Condensed matter physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2010
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXVII, 952 S. Ill., graph. Darst. |
ISBN: | 9780470617984 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036042392 | ||
003 | DE-604 | ||
005 | 20151113 | ||
007 | t | ||
008 | 100219s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780470617984 |9 978-0-470-61798-4 | ||
035 | |a (OCoLC)664839098 | ||
035 | |a (DE-599)BVBBV036042392 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-20 |a DE-11 |a DE-91G |a DE-19 |a DE-29T |a DE-634 |a DE-355 | ||
082 | 0 | |a 530.4/1 |2 22 | |
084 | |a UP 1000 |0 (DE-625)146338: |2 rvk | ||
084 | |a PHY 600f |2 stub | ||
100 | 1 | |a Marder, Michael P. |d 1960- |e Verfasser |0 (DE-588)131757296 |4 aut | |
245 | 1 | 0 | |a Condensed matter physics |c Michael P. Marder |
250 | |a 2. ed. | ||
264 | 1 | |a Hoboken, NJ |b Wiley |c 2010 | |
300 | |a XXVII, 952 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Kondensierte Materie |0 (DE-588)4132810-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörperphysik |0 (DE-588)4016921-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Kondensierte Materie |0 (DE-588)4132810-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Festkörperphysik |0 (DE-588)4016921-2 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018934222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018934222 |
Datensatz im Suchindex
_version_ | 1804141075443482624 |
---|---|
adam_text | Titel: Condensed matter physics
Autor: Marder, Michael P.
Jahr: 2010
Contents
Preface ............................... xix
References ...............................xxii
I ATOMIC STRUCTURE 1
1 The Idea of Crystals 3
1.1 Introduction............................. 3
1.1.1 Why are Solids Crystalline?................ 4
1.2 Two-Dimensional Lattices..................... 6
1.2.1 Bravais Lattices....................... 6
1.2.2 Enumeration of Two-Dimensional Bravais Lattices .... 7
1.2.3 Lattices with Bases..................... 9
1.2.4 Primitive Cells....................... 9
1.2.5 Wigner-Seitz Cells..................... 10
1.3 Symmetries............................. 11
1.3.1 The Space Group...................... 11
1.3.2 Translation and Point Groups ............... 12
1.3.3 Role of Symmetry ..................... 14
Problems ............................... 14
References ............................... 16
2 Three-Dimensional Lattices 17
2.1 Introduction............................. 17
2.2 Monatomic Lattices......................... 20
2.2.1 The Simple Cubic Lattice ................. 20
2.2.2 The Face-Centered Cubic Lattice ............. 20
2.2.3 The Body-Centered Cubic Lattice............. 22
2.2.4 The Hexagonal Lattice................... 23
2.2.5 The Hexagonal Close-Packed Lattice........... 23
2.2.6 The Diamond Lattice.................... 24
2.3 Compounds............................. 24
2.3.1 Rocksalt?Sodium Chloride................ 25
2.3.2 Cesium Chloride...................... 26
2.3.3 Fluorite?Calcium Fluoride................ 26
vi Contents
2.3.4 Zincblende?Zinc Sulfide................. 27
2.3.5 Wurtzite?Zinc Oxide................... 28
2.3.6 Perovskite?Calcium Titanate............... 28
2.4 Classification of Lattices by Symmetry............... 30
2.4.1 Fourteen Bravais Lattices and Seven Crystal Systems ... 30
2.5 Symmetries of Lattices with Bases................. 33
2.5.1 Thirty-Two Crystallographic Point Groups ........ 33
2.5.2 Two Hundred Thirty Distinct Lattices........... 36
2.6 Some Macroscopic Implications of Microscopic Symmetries ... 37
2.6.1 Pyroelectricity....................... 37
2.6.2 Piezoelectricity....................... 37
2.6.3 Optical Activity....................... 38
Problems ............................... 38
References ............................... 41
3 Scattering and Structures 43
3.1 Introduction............................. 43
3.2 Theory of Scattering from Crystals................. 44
3.2.1 Special Conditions for Scattering ............. 44
3.2.2 Elastic Scattering from Single Atom............ 46
3.2.3 Wave Scattering from Many Atoms............ 47
3.2.4 Lattice Sums........................ 48
3.2.5 Reciprocal Lattice ..................... 49
