Latent class and latent transition analysis: with applications in the social, behavioral, and health sciences
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2010
|
Schriftenreihe: | Wiley series in probability and statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXIII, 285 S. graph. Darst. |
ISBN: | 9780470228395 0470228393 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036036249 | ||
003 | DE-604 | ||
005 | 20151210 | ||
007 | t | ||
008 | 100216s2010 d||| |||| 00||| eng d | ||
016 | 7 | |a 015391045 |2 DE-101 | |
020 | |a 9780470228395 |c hbk |9 978-0-470-22839-5 | ||
020 | |a 0470228393 |c hbk |9 0-470-22839-3 | ||
035 | |a (OCoLC)401168852 | ||
035 | |a (DE-599)HBZHT016205755 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-91 |a DE-706 |a DE-188 | ||
050 | 0 | |a QA278.6 | |
082 | 0 | |a 519.5/35 |2 22 | |
084 | |a MR 2100 |0 (DE-625)123488: |2 rvk | ||
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
084 | |a SOZ 720f |2 stub | ||
084 | |a MAT 620f |2 stub | ||
100 | 1 | |a Collins, Linda M. |d 1955- |e Verfasser |0 (DE-588)1028211910 |4 aut | |
245 | 1 | 0 | |a Latent class and latent transition analysis |b with applications in the social, behavioral, and health sciences |c Linda M. Collins ; Stephanie T. Lanza |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2010 | |
300 | |a XXXIII, 285 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Wiley series in probability and statistics | |
650 | 4 | |a Statistik | |
650 | 4 | |a Latent structure analysis | |
650 | 4 | |a Latent variables | |
650 | 4 | |a Statistics | |
650 | 0 | 7 | |a Latent-Class-Analyse |0 (DE-588)4166857-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Latente Variable |0 (DE-588)4166860-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Latent-Class-Analyse |0 (DE-588)4166857-1 |D s |
689 | 0 | 1 | |a Latente Variable |0 (DE-588)4166860-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Lanza, Stephanie T. |d 1969- |e Verfasser |0 (DE-588)142626376 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018928222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018928222 |
Datensatz im Suchindex
_version_ | 1804141062270222336 |
---|---|
adam_text | CONTENTS
List of Figures
xvii
List of Tables
xxi
Acknowledgments
xxxi
Acronyms
xxxiii
PART
І
FUNDAMENTALS
1
General Introduction
3
1.1
Overview
3
1.2
Conceptual
foundatìoa
and brief history of the
lăţeai
class model
4
1.2.1
LC
A aná
other latent variable models
6
1.2.2
Some historical milestones in LCA
7
1.2.3
LCA as a person-oriented approach
S
1.3
Why select a categorical latent variable approach?
8
1.4
Scope of Ms book
9
1.5
Empirical example of
LCÂ:
Adolescent delinquency
10
1.6
Empirical example of LTA: Adolescent delinquency
14
1.7
About this book I?
vii
VÎH
CONTENTS
1.7.1
Using this book
19
1.8
The examples in this book
19
1.8.1
Empirical data sets
20
1.9
Software
21
1.10
Additional resources: The book s web site
21
1.11
Suggested supplemental readings
22
1.12
Points to remember
22
1.13
What s next
22
The latent class model
23
2.1
Overview
23
2.2
Empirical example:
Pubertal
development
24
2.2.1
An initial look at the data
24
2.2.2
Why conduct LCA on the
pubertal
development data?
27
2.2.3
Latent classes in the
pubertal
development data
28
2.3
The role of item-response probabilities in interpreting latent
classes
29
2.3.1
A hypothetical example
29
2.3.2
Interpreting the item-response probabilities to label the
latent classes in the
pubertal
development example
30
2.3.3
Qualitative and quantitative differences among the
poberta!
