 9.8 SYSTEM REQUIREMENTS FOR
POWER GENERATION . . . . . . . . . . . . . . . . . . . 275 9.9 GRADED
MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 277 9.10 CHARACTERIZATION TECHNIQUES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 278 9.10.1 CROSS-PLANE
SEEBECK MEASUREMENT . . . . . . . . . . . . . . . . . . . 279 9.10.2
TRANSIENT ZT MEASUREMENT . . . . . . . . . . . . . . . . . . . . . . . .
. 280 9.10.3 SUSPENDED HEATER AND NANOWIRE CHARACTERIZATION . . . . . .
281 9.11 THERMOELECTRIC/THERMIONIC VS. THERMOPHOTOVOLTAICS . . . . . . .
. . . . 282 9.12 BALLISTIC ELECTRON AND PHONON TRANSPORT EFFECTS . . . .
. . . . . . . . . . . . 283 9.13 NONLINEAR THERMOELECTRIC EFFECTS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 285 9.14 A
REFRIGERATOR WITHOUT THE HOT SIDE . . . . . . . . . . . . . . . . . . .
. . . . . . 286 9.15 CONCLUSION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 287 REFERENCES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 287 10 MOLECULAR PROBES FOR THERMOMETRY IN
MICROFLUIDIC DEVICES . . . . . . . . 301 CHARLIE GOSSE, CHRISTIAN
BERGAUD, AND PETER L¨ OW 10.1 MICROLABORATORIES AND HEAT TRANSFER ISSUES
. . . . . . . . . . . . . . . . . . . . 301 10.1.1 HISTORICAL CONTEXT .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
10.1.2 ELECTROKINETIC SEPARATION . . . . . . . . . . . . . . . . . . . .
. . . . . . . 302 10.1.3 DNA AMPLIFICATION BY PCR. . . . . . . . . . . .
. . . . . . . . . . . . . 303 10.1.4 THERMODYNAMIC AND KINETIC
MEASUREMENTS . . . . . . . . . . . 305 XII CONTENTS 10.2 MICROFLUIDICS
AND THERMOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 308 10.2.1 ELECTRICAL METHODS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 308 10.2.2 NON-SPECTROSCOPIC OPTICAL METHODS . .
. . . . . . . . . . . . . . . . 309 10.2.3 MOLECULAR-PROBE-RELATED
METHODS . . . . . . . . . . . . . . . . . . . 310 10.3 THERMOSENSITIVE
MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 311 10.3.1 LIQUID CRYSTALS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 311 10.3.2 POLYMERS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 10.3.3
PHOSPHOLIPID MEMBRANES . . . . . . . . . . . . . . . . . . . . . . . . .
. . 316 10.4 KINETIC FLUORESCENT PROBES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 317 10.4.1 INTRAMOLECULAR CHARGE
TRANSFER IN ORGANIC MOLECULES . . . 319 10.4.2 CHARGE TRANSFER IN
ORGANOMETALLIC COMPLEXES . . . . . . . . . 320 10.4.3 EXCIMER FORMATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
10.4.4 DELAYED FLUORESCENCE . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 323 10.5 THERMODYNAMIC FLUORESCENT PROBES. . . . . . . .
. . . . . . . . . . . . . . . . . . 324 10.5.1 ISOMERISATION BETWEEN
SPECIES IN THEIR GROUND STATE. GENERAL FEATURES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 325 10.5.2 FOLDING OF
NUCLEIC ACID STRUCTURES . . . . . . . . . . . . . . . . . . . 326 10.5.3
CHROMOPHORE COMPLEXATION BY CYCLODEXTRINS . . . . . . . . . 327 10.5.4
ACID*BASE REACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 328 10.5.5 MODIFICATION OF THE COORDINATION SPHERE OF METALLIC
IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 329 10.5.6 THERMALISATION BETWEEN EXCITED STATES. GENERAL FEATURES AND
EXAMPLES . . . . . . . . . . . . . . . . . . . . . . 330 10.6 PROCEDURES
FOR FLUORESCENCE MICROSCOPY . . . . . . . . . . . . . . . . . . . . .
331 10.6.1 SINGLE-WAVELENGTH INTENSITY MEASUREMENT . . . . . . . . . . .
. 331 10.6.2 RATIOMETRIC INTENSITY MEASUREMENT. . . . . . . . . . . . .
. . . . . . 332 10.6.3 LIFETIME MEASUREMENT . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 333 10.7 OTHER FORMS OF SPECTROSCOPY FOR
PROBING THERMODYNAMIC EQUILIBRIA . . . . . . . . . . . . . . . . . . . .