3.2.6 Miller Indices........................ 51
3.2.7 Scattering from a Lattice with a Basis........... 53
3.3 Experimental Methods....................... 54
3.3.1 Laue Method........................ 56
3.3.2 Rotating Crystal Method.................. 57
3.3.3 Powder Method....................... 59
3.4 Further Features of Scattering Experiments ............ 60
3.4.1 Interaction of X-Rays with Matter............. 60
3.4.2 Production of X-Rays ................... 61
3.4.3 Neutrons.......................... 63
3.4.4 Electrons.......................... 63
3.4.5 Deciphering Complex Structures.............. 64
3.4.6 Accuracy of Structure Determinations........... 65
3.5 Correlation Functions........................ 66
3.5.1 Why Bragg Peaks Survive Atomic Motions........ 66
3.5.2 Extended X-Ray Absorption Fine Structure (EXAFS) .. . 67
3.5.3 Dynamic Light Scattering................. 68
3.5.4 Application to Dilute Solutions .............. 70
Problems ............................... 71
References ............................... 73
Contents vii
4 Surfaces and Interfaces 77
4.1 Introduction............................. 77
4.2 Geometry of Interfaces....................... 77
4.2.1 Coherent and Commensurate Interfaces.......... 78
4.2.2 Stacking Period and Interplanar Spacing.......... 79
4.2.3 Other Topics in Surface Structure............. 81
4.3 Experimental Observation and Creation of Surfaces........ 82
4.3.1 Low-Energy Electron Diffraction (LEED)......... 82
4.3.2 Reflection High-Energy Electron Diffraction (RHEED) . . 84
4.3.3 Molecular Beam Epitaxy (MBE).............. 84
4.3.4 Field Ion Microscopy (FIM)................ 85
4.3.5 Scanning Tunneling Microscopy (STM).......... 86
4.3.6 Atomic Force Microscopy (AFM)............. 91
4.3.7 High Resolution Electron Microscopy (HREM)...... 91
Problems ............................... 91
References ............................... 94
5 Beyond Crystals 97
5.1 Introduction............................. 97
5.2 Diffusion and Random Variables.................. 97
5.2.1 Brownian Motion and the Diffusion Equation....... 97
5.2.2 Diffusion.......................... 98
5.2.3 Derivation from Master Equation ............. 99
5.2.4 Connection Between Diffusion and Random Walks .... 100
5.3 Alloys................................ 101
5.3.1 Equilibrium Structures................... 101
5.3.2 Phase Diagrams....................... 102
5.3.3 Superlattices........................ 103
5.3.4 Phase Separation...................... 104
5.3.5 Nonequilibrium Structures in Alloys............ 106
5.3.6 Dynamics of Phase Separation............... 108
5.4 Simulations............................. 110
5.4.1 Monte Carlo ........................ 110
5.4.2 Molecular Dynamics.................... 112
5.5 Liquids ............................... 113
5.5.1 Order Parameters and Long-and Short-Range Order ... 113
5.5.2 Packing Spheres...................... 114
5.6 Glasses ............................... 116
5.7 Liquid Crystals........................... 120
5.7.1 Nematics, Cholesterics, and Smectics........... 120
5.7.2 Liquid Crystal Order Parameter.............. 122
5.8 Polymers .............................. 123
5.8.1 Ideal Radius of Gyration.................. 123
5.9 Colloids and Diffusing-Wave Scattering.............. 128
viii Contents
5.9.1 Colloids........................... 128
5.9.2 Diffusing-Wave Spectroscopy............... 128
5.10 Quasicrystals............................ 133
5.10.1 One-Dimensional Quasicrystal............... 134
5.10.2 Two-Dimensional Quasicrystals?Penrose Tiles...... 139
5.10.3 Experimental Observations................. 141
5.11 Fullerenes and nanotubes...................... 143
Problems ............................... 143
References ............................... 149
II ELECTRONIC STRUCTURE 153
6 The Free Fermi Gas and Single Electron Model 155
6.1 Introduction............................. 155
6.2 Starting Hamiltonian........................ 157
6.3 Densities of States.......................... 159
6.3.1 Definition of Density of States D.............. 160
6.3.2 Results for Free Electrons................. 161
6.4 Statistical Mechanics of Noninteracting Electrons......... 163