development latent classes
34
2.4
Empirical example: Health risk behaviors
34
2.4.1
An initial look at the data
34
2.4.2
LCA of the health risk behavior data
35
2.5
LCA: Model and notation
39
2.5.1
Fundamental expressions
41
2.5.2
The local independence assumption
44
2.6
Suggested supplemental readings
46
2.7
Points to remember
47
2.8
What s next
47
The relation between the latent variable and its indicators
49
3.1
Overview
49
3.2
The latent class measurement model
50
3.2.1
Paraléis
with factor analysis
50
3.2.2
Two criteria for evaluating item-response probabilities
for a single variable
50
CONTENTS
ІХ
3.2.3
Hypothetical and empirical examples of independence
and weak relations
53
3.2.4
Hypothetical and empirical examples of strong relations
55
3.3
Homogeneity and latent class separation
56
3.3.1
Homogeneity
56
3.3.2
Latent class separation
57
3.3.3
Hypothetical examples of homogeneity and latent class
separation
58
3.3.4
How homogeneity and latent class separation are related
64
3.3.5
Homogeneity, latent class separation, and the number
of response patterns observed
64
3.3.6
Homogeneity and latent class separation in empirical
examples
65
3.4
The precision with which the observed variables measure the
latent variable
67
3.4.1
Why posterior probabilities of latent class membership
are of interest
67
3.4.2
Bayes
theorem
68
3.4.3
What homogeneity and latent class separation
imply about posterior probabilities and classification
uncertainty
69
3.4.4
Posterior classification uncertainty even with a high
degree of homogeneity and latent class separation
72
3.5
Expressing the degree of uncertainty: Mean posterior
probabilities and entropy
73
3.6
Points to remember
75
3.7
What s next
76
Parameter estimation and model selection
77
4.1
Overview
77
4.2
Maximum
Likelihood estimation
78
4.2.1
Estimating model parameters
78
4.2.2
Options for teatmeat of individual parameters:
Parameter
restrictions
79
4.2.3
Missing data and estimation g§
4.3
Model it
mă
model selection
81
4.3.1
Absolute mode! it
82
CONTENTS
4.3.2
The
Hkelihood-ratío
statistic
G2
and its degrees of
freedom
83
4.3.3
Relative model fit
86
4.3.4
Cross-validation
88
4.4
Finding the ML solution
89
4.4.1
Overview of model identification issues
89
4.4.2
Visualizing identification, underidentification, and
unidentification
89
4.4.3
Identification and information
92
4.4.4
How to find the ML solution
92
4.4.5
Label switching
94
4.4.6
User-provided starting values
94
4.5
Empirical example of using many starting values
95
4.6
Empirical examples of selecting the number of latent classes
97
4.6.1
Positive health behaviors
97
4.6.2
Past-year delinquency
98
4.6.3
Female
pubertal
development
99
4.6.4
Health risk behaviors
100
4.7
More about parameter restrictions
102
4.7.1
Reasons for using parameter restrictions
102
4.7.2
Parameter restrictions and model fit
103
4.7.3
Using parameter restrictions to achieve positive degrees
of freedom
103
4.8
Standard errors
106
4.9
Suggested supplemental readings
108
4.10
Points to remember
108
4.11
What s next
110
PART
il
ADVANCED LCA
Muliiple-group LCA
113
5Л
Overview
Ш
5.2
Introduction
114
5.3
Multiple-group LCA: Model and
notatie»
114
5.4
Computing the number of parameters estimated
116
5.5
Expressing group differences in the LCA model
ł
Î6
5.6
Measurement iavariance
Î
17
5.7
Estabishlag whether the
raraber
of latent classes is identical
across poops 1
19
CONTENTS
ХІ
5.7.1
Empirical example:
Adolescent
delinquency
120
5.8
Establishing
invariance
of item-response probabilities across
groups
121
5.8.1
Specifying parameter restrictions
122
5.8.2
Test of measurement
invariance
in the delinquency
example
125
5.9
Interpretation when measurement
invariance
does not hold
126
5.10
Strategies when measurement
invariance
does not hold
129
5.10.1
Partial measurement
invariance
129
5.10.2
When measurement
invariance
holds in a subset of
groups
131
5.11
Significant differences and important differences
131
5.11.1
Empirical example: Positive health behaviors
133
5.12
Testing equivalence of latent class prevalences across groups
139
5.12.1
Empirical example: Adolescent delinquency
140
5.12.2
Empirical example: Health risk behaviors
141
5.13
Suggested supplemental readings
147
5.14
Points to remember
147
5.15
What s next
148
LCA with Covariaies
149
6.1
Overview
149
6.2
Empirical example: Positive health behaviors
150
6.3
Preparing to conduct LCA with covariates 1
51
6.3.1
Preparing variables for use as covariates
151
6.4
LCA with covariates: Model and notation
153
6.4.1
What is estimated
154
6.4.2
Treatment of iteiB-respoase probabilities in LCA with
covariates
154
6.5 -
Hypothesis testing in LCA with covariates
154
6.6
InterpretatìOB
of die intercepts and regression coefficients
155
6.6.1
Understanding odds and odds ratios
155
6.6.2
The correspondence between regression
coeficiente
and odds/odds ratios
157
6.7
Efflpiîieaî
examples of LCA with
a stagïe
eovariate
159
6.7Л
Resalte
of logistic regression asiag grader
asa
covariate
159
6.7.2
Resalís
of logistic regression iising
materaal
education
as a covariate
161
ХИ
CONTENTS
6.8
Empirical example of multiple covariates and interaction terms
163
6.8.1
Interpretation of the interaction between gender and
maternal education
165
6.9
Multiple-group LCA with covariates: Model and notation
166
6.9.1
Empirical example: Positive health behaviors
167
6.10
Grouping variable or covariate?
167
6.10.1
How the multiple-group and covariate models are
different
168
6.10.2
When the multiple-group and covariate models are
mathematically equivalent
169
6.11
Use of a Bayesian prior to stabilize estimation
171
6.12
Binomial logistic regression
172
6.12.1
Empirical example: Positive health behaviors
173
6.12.2
Comparison of binomial multiple groups and covariate
models
176
6.13
Suggested supplemental readings
176
6.14
Points to remember
176
6.15
What s next
177
PART III LATENT CLASS MODELS FOR LONGITUDINAL DATA
7
RMLCA and LTA
181
7.1
Overview
181
7.2
RMLCA
182
7.2.1
Adding a grouping variable
185
7.2.2
RMLCA and growth mixture modeling
186
7.3
LTA
187
7.3.1
Empirical example:
Adolescent
delinquency
187
7.3.2
Why conduct LTA on the adolescent delinquency data?