. . . 333 10.7.1 RAMAN SPECTROSCOPY . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 334 10.7.2 NUCLEAR MAGNETIC RESONANCE . . . .
. . . . . . . . . . . . . . . . . . . . 334 10.8 CONCLUSION AND
PROSPECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 335 10.8.1 FLUORESCENT PROBES . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 336 10.8.2 MICROSCOPIC TECHNIQUES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 336 REFERENCES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 337 11 CELL TARGETING AND MAGNETICALLY INDUCED
HYPERTHERMIA . . . . . . . . . . . 343 ETIENNE DUGUET, LUCILE HARDEL,
AND S´ EBASTIEN VASSEUR 11.1 INTRODUCTION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 11.1.1
NANOMEDICINE. AN APPLICATION OF NANOSCIENCE AND NANOTECHNOLOGY . . . .
343 11.1.2 AN INCOMPLETE AND COMPLEX SET OF REQUIREMENTS . . . . . . 344
11.2 IN VIVO APPLICATIONS OF NANOPARTICLES . . . . . . . . . . . . . . .
. . . . . . . . . 344 11.2.1 NANOPARTICLES IN THE BLOOD COMPARTMENT . .
. . . . . . . . . . . . 344 11.2.2 DESIGNING PARTICLES WITH EXTENDED
VASCULAR LIFETIME. . . . 345 11.2.3 ACTIVE TARGETING BY COUPLING WITH
MOLECULAR RECOGNITION LIGANDS . . . . . . . . . . . . . . . . . 346
CONTENTS XIII 11.2.4 ALTERNATIVES TO ACTIVE TARGETING . . . . . . . . .
. . . . . . . . . . . . 347 11.2.5 OVERVIEW OF COMMERCIALLY AVAILABLE
AND FORTHCOMING FORMULATIONS . . . . . . . . . . . . . . . . . . . . . .
348 11.2.6 RELATIVE IMPORTANCE OF TOXICITY . . . . . . . . . . . . . . .
. . . . . . . 352 11.3 MAGNETICALLY INDUCED HYPERTHERMIA . . . . . . . .
. . . . . . . . . . . . . . . . . 353 11.3.1 THERAPEUTIC ADVANTAGES OF
HEAT . . . . . . . . . . . . . . . . . . . . . 353 11.3.2 DIFFERENT
METHODS AND THEIR LIMITATIONS . . . . . . . . . . . . . . 353 11.3.3
MECHANISMS FOR INDUCTION LOSSES IN MAGNETIC MATERIALS . 354 11.3.4
COMPARING THEORY AND EXPERIMENT . . . . . . . . . . . . . . . . . . 356
11.3.5 PHYSIOLOGICAL CONSTRAINTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . 357 11.3.6 SOME FORMULATIONS UNDER DEVELOPMENT OR
UNDERGOING CLINICAL ASSESSMENT . . . . . . . . . . . . . . . . . . 359
11.4 SHORT AND MID-TERM PROSPECTS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 360 11.4.1 MEDIATORS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 361 11.4.2 PHYSICS OF
MAGNETIC DISSIPATION PHENOMENA AND MODELLING THE IN VIVO TEMPERATURE
DISTRIBUTION . . . . 362 11.4.3 TARGETING STRATEGIES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 362 11.4.4 SYSTEM APPLYING
THE ALTERNATING MAGNETIC FIELD . . . . . . . 362 REFERENCES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 363 12 ACCOUNTING FOR HEAT TRANSFER PROBLEMS IN
THE SEMICONDUCTOR INDUSTRY . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 367 CHRISTIAN BRYLINSKI 12.1 INTRODUCTION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 367 12.2 GENERAL TRENDS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 368 12.2.1 MINIATURISATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
368 12.2.2 RISING FREQUENCIES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 369 12.2.3 HETEROGENEOUS INTEGRATION . . . . . . .
. . . . . . . . . . . . . . . . . . . 370 12.3 HEAT TRANSPORT . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 370 12.3.1 HEAT CONDUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 370 12.3.2 MICROSCOPIC ORDER IN THE
SEMICONDUCTOR . . . . . . . . . . . . . . 371 12.3.3 THE SUBSTRATE . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
12.4 PROBLEMS AND PREDICTIONS FOR THE MAIN CHIP TYPES . . . . . . . . .
. . . . 378 12.4.1 COMPONENTS FOR CONTROLLING ELECTRICAL ENERGY . . . .