6.5 Sommerfeld Expansion....................... 166
6.5.1 Specific Heat of Noninteracting Electrons at Low Temper-
atures ............................ 169
Problems ............................... 171
References ............................... 173
7 Non-Interacting Electrons in a Periodic Potential 175
7.1 Introduction............................. 175
7.2 Translational Symmetry?Bloch s Theorem............ 175
7.2.1 One Dimension....................... 176
7.2.2 Bloch s Theorem in Three Dimensions .......... 180
7.2.3 Formal Demonstration of Bloch s Theorem........ 182
7.2.4 Additional Implications of Bloch s Theorem ....... 183
7.2.5 Van Hove Singularities................... 186
7.2.6 Kronig-Penney Model................... 189
7.3 Rotational Symmetry?Group Representations .......... 192
7.3.1 Classes and Characters................... 198
7.3.2 Consequences of point group symmetries for Schrodinger s
equation........................... 201
Problems ............................... 203
References ............................... 206
Contents ix
8 Nearly Free and Tightly Bound Electrons 207
8.1 Introduction............................. 207
8.2 Nearly Free Electrons........................ 208
8.2.1 Degenerate Perturbation Theory.............. 210
8.3 Brillouin Zones........................... 211
8.3.1 Nearly Free Electron Fermi Surfaces............ 214
8.4 Tightly Bound Electrons...................... 219
8.4.1 Linear Combinations of Atomic Orbitals ......... 219
8.4.2 Wannier Functions..................... 222
8.4.3 Geometric Phases...................... 223
8.4.4 Tight Binding Model.................... 226
Problems ............................... 227
References ............................... 232
9 Electron-Electron Interactions 233
9.1 Introduction............................. 233
9.2 Hartree and Hartree-Fock Equations................ 234
9.2.1 Variational Principle.................... 235
9.2.2 Hartree-Fock Equations.................. 235
9.2.3 Numerical Implementation................. 239
9.2.4 Hartree-Fock Equations for Jellium............ 242
9.3 Density Functional Theory..................... 244
9.3.1 Thomas-Fermi Theory................... 247
9.3.2 Stability of Matter..................... 249
9.4 Quantum Monte Carlo ....................... 252
9.4.1 Integrals by Monte Carlo.................. 252
9.4.2 Quantum Monte Carlo Methods.............. 253
9.4.3 Physical Results...................... 254
9.5 Kohn-Sham Equations....................... 255
Problems ............................... 258
References ............................... 262
10 Realistic Calculations in Solids 265
10.1 Introduction............................. 265
10.2 Numerical Methods......................... 266
10.2.1 Pseudopotentials and Orthogonalized Planes Waves (OPW) 266
10.2.2 Linear Combination of Atomic Orbitals (LCAO)..... 271
10.2.3 Plane Waves ........................ 271
10.2.4 Linear Augmented Plane Waves (LAPW)......... 274
10.3 Definition of Metals, Insulators, and Semiconductors....... 277
10.4 Brief Survey of the Periodic Table................. 279
10.4.1 Nearly Free Electron Metals................ 280
10.4.2 Noble Gases ........................ 282
10.4.3 Semiconductors....................... 283
Contents
10.4.4 Transition Metals...................... 284
10.4.5 Rare Earths......................... 286
Problems ............................... 286
References ............................... 291
III MECHANICAL PROPERTIES 293
11 Cohesion of Solids 295
11.1 Introduction............................. 295
11.1.1 Radii of Atoms....................... 297
11.2 Noble Gases............................. 299
11.3 Ionic Crystals............................ 301
11.3.1 EwaldSums ........................ 302
11.4 Metals................................ 305
11.4.1 Use of Pseudopotentials.................. 307
11.5 Band Structure Energy....................... 308
11.5.1 Peierls Distortion...................... 309
11.5.2 Structural Phase Transitions................ 311
11.6 Hydrogen-Bonded Solids...................... 312
11.7 Cohesive Energy from Band Calculations............. 312
11.8 Classical Potentials......................... 313
Problems ............................... 315