188
7.3.3
Estimation and assessing model fit
189
7.3.4
Model it in the adolescent delinquency example
190
7.4
LTA model parameters
192
7.4.1
Latent states prevalences
192
7.4.2
Item-response probabilities
193
7.4.3
Transition probabilities
Í95
7.5
LTA: Model and notation
196
7.5.1
Fundamental expression
198
7.6
.Degrees of freedom associated with latent transition models
199
CONTENTS
ХІІІ
7.6.1 Computing
the number of latent status prevalences
estimated
199
7.6.2
Computing the number of item-response probabilities
estimated
200
7.6.3
Computing the number of transition probabilities
estimated
200
7.7
Empirical example: Adolescent depression
201
7.7.1
Latent status prevalences
203
7.7.2
Item-response probabilities
204
7.7.3
Transition probabilities
205
7.8
Empirical example: Dating and sexual risk behavior
207
7.9
Interpreting what a latent transition model reveals about change
209
7.10
Parameter restrictions in LTA
211
7.11
Testing the hypothesis of measurement
invariance
across times
212
7.11.1
Empirical example: Adolescent depression
213
7.12
Testing hypotheses about change between times
214
7.13
Relation between RMLCA and LTA
217
7.13.1
Relation between RMLCA and LTA when there are
two times
217
7.13.2
Relation between RMLCA and LTA when mere are
three or more times
218
7.13.3
When to use RMLCA versus LTA
220
7.14
Invariance
of the transition probability matrix
221
7.15
Suggested supplemental readings
. 221
7.16
Points to remember
223
7.17
What s next
224
8
Multiple-Group LTA and LTA with Covariates
225
8.1
Overview
225
8.2
LTA with a grouping variable
226
8.2.1
Empirical example: Adolescent depression
226
8.3
Multiple-group
LTA:
Model and notations
226
8.4
Computing the namber of parameters
estimatei
in multiple-
group latent transition models
228
8.5
Hypothesis tests concerning group differeaees;
Generai
considerations
229
8.6
Överalt
hypothesis tests about
groep
differences ia LTA
230
XIV
CONTENTS
8.6.1
Empirical example: Cohort differences in adolescent
depression
230
8.6.2
Empirical example: Gender differences in adolescent
depression
233
8.7
Testing the hypothesis of equality of latent status prevalences
235
8.7.1
Empirical example: Gender differences in adolescent
depression
236
8.7.2
Empirical example: Gender differences in dating and
sexual risk behavior
237
8.8
Testing the hypothesis of equality of transition probabilities
238
8.8.1
Empirical example: Gender differences in adolescent
depression
240
8.9
Incorporating covariates in LTA
241
8.9.1
Missing data and preparing variables for use as
covariates
241
8.10
LTA with covariates: Model and notation
242
8.10.1
Predicting latent states membership
243
8.10.2
Predicting transitions between latent statuses
243
8.10.3
Hypothetical example of LTA with covariates
244
8.10.4
What is estimated
245
8.11
Hypothesis testing in LTA with covariates
246
8.11.1
Empirical example of predicting latent status
membership at Time
1:
Adolescent depression
247
8.11.2
Empirical example of predicting latent status
membership at Time
1 :
Dating and sexual risk behavior
250
8.11.3
Empirical example of predicting transitions between
latent statuses: Adolescent depression
252
8.11.4
Empirical example of predicting transitions between
latent statuses: Dating and sexual risk behavior
256
8.12
Inctodiag both a grouping variable and a covariate
ír
LTA
257
8.12.1
Empirical example: Dating and sexual risk behavior
258
8.13
Binomial logistic regression
258
8.13.1
Empirical example; Adolescent depression
259
8.13.2
Empirical example: Dating
mă
sexaal
risk behavior
261
8.14
The relation between,
maltíple-groap
LTA and LTA with a
covariate
263
8.15
Suggested supplemental readiags
263
8.16
Points to remember
264
CONTENTS
XV
Topic
Index 279
Author
Index 283
List of Figures
ł
. 1
Latent variable with three observed variables as indicators.
5
1.2
Adolescent delinquency latent class membership probabilities
(Add Health public-Hse data, Wave I; ¿V
= 2,087).
Note that the
four probabilities
sam
to
L
13
1.3
ftobabffîty
of a Yes response to each delinquency item
conditional on latent class membership (Add Health public-use
data, Wave I; N =
2,087).
Ï4
1.4
Probability of a Yes response to each delinquency Item
conditional on latent statos membership (Add Health publie-Hse
data, Waves
Ï
and
H;
N = 2,087), 16
2.1
Lateat ciass prevalences in
pubertà!
development example
(Aie
Health
piłblic-ase
date, Wave I;
N - 469). 28
2.2
Item-response probabilities for measurement of Delayed Pubertai
Onset latent class (Add Health public-use data» Wave I;
N
~
469),
Respea.se category
tobéis
appear in Table
2.5» -32
xvii
XVÜi
LIST OF FIGURES
2.3
Item-response probabilities for measurement of Biologically
Mature latent class (Add Health public-use data, Wave I;
N = 469).