. . . . . 378 12.4.2 PROCESSOR AND MEMORY . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 381 12.4.3 LIGHT-EMITTING COMPONENTS . . . .
. . . . . . . . . . . . . . . . . . . . . 383 12.4.4 TRENDS IN HEAT
TRANSFER FEATURES OF SEMICONDUCTOR COMPONENTS IN THE COMING DECADES . .
384 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 385 PART III ADVANCED
THERMAL MEASUREMENTS AT NANOSCALES 13 PHOTOTHERMAL TECHNIQUES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
GILLES TESSIER 13.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 389 13.1.1 PROBLEMS
SPECIFIC TO STRUCTURES MADE BY A TOP*DOWN APPROACH . . . . . . . . . . .
. . . . . . . . . . 390 13.1.2 THERMOREFLECTANCE AND CCD CAMERAS . . . .
. . . . . . . . . . . . 391 XIV CONTENTS 13.2 THERMOREFLECTANCE IMAGING
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
13.2.1 THE UNDERLYING PHENOMENON . . . . . . . . . . . . . . . . . . . .
. . . 392 13.2.2 MEASUREMENT METHODS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 393 13.3 THERMOREFLECTANCE UNDER VISIBLE
ILLUMINATION . . . . . . . . . . . . . . . . . 395 13.3.1 SPECTROSCOPY
OF D R / D T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
13.3.2 MODELLING . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 396 13.3.3 CALIBRATION . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 398 13.4
THERMOREFLECTANCE UNDER ULTRAVIOLET ILLUMINATION . . . . . . . . . . . .
. . 401 13.5 THERMOREFLECTANCE IN THE NEAR INFRARED. REAR FACE IMAGING .
. . . . . 403 13.5.1 NEAR-INFRARED THERMOREFLECTANCE WITH LASER
ILLUMINATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
403 13.5.2 NEAR-INFRARED THERMOREFLECTANCE WITH INCOHERENT ILLUMINATION
. . . . . . . . . . . . . . . . . . . . . . . . 404 13.5.3 IMPROVING
RESOLUTION WITH A SOLID IMMERSION LENS . . . . . 405 REFERENCES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 407 14 THERMAL MICROSCOPY WITH
PHOTOMULTIPLIERS AND UV TO IR CAMERAS . 411 BERNARD CRETIN AND BENJAMIN
R´ EMY 14.1 BASIC PHYSICS. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 412 14.1.1 RADIOMETRY. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
14.1.2 BLACK BODY EMISSION AND PLANCK*S LAW . . . . . . . . . . . . . .
415 14.1.3 SHORT WAVELENGTH MEASUREMENTS. PHOTON FLUX . . . . . . . . .
417 14.1.4 RANDOM NATURE OF THE PHOTON FLUX . . . . . . . . . . . . . .
. . . . . 419 14.1.5 MULTISPECTRAL MEASUREMENTS . . . . . . . . . . . .
. . . . . . . . . . . . 420 14.2 MEASUREMENT BY PHOTOMULTIPLIER AND UV
TO NIR CAMERA . . . . . . . . 421 14.2.1 PRINCIPLE OF PHOTOMULTIPLIERS
AND CAMERAS . . . . . . . . . . . . 422 14.2.2 EXPERIMENTAL SETUP FOR
THE UV THERMAL MICROSCOPE . . . . 425 14.2.3 EXPERIMENTAL SETUP FOR THE
SILICON CCD CAMERA . . . . . . . 430 14.3 CONCLUSION . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 436 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 437 15 NEAR-FIELD
OPTICAL MICROSCOPY IN THE INFRARED RANGE . . . . . . . . . . . . . 439
YANNICK DE WILDE, PAUL-ARTHUR LEMOINE, AND ARTHUR BABUTY 15.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 439 15.2 RESOLUTION LIMIT IN
CONVENTIONAL MICROSCOPY . . . . . . . . . . . . . . . . . 441 15.3
NEAR-FIELD MICROSCOPY . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 444 15.3.1 BASIC IDEA . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 444 15.3.2 APERTURE
SNOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
445 15.3.3 APERTURELESS OR SCATTERING SNOM . . . . . . . . . . . . . . .
. . . . . 448 15.4 THERMAL RADIATION STM . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 456 15.4.1 INTRODUCTION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
15.4.2 TRSTM SETUP AND OPERATION. . . . . . . . . . . . . . . . . . . .
. . . . 457 15.4.3 FIRST EXAMPLE APPLICATION OF TRSTM . . . . . . . . .