References ............................... 318
12 Elasticity 321
12.1 Introduction............................. 321
12.2 Nonlinear Elasticity ........................ 321
12.2.1 Rubber Elasticity...................... 322
12.2.2 Larger Extensions of Rubber................ 324
12.3 Linear Elasticity .......................... 325
12.3.1 Solids of Cubic Symmetry................. 326
12.3.2 Isotropic Solids....................... 328
12.4 Other Constitutive Laws ...................... 332
12.4.1 Liquid Crystals....................... 332
12.4.2 Granular Materials..................... 335
Problems ............................... 336
References ............................... 339
13 Phonons 341
13.1 Introduction............................. 341
13.2 Vibrations of a Classical Lattice.................. 342
13.2.1 Classical Vibrations in One Dimension .......... 342
13.2.2 Classical Vibrations in Three Dimensions......... 346
13.2.3 Normal Modes....................... 347
Contents xi
13.2.4 Lattice with a Basis..................... 348
13.3 Vibrations of a Quantum-Mechanical Lattice........... 351
13.3.1 Phonon Specific Heat.................... 354
13.3.2 Einstein and Debye Models ................ 358
13.3.3 Thermal Expansion..................... 361
13.4 Inelastic Scattering from Phonons................. 363
13.4.1 Neutron Scattering..................... 364
13.4.2 Formal Theory of Neutron Scattering........... 366
13.4.3 Averaging Exponentials.................. 370
13.4.4 Evaluation of Structure Factor............... 372
13.4.5 Kohn Anomalies...................... 373
13.5 The Mossbauer Effect........................ 374
Problems ............................... 376
References ............................... 377
14 Dislocations and Cracks 379
14.1 Introduction............................. 379
14.2 Dislocations............................. 381
14.2.1 Experimental Observations of Dislocations........ 383
14.2.2 Force to Move a Dislocation................ 386
14.2.3 One-Dimensional Dislocations: Frenkel-Kontorova Model 386
14.3 Two-Dimensional Dislocations and Hexatic Phases........ 389
14.3.1 Impossibility of Crystalline Order in Two Dimensions . . 389
14.3.2 Orientational Order..................... 391
14.3.3 Kosterlitz-Thouless-Berezinskii Transition........ 392
14.4 Cracks................................ 399
14.4.1 Fracture of a Strip ..................... 399
14.4.2 Stresses Around an Elliptical Hole............. 402
14.4.3 Stress Intensity Factor................... 404
14.4.4 Atomic Aspects of Fracture ................ 405
Problems ............................... 406
References ............................... 409
15 Fluid Mechanics 413
15.1 Introduction............................. 413
15.2 Newtonian Fluids.......................... 413
15.2.1 Euler s Equation...................... 413
15.2.2 Navier-Stokes Equation.................. 415
15.3 Polymeric Solutions......................... 416
15.4 Plasticity .............................. 423
15.5 Superfluid 4He ........................... 427
15.5.1 Two-Fluid Hydrodynamics................. 430
15.5.2 Second Sound ....................... 431
15.5.3 Direct Observation of Two Fluids............. 433
xii Contents
15.5.4 Origin of Superfluidity................... 434
15.5.5 Lagrangian Theory of Wave Function........... 439
15.5.6 Superfluid3He....................... 442
Problems ............................... 443
References ............................... 447
IV ELECTRON TRANSPORT 451
16 Dynamics of Bloch Electrons 453
16.1 Introduction............................. 453
16.1.1 Drude Model........................ 453
16.2 Semiclassical Electron Dynamics.................. 455
16.2.1 Bloch Oscillations..................... 456
16.2.2 X-.PMethod......................... 457
16.2.3 Effective Mass....................... 459
16.3 Noninteracting Electrons in an Electric Field............ 459
16.3.1 Zener Tunneling...................... 462
16.4 Semiclassical Equations from Wave Packets............ 465
16.4.1 Formal Dynamics of Wave Packets ............ 465
16.4.2 Dynamics from Lagrangian ................ 467
16.5 Quantizing Semiclassical Dynamics................ 470
16.5.1 Wannier-Stark Ladders................... 472