Response category labels appear in Table
2.5. 32
2.4
Item-response probabilities for measurement of Visibly Mature
latent class (Add Health public-use data, Wave I;
N = 469).
Response category labels appear in Table
2.5. 33
2.5
Item-response probabilities for measurement of Mature latent
class (Add Health public-use data, Wave I; JV
= 469).
Response
category labels appear in Table
2.5. 33
2.6
Probability of endorsing aicohol and tobacco use items
conditional on latent class membership (Youth Risk Behavior
Survey,
2005; N = 13,840). 36
2.7
Probability of endorsing other drag use items conditional on
latent class membership (Youth Risk Behavior Survey,
2005;
N = 13,840). 37
2.8
Probability of endorsing sexual behavior items conditional on
latent class membership
(Youtìi
Risk Behavior Survey,
2005;
N=
13,840). 37
2.9
Prevalence of health risk behavior latent classes (Youth Risk
Behavior Survey,
2005;
JVr
= 13,840). 38
2.10
Figure
1.1,
repeated here for convenience. Latent variable with
three observed variables as indicators. This figure illustrates local
independence. There are arrows connecting observed variables
Xi,
X2, and X3 to the latent variable but no other arrows
connecting any components of the observed variables to each
other. This signifies that the three observed variables are related
only through the latent variable.
44
2.1
1
Latent variable with three observed variables as indicators. This
figure illustrates a violation of local independence. Observed
variables X% and X$ are related to each other not only through
the latest variable, bat also throagh their error components
(e s).
45
3.
ł
Probability of endorsing tobaeco
ase
behavior items conditional
on latent class membership. Hypothetical data from Table
3.5
exhibit high homogeneity and high latent class separation.
59
LIST OF
FIGURES
ХІХ
3.2
Probability of endorsing tobacco use behavior items conditional
on latent class membership. Hypothetical data from Table
3.6
exhibit high homogeneity overall and low separation between the
Regular I and
Π
latent classes.
61
3.3
Probability of endorsing tobacco use behavior items conditional
on latent class membership. Hypothetical data from Table
3.7
exhibit low homogeneity and low latent class separation.
63
4.1
Unimodal likelihood function for a single parameter
Θ,
indicative
of good identification.
90
4.2 Multimodal
likelihood function for a single parameter Q,
indicative of underidentification.
9
1
4.3
Likelihood function for a single parameter
Θ.
This function has a
flat region, which suggests that the model being fit is unidentified.
9
í
4.4
Distribution of log-likelihood values for five-latent-class model
of positive health behaviors based on
100
random sets of starting
values (Monitoring the Future data,
2004;
Лг
= 2,065). 96
4.5
G2, AIC,
and
BIC
for models of positive health behaviors
(Monitoring the Future data,
2004;
Лг
= 2,065). 98
4.6
G2,
AIC, and
BIC
for models of female
poberta!
development
(Add Health pablic-use data, Wave I;
N - 469),
1ÖI
4.7
G2, AIC, and
BIC
for models of health risk behaviors (Youth
Risk Behavior Survey,
2005; N = 13,840).
І02
5.
1 Prevalence of latent classes of positive health behaviors by gender
(Monitoring the
Fatare
data,
2004; N - 2,065). 139
5.2
Prevalence of health risk behavior latent classes tor each grade
(Youth Risk Behavior Survey,
2005; N = 13,840). 144
6.1
Overall effect of
one-stanđarđ-deviation
increase ia maternal
edecation ia positive health behavior example (Monitoring the
Fatare
data,
2004;
Ar
= 2,065).
The Typical latent class is the
reference group.
162
6.2
Effect of
ene-staađarđ-đeviatioB
increase in maternal
eđaeatioa
for males and females in positive health behavior example
(Monitoring the
Риже
data,
2004; N - 2,065). 165
XX LIST OF
FIGURES
6.3
Effect of one-standard-deviation increase in maternal education
on odds of membership in Healthy latent class as compared
to membership in other latent classes combined, by gender
(Monitoring the Future data,
2004; N = 2,065). 175
7.1
Patterns of heavy drinking across four developmental periods,
corresponding to the latent classes in Table
7.2
(from Lanza and
Collins,
2006).