. . . . . . . 458 15.4.4 PROSPECTS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 463 REFERENCES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 465 CONTENTS XV 16 PHOTOTHERMAL INDUCED RESONANCE.
APPLICATION TO INFRARED SPECTROMICROSCOPY . . . . . . . . . . . . . . .
. . . . . . . 469 ALEXANDRE DAZZI 16.1 INFRARED SPECTROSCOPY AND
MICROSCOPY . . . . . . . . . . . . . . . . . . . . . . . 469 16.1.1
OPTICAL INDEX AND ABSORPTION . . . . . . . . . . . . . . . . . . . . . .
. 469 16.1.2 INFRARED SPECTROMETERS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 471 16.1.3 CONFOCAL MICROSCOPES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 473 16.2 THE PTIR TECHNIQUE . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
475 16.3 PHOTOTHERMOELASTIC PHENOMENA . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 477 16.4 TIME SCALES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 16.5
THERMOELASTIC DEFORMATION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 481 16.6 AFM CONTACT RESONANCE MODE . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 482 16.7 ABSORPTION
MEASUREMENT BY CONTACT RESONANCE . . . . . . . . . . . . . . . 485 16.8
PTIR LATERAL RESOLUTION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 488 16.8.1 RESOLUTION OF AN OBJECT PLACED ON A
SURFACE . . . . . . . . . . . 489 16.8.2 RESOLUTION OF A BURIED OBJECT .
. . . . . . . . . . . . . . . . . . . . . . 489 16.9 EXPERIMENTAL
ILLUSTRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 492 16.9.1 CANDIDA ALBICANS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 492 16.9.2 ESCHERICHIA COLI AND ITS
BACTERIOPHAGE T5 . . . . . . . . . . . . . 493 16.9.3 ULTRALOCALISED
INFRARED SPECTROSCOPY . . . . . . . . . . . . . . . . . 494 16.9.4
CHEMICAL MAPPING AT THE NANOSCALE . . . . . . . . . . . . . . . . . .
498 16.10 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 502 REFERENCES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 503 17 SCANNING THERMAL MICROSCOPY WITH FLUORESCENT
NANOPROBES . . . . . . . 505 LIONEL AIGOUY, BENJAMIN SAMSON, ELIKA SA¨
*DI, PETER L¨ OW, CHRISTIAN BERGAUD, JESSICA LAB´ EGUERIE-EG´ EA, CARINE
LASBRUGNAS, AND MICHEL MORTIER 17.1 LUMINESCENCE . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
17.1.1 INTRODUCTION TO LUMINESCENCE . . . . . . . . . . . . . . . . . .
. . . . . 505 17.1.2 EFFECT OF TEMPERATURE ON LIGHT EMISSION . . . . . .
. . . . . . . . 507 17.2 LUMINESCENT MATERIALS USED IN THERMOMETRY . . .
. . . . . . . . . . . . . . . 508 17.2.1 ORGANIC MOLECULES. INTENSITY
VARIATIONS . . . . . . . . . . . . . . . 508 17.2.2 MATERIALS CONTAINING
RARE EARTH IONS . . . . . . . . . . . . . . . . . 509 17.2.3 MATERIALS
CONTAINING TRANSITION IONS. INTENSITY VARIATIONS AND LIFETIMES . . . . .
. . . . . . . . . . . . . . . 512 17.2.4 SEMICONDUCTING QUANTUM DOTS.
INTENSITY AND WAVELENGTH VARIATIONS . . . . . . . . . . . . . . . . . .
513 17.3 DEVELOPMENT OF A SCANNING FLUORESCENT PROBE FOR TEMPERATURE
MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
515 17.3.1 CHOICE OF MATERIAL. REVERSIBILITY . . . . . . . . . . . . . .
. . . . . . . 515 17.3.2 MAKING THE PROBES. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 516 17.3.3 EXPERIMENTAL SETUP FOR
FLUORESCENT STHM . . . . . . . . . . . . 518 17.4 APPLICATIONS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 519 17.4.1 DIRECT CURRENT MEASUREMENTS . . . . . . . . . . . . .
. . . . . . . . . . 520 XVI CONTENTS 17.4.2 ALTERNATING CURRENT
MEASUREMENTS . . . . . . . . . . . . . . . . . . . 527 17.4.3 MEASURING
TIP*SAMPLE HEAT TRANSFER . . . . . . . . . . . . . . . . 531 17.5
CONCLUSION AND PROSPECTS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 533 REFERENCES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
18 HEAT TRANSFER IN LOW TEMPERATURE MICRO- AND NANOSYSTEMS . . . . . . .
537 OLIVIER BOURGEOIS 18.1 INTRODUCTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 18.2
THERMAL PHYSICS AT LOW TEMPERATURES . . . . . . . . . . . . . . . . . .