16.5.2 de Haas-van Alphen Effect................. 473
16.5.3 Experimental Measurements of Fermi Surfaces...... 474
Problems ............................... 477
References ............................... 480
17 Transport Phenomena and Fermi Liquid Theory 483
17.1 Introduction............................. 483
17.2 Boltzmann Equation ........................ 483
17.2.1 Boltzmann Equation.................... 485
17.2.2 Including Anomalous Velocity............... 486
17.2.3 Relaxation Time Approximation.............. 487
17.2.4 Relation to Rate of Production of Entropy......... 489
17.3 Transport Symmetries........................ 490
17.3.1 Onsager Relations ..................... 491
17.4 Thermoelectric Phenomena..................... 492
17.4.1 Electrical Current...................... 492
17.4.2 Effective Mass and Holes.................. 494
17.4.3 Mixed Thermal and Electrical Gradients.......... 495
17.4.4 Wiedemann-Franz Law .................. 496
17.4.5 Thermopower?Seebeck Effect.............. 497
17.4.6 Peltier Effect........................ 498
Contents xiii
17.4.7 Thomson Effect....................... 498
17.4.8 Hall Effect......................... 500
17.4.9 Magnetoresistance..................... 502
17.4.10 Anomalous Hall Effect................... 503
17.5 Fermi Liquid Theory........................ 504
17.5.1 Basic Ideas......................... 504
17.5.2 Statistical Mechanics of Quasi-Particles.......... 506
17.5.3 Effective Mass....................... 508
17.5.4 Specific Heat........................ 510
17.5.5 Fermi Liquid Parameters.................. 511
17.5.6 Traveling Waves...................... 512
17.5.7 Comparison with Experiment in 3He............ 515
Problems ............................... 516
References ............................... 520
18 Microscopic Theories of Conduction 523
18.1 Introduction............................. 523
18.2 Weak Scattering Theory of Conductivity.............. 523
18.2.1 General Formula for Relaxation Time........... 523
18.2.2 Matthiessen s Rule..................... 528
18.2.3 Fluctuations......................... 529
18.3 Metal-Insulator Transitions in Disordered Solids......... 530
18.3.1 Impurities and Disorder.................. 530
18.3.2 Non-Compensated Impurities and the Mott Transition . . 531
18.4 Compensated Impurity Scattering and Green s Functions..... 534
18.4.1 Tight-Binding Models of Disordered Solids........ 534
18.4.2 Green s Functions ..................... 536
18.4.3 Single Impurity....................... 539
18.4.4 Coherent Potential Approximation............. 541
18.5 Localization............................. 542
18.5.1 Exact Results in One Dimension.............. 544
18.5.2 Scaling Theory of Localization............... 547
18.5.3 Comparison with Experiment............... 551
18.6 Luttinger Liquids.......................... 553
18.6.1 Density of States...................... 557
Problems ............................... 560
References ............................... 564
19 Electronics 567
19.1 Introduction............................. 567
19.2 Metal Interfaces........................... 568
19.2.1 Work Functions....................... 569
19.2.2 Schottky Barriei ...................... 570
19.2.3 Contact Potentials ..................... 572
xiv Contents
19.3 Semiconductors........................... 574
19.3.1 Pure Semiconductors.................... 575
19.3.2 Semiconductor in Equilibrium............... 578
19.3.3 Intrinsic Semiconductor.................. 580
19.3.4 Extrinsic Semiconductor.................. 581
19.4 Diodes and Transistors....................... 583
19.4.1 Surface States........................ 586
19.4.2 Semiconductor Junctions.................. 587
19.4.3 Boltzmann Equation for Semiconductors......... 590
19.4.4 Detailed Theory of Rectification.............. 592
19.4.5 Transistor.......................... 595
19.5 Inversion Layers........................... 598
19.5.1 Heterostructures...................... 598
19.5.2 Quantum Point Contact................... 600
19.5.3 Quantum Dot........................ 603
Problems ............................... 606
References ............................... 607
V OPTICAL PROPERTIES 609