Note that more precise values for item-response
probabilities appear in Table
7.1. 184
7.2
G2, AIC, and
BIC
for latent transition models of adolescent
delinquency (Add Health public-use data, Waves I and II;
N~
2,087). 191
7.3
G2, AIC, and
BIC
for latent transition models of adolescent
depression (Add Health public-use data, Waves I and II;
N = 2,061
).2O3
7.4
Transition probabilities for latent transition model of adolescent
depression (Add Health
public
-иѕе
data, Waves I and II;
N =
2,061).206
8.1
Prevalences of latent statuses of
adolescent
depression at Time
1
by gender (Add Health public-use data. Waves I and II;
N =
2,061).237
8.2
Odds ratios associated with
carrent
cigarette use and lifetime
marijuana use. Although not estimated, the odds ratio of
1
associated with the reference latent states, Not Depressed, is
shown here for comparison purposes (Add Health public-use
data, Waves I and II; N =
2,061). 250
List of Tables
1.1
FourDifferentLatentVariableModels
7
1.2
Proportion of Adolescents Responding Yes to Questioas About
Delinquent Behaviors (Add Health
Pabîic-Use Data,
Wave I;
.¥ = 2,087)
1Í
13
Foiir-Lateot-Class Model of Past-Year Delinquency (Add Health
Public-Use Date, Wave
І; Лг =
2,087) 12
1.4
Five-Latent-Stetas Model of Past-Year Delinquency (Add Health
Public-Use
Data,
Waves I and
Η; Ν
- 2,087) 15
2.1
Marginal Respome Proportions for Female Pabertal Development
Variables (Add Health PabBc-Use Data, Wave
І;
N = 469) 24
2.2
Response Patterns and Frequencies for Add Health Pabertal
Development
Data (Add Health Pubic-Use Data» Wave I;
N = 469) 26
2.3
Item-Eesponse Probabilities for
a Hypotìieticaì
TWe-Lateat-CIass
Model
30
2.4
Item-Response Probabilities for a Hypothetical Three-Latent-
Clâss
Model 3§
xxi
XXÍI
UST
OF TABLES
2.5
Four-Latent-Class Model of Female
Pubertal
Development in
Seventh Grade (Add Health Public-Use Data, Wave I;
N = 469) 31
2.6
Proportion of Students Reporting Each Health Risk Behavior
(Youth Risk Behavior Survey,
2005;
JV
= 13,840) 35
2.7
Five-Latent-Class Model of Health Risk Behaviors (Youth Risk
Behavior Surveillance System Data;
N = 13,840) 39
2.8
Hypothetical Example with Two Latent Classes and Two
Observed Variables
42
2.9
Response Pattern Probabilities for Hypothetical Example in Table
2.8 44
3.1
Item-Response Probabilities from Four-Latent-Class Model of
Female
Pubertal
Development (Add Health Pablic-Use-Data,
Wave I;
N = 469.
From Table
2.5;
repeated here for convenience)
52
3.2
Hypothetical Item-Response Probabilities Reiecting
Independence of Observed Variables and Latent Variable
53
3.3
Item-Response Probabilities from Five-Latent-Class Model of
Health Risk Behaviors (Youth Risk Behavior Survey,
2005;
JV
= 13,840.
From Table
2.7;
repeated here for convenience)
54
3.4
Item-Response Probabilities for a Hypothetical Three-Latent-
Ciass Model
55
3.5
Item-Response Probabilities for a Hypothetical Three-Latent-
Class Model with High Homogeneity and High Latent Class
Separation
58
3.6
Item-Response Probabilities for a Hypothetical Three-Latent-
Class Model with High Homogeneity and Low Latent Class
Separation
60
3.7
Item-Response Probabilities for a Hypothetical Three-Latent-
Class Model with Low Homogeneity and Low Latent Class
Separation
62
4.
1 Marginal Response Proportions for Indicators of Positive Health
Behavior {Monitoring
Ése
Future Data,
2004;
iV
= 2,065) 95
4.2
Summary of Information for Selecting Number of Latent Classes
of Positive Health Behaviors (Monitoring the
Fatare
Data»
2004;
iV =
2,065) 97
UST
OF
TABLES
ХХІІІ
4.3
Summary of Information for Selecting Namber of Latent Classes
of Past-Year Delinquency (Add Health Public-Use Data, Wave I;
iV =
2,087) 99
4.4
Summary of Information for Selecting Number of Latent Classes
of Female
Pubertal
Development (Add Health Public-Use Data,
Wave I;
N = 469) 100
4.5
Summary of Information for Selecting Number of Latent Classes
of Health Risk Behaviors (Youth Risk Behavior Survey,
2005;
N =
13,840)
ЮІ
4.6
Item-Response Probabilities for a Hypothetical Three-Latetit-
Class Model (Table
3.4
repeated for convenience)
104
4.7
Type A and Type
В
Errors for Hypothetical Three-Latent-Class
Model in Table
4.6 105
5.1
Four-Latent-Class Model of Past-Year Delinquency (Add Health
Public-Use Data, Wave I;
N = 2,087;
Table
1.3
repeated for
convenience)
115
5.2
Selecting Number of Latent Classes in Multiple-Group
Delinquency Example (Add Health Public-Use Data, Wave I;
N = 2,087) 121