. . . . . . 538 18.2.1 EQUILIBRIUM THERMODYNAMICS . . . . . . . . . . .
. . . . . . . . . . . . 539 18.2.2 QUASI-STEADY STATE NONEQUILIBRIUM
HEAT TRANSFER . . . . . . 544 18.3 PROBING THERMAL PROPERTIES BY
ELECTRICAL MEASUREMENTS. . . . . . . . . 551 18.3.1 THERMOMETRY . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
18.3.2 LOW TEMPERATURE SPECIFIC HEAT MEASUREMENTS AT THE NANOSCALE. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
18.3.3 THERMAL CONDUCTANCE MEASUREMENTS ON NANOSCALE SAMPLES . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 559 18.4 CONCLUSIONS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 565 REFERENCES . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 INDEX
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 569
|
any_adam_object | 1 |
author2 | Volz, Sebastian |
author2_role | edt |
author2_variant | s v sv |
author_facet | Volz, Sebastian |
building | Verbundindex |
bvnumber | BV036062890 |
classification_tum | PHY 644f MTA 720f WER 035f |
ctrlnum | (OCoLC)640130519 (DE-599)DNB996064354 |
dewey-full | 536.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536.2 |
dewey-search | 536.2 |
dewey-sort | 3536.2 |
dewey-tens | 530 - Physics |
discipline | Physik Werkstoffwissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01875nam a22004818cb4500</leader><controlfield tag="001">BV036062890</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110214 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100304s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09N360770</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">996064354</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642042577</subfield><subfield code="c">GB. : EUR 149.75 (freier Pr.), sfr 217.50 (freier Pr.)</subfield><subfield code="9">978-3-642-04257-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)640130519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB996064354</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536.2</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 644f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 720f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 035f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal nanosystems and nanomaterials</subfield><subfield code="c">Sebastian Volz ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 587 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Topics in applied physics</subfield><subfield code="v">118</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volz, Sebastian</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Topics in applied physics</subfield><subfield code="v">118</subfield><subfield code="w">(DE-604)BV008007504</subfield><subfield code="9">118</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018954331&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018954331</subfield></datafield></record></collection> |
id | DE-604.BV036062890 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:10:38Z |
institution | BVB |
isbn | 9783642042577 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018954331 |
oclc_num | 640130519 |
open_access_boolean | |
owner | DE-83 DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-83 DE-11 DE-91G DE-BY-TUM |
physical | XX, 587 S. Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
series | Topics in applied physics |
series2 | Topics in applied physics |
spelling | Thermal nanosystems and nanomaterials Sebastian Volz ed. Heidelberg [u.a.] Springer 2009 XX, 587 S. Ill., graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Topics in applied physics 118 Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Wärmeübertragung (DE-588)4064211-2 gnd rswk-swf Nanotechnologie (DE-588)4327470-5 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 s Wärmeübertragung (DE-588)4064211-2 s DE-604 Nanotechnologie (DE-588)4327470-5 s Volz, Sebastian edt Topics in applied physics 118 (DE-604)BV008007504 118 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018954331&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Thermal nanosystems and nanomaterials Topics in applied physics Nanostrukturiertes Material (DE-588)4342626-8 gnd Wärmeübertragung (DE-588)4064211-2 gnd Nanotechnologie (DE-588)4327470-5 gnd |
subject_GND | (DE-588)4342626-8 (DE-588)4064211-2 (DE-588)4327470-5 |
title | Thermal nanosystems and nanomaterials |
title_auth | Thermal nanosystems and nanomaterials |
title_exact_search | Thermal nanosystems and nanomaterials |
title_full | Thermal nanosystems and nanomaterials Sebastian Volz ed. |
title_fullStr | Thermal nanosystems and nanomaterials Sebastian Volz ed. |
title_full_unstemmed | Thermal nanosystems and nanomaterials Sebastian Volz ed. |
title_short | Thermal nanosystems and nanomaterials |
title_sort | thermal nanosystems and nanomaterials |
topic | Nanostrukturiertes Material (DE-588)4342626-8 gnd Wärmeübertragung (DE-588)4064211-2 gnd Nanotechnologie (DE-588)4327470-5 gnd |
topic_facet | Nanostrukturiertes Material Wärmeübertragung Nanotechnologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018954331&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008007504 |
work_keys_str_mv | AT volzsebastian thermalnanosystemsandnanomaterials |