20 Phenomenological Theory 611
20.1 Introduction............................. 611
20.2 Maxwell s Equations........................ 613
20.2.1 Traveling Waves...................... 615
20.2.2 Mechanical Oscillators as Dielectric Function....... 616
20.3 Kramers-Kronig Relations..................... 618
20.3.1 Application to Optical Experiments............ 620
20.4 The Kubo-Greenwood Formula .................. 623
20.4.1 Born Approximation.................... 623
20.4.2 Susceptibility........................ 627
20.4.3 Many-Body Green Functions................ 628
Problems ............................... 628
References ............................... 631
21 Optical Properties of Semiconductors 633
21.1 Introduction............................. 633
21.2 Cyclotron Resonance........................ 633
21.2.1 Electron Energy Surfaces.................. 636
21.3 Semiconductor Band Gaps..................... 638
21.3.1 Direct Transitions...................... 638
21.3.2 Indirect Transitions..................... 639
21.4 Excitons............................... 641
21.4.1 Mott-Wannier Excitons .................. 641
Contents xv
21.4.2 Frenkel Excitons...................... 644
21.4.3 Electron-Hole Liquid.................... 645
21.5 Optoelectronics........................... 645
21.5.1 Solar Cells......................... 645
21.5.2 Lasers............................ 646
Problems ............................... 652
References ............................... 656
22 Optical Properties of Insulators 659
22.1 Introduction............................. 659
22.2 Polarization............................. 659
22.2.1 Ferroelectrics........................ 659
22.2.2 Berry phase theory of polarization............. 661
22.2.3 Clausius-Mossotti Relation ................ 661
22.3 Optical Modes in Ionic Crystals .................. 664
22.3.1 Polaritons.......................... 666
22.3.2 Polarons .......................... 669
22.3.3 Experimental Observations of Polarons.......... 674
22.4 Point Defects and Color Centers.................. 674
22.4.1 Vacancies.......................... 675
22.4.2 F Centers.......................... 676
22.4.3 Electron Spin Resonance and Electron Nuclear Double Res-
onance ........................... 677
22.4.4 Other Centers........................ 679
22.4.5 Franck-Condon Effect................... 679
22.4.6 Urbach Tails ........................ 683
Problems ............................... 684
References ............................... 686
23 Optical Properties of Metals and Inelastic Scattering 689
23.1 Introduction............................. 689
23.1.1 Plasma Frequency..................... 689
23.2 Metals at Low Frequencies..................... 692
23.2.1 Anomalous Skin Effect................... 694
23.3 Plasmons.............................. 695
23.3.1 Experimental Observation of Plasmons.......... 696
23.4 Interband Transitions........................ 698
23.5 Brillouin and Raman Scattering................... 701
23.5.1 Brillouin Scattering..................... 702
23.5.2 Raman Scattering...................... 703
23.5.3 Inelastic X-Ray Scattering................. 703
23.6 Photoemission............................ 703
23.6.1 Measurement of Work Functions.............. 703
23.6.2 Angle-Resolved Photoemission.............. 706
xvi Contents
23.6.3 Core-Level Photoemission and Charge-Transfer Insulators 710
Problems ............................... 716
References ............................... 719
VI MAGNETISM 721
24 Classical Theories of Magnetism and Ordering 723
24.1 Introduction............................. 723
24.2 Three Views of Magnetism..................... 723
24.2.1 From Magnetic Moments.................. 723
24.2.2 From Conductivity..................... 724
24.2.3 From a Free Energy .................... 725
24.3 Magnetic Dipole Moments..................... 727
24.3.1 Spontaneous Magnetization of Ferromagnets....... 730
24.3.2 Ferrimagnets........................ 731
24.3.3 Antiferromagnets...................... 733
24.4 Mean Field Theory and the Ising Model.............. 734
24.4.1 Domains .......................... 736
24.4.2 Hysteresis.......................... 739
24.5 Other Order-Disorder Transitions ................. 740