5.3
Parameter Restrictions Specifying Item-Response Probabilities
Are Equal Across Grades in Adolescent Delinquency Example
123
5.4
Parameter Restrictions for Testing Measurement
Invariance
When Other Parameter
Résiliations
Are Present
124
5.5
Fit Statistics for Test of Measurement
Invariance
for Adolescent
Delinquency Example (Add Health Public-Use Data, Wave
Ï;
N =
2,087) 125
5.6
Hypothetical Item-Response Probabilities for Delinquency
Example Illustrating Pronounced Group Differences
їй
Measurement
127
5.7
Hypothetical Itero-RespoHse Probabilities for
Defiaęueney
Example Illustrating Moderate Gioiip Differences in
Меаѕнгеигаи
І28
5.8
Parameter Restrictions Constraining Most» But Mot AH, iiem-
Response Probabilities to Be Equal Across Cohorts in Adolescent
Delinquency Example
130
XXIV
UST
OF TABLES
5.9
Parameter
Restrictions Constraining Item-Response Probabilities
to Be Eqaal Across Cohorts for a Subset of Variables in
Adolescent Delinquency Example
130
5.10
Parameter Restrictions Constraining Item-Response Probabilities
to Be Equal Across Only Grades
10
and
11
in a Hypothetical
Adolescent Delinquency Example with Three Grades
132
5.11
Five Latent Classes of Positive Health Behaviors (Monitoring the
Future Data,
2004;
N =
2,065) 134
5.12
Fit Statistics for Test of Measurement
Invariance
Across Genders
for Latent Class Model of Positive Health Behaviors (Monitoring
the Future Data,
2004; N = 2,065) 135
5.13
Latent Class Prevalences for Model of Positive Health Behaviors
with Item-Response Probabilities Allowed to Vary Across
Genders (Monitoring the Future Data,
2004; N = 2,065) 135
5.14
Item-Response Probabilities Allowed to Vary Across Genders for
Model of Positive Health Behaviors (Monitoring the Future Data,
2004;
N =
2,065) 136
5.15
Latent Class Model of Positive Health Behaviors with Item-
Response Probabilities Constrained Equal Across Genders
(Monitoring the Future Data,
2004;
iV
= 2,065) 137
5.16
Fit -Statistics for Test of Gender Differences in Latent Class
Prevalences for Latent Class Model of Positive Health Behaviors
(Monitoring the Future Data,
2004; N = 2,065) 138
5.17
Latent Class Prevalences Across Cohorts in Four-Latent-Class
Model of Past-Year Delinquency (Add Health Public-Use Data,
Wave I; JV =
2,087) 140
5.18
Parameter Restrictions Constraining Latent Class Prevalences
to Be Equal Across Cohorts ia the Adolescent Delinquency
Example
(Äad
Health Public-Use Data, Wave I;
N = 2,087) 141
5.19
Fit Statistics for Test of Cohort Differences
їв
Latent Class
Prevaleaces
for Adolescent Delinquency Example (Add Health
Ptibiîc-Use
Data, Wave I;
N =
2t0S7)
141
5.20
Proportion of Students In Each Cohort Reporting Each Health
Risk Behavior (Youth Risk Behavior Survey,
2005;
]V
= 13,840) 142
LIST OF TABLES
XXV
5.21
Latent Class Prevalences Across Grades in Five-Latent-Class
Model of Health Risk Behaviors (Youth Risk Behavior Sarvey,
2005; N = 13,840) 143
5.22
Freely Estimated and Restricted Latent Class Prevalences for
Models of Health Risk Behaviors (Youth Risk Behavior Survey,
2005; N = 13,840) 145
5.23
Examination of the Impact of Parameter Restrictions on Model
Fit for Model of Health Risk Behaviors (Youth Risk Behavior
Survey,
2005;
JV =
13,840) 146
5.24
Hypothesis Tests of Equality of Latent Class Prevalences Across
Grades in Health Risk Behavior Example (Youth Risk Behavior
Survey,
2005; N = 13,840) 147
6.1
Latent Class Prevalences and Log-Likelihoods from Previously
Fit Models of
Positive
Heaftn Behaviors (Monitoring me Future
Data,
2004;
N =
2,065) 150
6.2
Example Coding Scheme to Represent a Covariate with Three
Response Categories
152
6.3
Gender as a Predictor of Membership in Latent Classes of
Positive Health Behaviors (Monitoring the Future Data,
2004;
N =
2,065) 159
6.4
Maternal Education as a Predictor of Membership in Latent
Classes of Positive Health Behaviors (Monitoring the
Fatare
Data,
2004; N = 2,065) 162
6.5
Gender and Maternal Education as Predictors of Membership
in Latent Classes of Positive Health Behaviors (Monitoring the
Future Data,
2004; N = 2,065) 164
6.6
Hypothesis Tests for Gender, Maternal Education» and Their
Interaction for Model of Positive Health Behaviors Reported in
Table
6,5
(Monitoring the
Fatare
Data,
2004; N
~
2,065} 164
6.7
Maternal Education as a Predictor of Membership in Latent
Classes of Posiive Health Behaviors, with Gender as
a
Groeping
Variable (Monitoring the
Futóié
Data»
2004; N - 2,065) 168
6.8
Вшита!
Logistic Regression with Gender as
a Covâriató
in
Model of Positive Health Behaviors (Monitoring the
Fatare Data,
2004; N = 2,065)
Í73
XXVI
LIST OF
TABLES
6.9
Binomial Logistic Regression Model with Gender and Maternal
Education as Covariates (Monitoring the Future Data,
2004;
,¥ = 2,065) 174
6.10
Hypothesis Tests for Gender, Maternal Education, and Their
Interaction for Model in Table
6.9
(Monitoring the Future Data,
2004;
N =
2,065) 174
6.11
Binomial Logistic Regression with Gender as a Grouping
Variable and Maternal Education as a Covariate in Model of
Positive Health Behavior (Monitoring the Future Data,
2004;
N = 2,065) 175
7.1
Eight-Latent-Class Model of Heavy Drinking at Six Different
Ages (NLSY;
N = 1,265)
(from Lanza and Collins,
2006) 183
7.2
Patterns of Heavy Drinking over Time Corresponding to Eight
Latent Classes (NLSY;
N = 1,265)
(from Lanza and Coffins,
2006) 185
7.3
Prevalences of Latent Classes Representing Patterns of Heavy
Drinking over Time for Those Enrolled in College and Those Not
Enroled in College (NLSY;
N = 1,265)
(from Lanza and Coffins,
2006) 186
7.4
Prevalence of Heavy Drinking at Each Developmental Period for
Those Enrolled in College and Those Not Enrolled in College
(NLSY;
N = 1,265)
(from Lanza and Collins,
2006) 186
7.5
Marginal Response Proportions for Past-Year Delinquency
Questionnaire Items (Add Health Public-Use Data, Waves I and
П;і¥ =
2,087) 188
7.6
Summary of Information for Selecting Number of Latent Statuses
of Adolescent Delinquency at Two Times (Add Health Public-Use
Data, Waves I and
П, Лг
= 2,087) 191
7.7
Five-Latent-Status Model of Past-Year Delinquency (Add Health
Public-Use Data, Waves I and
H; JV
= 2,087;
Table
1.4
repeated
for convenience)
193
7.8
Marginal Response Proportions for Adolescent Past-Week
Depression Qeestionnaire Items (Add Health Pablic-Use Data,
Waves I
amili;
IV
= 2,061) 201
7.9
Summary of Information for Selecting Member of Latent Statuses
of Adolescent Depression (Add Health Pablo-Use Data, Waves I
and
її; Ж
5=2,061) 203
UST
OF
TABLES
XXVÜ
7.10
Five-Latent-Status Model of Adolescent Depression (Add Health
Public-Use Data, Waves I and
Π; Ν
= 2,061) 204
7.11
Summary
ofinformation
for Selecting Number of Latent Statuses
of Dating and Sexual Risk Behavior (NLSY, Rounds
2-4,
N =
2,937) 207
7.12
Five-Latent-Status Model of Dating and Sexual Risk Behavior
(NLSY, Rounds
2-4,
JV =
2,937) 208
7.13
Parameter Restrictions Constraining Item-Response Probabilities
to Be Equal Across Times for Adolescent Depression Example
214
7.14
Fit Statistics for Test of Measurement
Invariance
Across Times
for Adolescent Depression Example (Add Health Public-Use
Data, Waves I and
П;
JV
= 2,061) 214
7.15
Fixed Transition Probability Parameter Values Expressing
a Model of No Change in the Five-Latent-States Model of
Adolescent Depression
215
7.16
Fit Statistics for Test of Hypothesis That Latent
Stålas
Membership Is Identical at Times
1
and
2
for Adolescent
Depression Example (Add Health Public-Use Data, Waves I and
II; N =
2,061) 216
7.17
Fixed Transition Probability Parameter Values Expressing a
Model in Which There Is No Movement Between Sad and
Disliked in the Five-Latent-Status Model of Adolescent Depression
216
7.18
Fixed Transition Probability Parameter Values Expressing a
Model in Which There Is Only Increasing Depression Across
Time in the Five-Latent-Status Model of Adolescent Depression
217
7.19
Parameter Eesttietions Constraining Transition Probabilities to Be
Equal Across Three Times in a Hypothetical Five-Latettt-Status
Model of Adolescent Depression
222
7.20
Five-Latent-Statas
Modei
of
Datißg
and Sexaal Risk Behavior
with Transition Probability Matrices Constrained Equal Across
Three Times
(MLSY,
Rounds
2-4, N - 2,937) 222
7.21
Fit Statistics for Test of
Invariance
of Transition Probability
Matrices in
rae
Bating and Sexual Risk Behavior Example
CNLSY, Rounds
2-4,
AT
= 2,937) 223
XXVIII LIST OF
TABLES
8.1
Latent Status Prevalences and Transition Probabilities for
Five-Latent-Status Model of Adolescent Depression, by Cohort
(Add Health Public-Use Data, Waves I and II;
N = 2,061) 227
8.2
Varying Types of Equivalence Across Groups in Latent Transition
Models
229
8.3
Parameter Restrictions Constraining Latent Status Prevalences
and Transition Probabilities to Be Equal Across Cohorts in
Adolescent Depression Example
231
8.4
Latent Status Prevalences and Transition Probabilities
Constrained Equal Across Cohorts for Five-Latent-Status Model
of Adolescent Depression (Add Health Public-Use Data, Waves I
and
H;JV =
2,061) 232
8.5
Fit Statistics for Test of Cohort Differences in Latent States
Prevalences and Transition Probabilities for Adolescent
Depression Example (Add Health
РнЬИс
-Use
Data, Waves I and
її; Ж
= 2,061) . 233
8.6
Latent States Prevalences and Transition Probabilities for
Five-Latent-Status Model of Adolescent Depression, by Gender
(Add Health Public-Use Data, Waves I and II;
N = 2,061) 234
8.7
Kt Statistics for Test of Gender Differences in Latent States
Prevalences and Transition Probabilities for Adolescent
Depression Example (Add Health Public-Use Data, Waves I and
II; JV =
2,061) 234
8.8
Fit Statistics for Two Approaches to Test of Gender Differences
in Latent Status Prevalences for Adolescent Depression Example
(Add Health Public-Use Data, Waves I and II;
N = 2,061) 236
8.9
Fit Statistics for Test of Gender Differences in Latent States
Prevalences Across Gender for Dating aad Sexual Risk Behavior
Example (NLSY, Rounds
2-4;
2V
= 2,937) 238
8.IÖ
Latent States Prevalences and Transition Probabilities for
Pive-Latent-States Model of Dating and Sexual Risk Behavior,
by Gender
(MLSY,
Eoœds
2-4;
Ν
= 2,937) 239
8.