24.5.1 Alloy Superlattices..................... 740
24.5.2 Spin Glasses........................ 743
24.6 Critical Phenomena......................... 743
24.6.1 Landau Free Energy.................... 744
24.6.2 Scaling Theory....................... 750
Problems ............................... 754
References ............................... 757
25 Magnetism of Ions and Electrons 759
25.1 Introduction............................. 759
25.2 Atomic Magnetism......................... 761
25.2.1 Hund s Rules........................ 762
25.2.2 Curie s Law......................... 766
25.3 Magnetism of the Free-Electron Gas................ 769
25.3.1 Pauli Paramagnetism.................... 770
25.3.2 Landau Diamagnetism................... 771
25.3.3 Aharonov-Bohm Effect .................. 774
25.4 Tightly Bound Electrons in Magnetic Fields............ 777
25.5 Quantum Hall Effect........................ 780
25.5.1 Integer Quantum Hall Effect................ 780
25.5.2 Fractional Quantum Hall Effect.............. 785
Problems ............................... 791
References ............................... 794
Contents xvii
26 Quantum Mechanics of Interacting Magnetic Moments 797
26.1 Introduction............................. 797
26.2 Origin of Ferromagnetism ..................... 797
26.2.1 Heitler-London Calculation................ 797
26.2.2 Spin Hamiltonian...................... 802
26.3 Heisenberg Model.......................... 802
26.3.1 Indirect Exchange and Superexchange........... 804
26.3.2 Ground State........................ 805
26.3.3 Spin Waves......................... 805
26.3.4 Spin Waves in Antiferromagnets.............. 808
26.3.5 Comparison with Experiment............... 811
26.4 Ferromagnetism in Transition Metals................ 811
26.4.1 StonerModel........................ 811
26.4.2 Calculations Within Band Theory............. 813
26.5 Spintronics ............................. 815
26.5.1 Giant Magnetoresistance.................. 815
26.5.2 Spin Torque......................... 816
26.6 Kondo Effect............................ 819
26.6.1 Scaling Theory....................... 824
26.7 Hubbard Model........................... 828
26.7.1 Mean-Field Solution.................... 829
Problems ............................... 832
References ............................... 835
27 Superconductivity 839
27.1 Introduction............................. 839
27.2 Phenomenology of Superconductivity............... 840
27.2.1 Phenomenological Free Energy.............. 841
27.2.2 Thermodynamics of Superconductors........... 843
27.2.3 Landau-Ginzburg Free Energy............... 844
27.2.4 Type I and Type II Superconductors............ 845
27.2.5 Flux Quantization ..................... 850
27.2.6 The Josephson Effect.................... 852
27.2.7 Circuits with Josephson Junction Elements........ 854
27.2.8 SQUIDS .......................... 855
27.2.9 Origin of Josephson s Equations.............. 856
27.3 Microscopic Theory of Superconductivity............. 858
27.3.1 Electron-Ion Interaction.................. 859
27.3.2 Instability of the Normal State: Cooper Problem..... 863
27.3.3 Self-Consistent Ground State................ 865
27.3.4 Thermodynamics of Superconductors........... 869
27.3.5 Superconductor in External Magnetic Field........ 873
27.3.6 Derivation of Meissner Effect............... 876
27.3.7 Comparison with Experiment............... 879
xviii Contents
27.3.8 High-Temperature Superconductors............ 881
Problems ............................... 888
References ............................... 890
APPENDICES 895
A Lattice Sums and Fourier Transforms 897
A. 1 One-Dimensional Sum....................... 897
A.2 Area Under Peaks.......................... 897
A.3 Three-Dimensional Sum...................... 898
A.4 Discrete Case............................ 899
A.5 Convolution............................. 900
A.6 Using the Fast Fourier Transform.................. 900
References ............................... 902
B Variational Techniques 903
B.l Functionals and Functional Derivatives............... 903
B.2 Time-Independent Schrodinger Equation.............. 904
B.3 Time-Dependent Schrodinger Equation .............. 905
B.4 Method of Steepest Descent .................... 906
References ............................... 906
C Second Quantization 907
C.l Rules ................................ 907
C.l.l States............................ 907
C.1.2 Operators.......................... 907
C.1.3 Hamiltonians........................ 908
C.2 Derivations............................. 909
C.2.1 Bosons........................... 909
C.2.2 Fermions.......................... 910
Index 913
|
any_adam_object | 1 |
author | Marder, Michael P. 1960- |
author_GND | (DE-588)131757296 |
author_facet | Marder, Michael P. 1960- |
author_role | aut |
author_sort | Marder, Michael P. 1960- |
author_variant | m p m mp mpm |
building | Verbundindex |
bvnumber | BV036042392 |
classification_rvk | UP 1000 |
classification_tum | PHY 600f |
ctrlnum | (OCoLC)664839098 (DE-599)BVBBV036042392 |
dewey-full | 530.4/1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/1 |
dewey-search | 530.4/1 |
dewey-sort | 3530.4 11 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01553nam a2200409 c 4500</leader><controlfield tag="001">BV036042392</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100219s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470617984</subfield><subfield code="9">978-0-470-61798-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)664839098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036042392</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1000</subfield><subfield code="0">(DE-625)146338:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marder, Michael P.</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131757296</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Condensed matter physics</subfield><subfield code="c">Michael P. Marder</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 952 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kondensierte Materie</subfield><subfield code="0">(DE-588)4132810-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kondensierte Materie</subfield><subfield code="0">(DE-588)4132810-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018934222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018934222</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV036042392 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:10:04Z |
institution | BVB |
isbn | 9780470617984 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018934222 |
oclc_num | 664839098 |
open_access_boolean | |
owner | DE-384 DE-20 DE-11 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-634 DE-355 DE-BY-UBR |
owner_facet | DE-384 DE-20 DE-11 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-634 DE-355 DE-BY-UBR |
physical | XXVII, 952 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Wiley |
record_format | marc |
spelling | Marder, Michael P. 1960- Verfasser (DE-588)131757296 aut Condensed matter physics Michael P. Marder 2. ed. Hoboken, NJ Wiley 2010 XXVII, 952 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Kondensierte Materie (DE-588)4132810-3 gnd rswk-swf Festkörperphysik (DE-588)4016921-2 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Kondensierte Materie (DE-588)4132810-3 s DE-604 Festkörperphysik (DE-588)4016921-2 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018934222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Marder, Michael P. 1960- Condensed matter physics Kondensierte Materie (DE-588)4132810-3 gnd Festkörperphysik (DE-588)4016921-2 gnd |
subject_GND | (DE-588)4132810-3 (DE-588)4016921-2 (DE-588)4123623-3 |
title | Condensed matter physics |
title_auth | Condensed matter physics |
title_exact_search | Condensed matter physics |
title_full | Condensed matter physics Michael P. Marder |
title_fullStr | Condensed matter physics Michael P. Marder |
title_full_unstemmed | Condensed matter physics Michael P. Marder |
title_short | Condensed matter physics |
title_sort | condensed matter physics |
topic | Kondensierte Materie (DE-588)4132810-3 gnd Festkörperphysik (DE-588)4016921-2 gnd |
topic_facet | Kondensierte Materie Festkörperphysik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018934222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mardermichaelp condensedmatterphysics |