і
I Fit Statistics for Two Approaches to
Tesi
of Gender Differences
in Transition Probabilities for Adolescent Depression Example
(Add Health Fable-Use Data, Waves I and
П;
JV
- 2,061) 240
LIST OF TABLES
XXÍX
8.12
Hypothetical Example of Covariate (GPA) Predicting Latent
Status Membership at Time
1
and Transitions Between Latent
Statuses
245
8.13
Substance-Use Predictors of Membership in Time
1
Latent
Statuses of Adolescent Depression (Add Health Public-Use Data,
Waves I and
П;І Г =
2,061) 248
8.14
Hypothesis Tests for Predictors of Membership in Latent Statuses
of Adolescent Depression for Model Reported in Table
8.13 250
8.15
Substance-Use Predictors of Membership in Time
1
Latent
Statuses of Dating and Sexual Risk Behavior (NLSY, Rounds
2-4;
JV =
2,937) 251
8.16
Hypothesis Tests for Predictors of Membership in Latent Statuses
of Dating and Sexual Risk Behavior for Model Reported in Table
8.15 252
8.17
Logistic Regression Parameters (/? s) for Substance-Use
Predictors of Transitions Between Latent Statuses of Depression
(Add Health Public-Use Data, Waves I and II;
Лг
= 2,061) 253
8.18
Odds Ratios for Substance-Use Predictors of Transitions Between
Latent Statuses of Depression (Add Health Public-Use Data,
Waves I and It
АГ
= 2,061) 254
8.19
Hypothesis Tests for Predictors of
Transitions
Between Latent
Statuses of Adolescent Depression for Model Reported in Tables
8.17
and
8.18 256
8.20
Logistic Regression Parameters (jS s) and Odds Ratios for
Drunkenness Predicting Transitions Between Latent Statuses of
Dating and Sexual Risk Behavior (NLSY, Rounds
2-4; N = 2,937) 257
8.21
Substance-Use Predictors of Membership
io
Tíme
1
Latent
Statuses of Dating and Sexual Misk Behavior by Gender (NLSY,
Rounds
2-4; N - 2,937) 259
8.22
.Effect of Substance-Use Predictors on Probability of Transition
to Depressed Latent Status Relative to Ail Other Latent
Statoses
Conditional oa
Tíme
1
Latent States (Add Health Publie-Use
Data, Waves I and II;
N = 2,061)
26І
8.23
Hypothesis
Teste
for Predictors of Membership in Latent Statuses
of
Adolescent
Depression at Time
1
and Transition to Depressed
Latest Status for Model
Reportei
in Table
8.22 262
XXX
LIST OF
TABLES
8.24
Effect of Past-Year Drunkenness on Probability of Transition to
Miiltipartner Exposed Latent Status at Time
2
Conditional on
Time
1
Latent Status (NLSY, Rounds
2-4; N = 2,937) 262
|
any_adam_object | 1 |
author | Collins, Linda M. 1955- Lanza, Stephanie T. 1969- |
author_GND | (DE-588)1028211910 (DE-588)142626376 |
author_facet | Collins, Linda M. 1955- Lanza, Stephanie T. 1969- |
author_role | aut aut |
author_sort | Collins, Linda M. 1955- |
author_variant | l m c lm lmc s t l st stl |
building | Verbundindex |
bvnumber | BV036036249 |
callnumber-first | Q - Science |
callnumber-label | QA278 |
callnumber-raw | QA278.6 |
callnumber-search | QA278.6 |
callnumber-sort | QA 3278.6 |
callnumber-subject | QA - Mathematics |
classification_rvk | MR 2100 QH 234 |
classification_tum | SOZ 720f MAT 620f |
ctrlnum | (OCoLC)401168852 (DE-599)HBZHT016205755 |
dewey-full | 519.5/35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/35 |
dewey-search | 519.5/35 |
dewey-sort | 3519.5 235 |
dewey-tens | 510 - Mathematics |
discipline | Soziologie Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01938nam a2200493 c 4500</leader><controlfield tag="001">BV036036249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151210 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100216s2010 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015391045</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470228395</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-470-22839-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470228393</subfield><subfield code="c">hbk</subfield><subfield code="9">0-470-22839-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)401168852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT016205755</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA278.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/35</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2100</subfield><subfield code="0">(DE-625)123488:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SOZ 720f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Collins, Linda M.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1028211910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Latent class and latent transition analysis</subfield><subfield code="b">with applications in the social, behavioral, and health sciences</subfield><subfield code="c">Linda M. Collins ; Stephanie T. Lanza</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIII, 285 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in probability and statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Latent structure analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Latent variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Latent-Class-Analyse</subfield><subfield code="0">(DE-588)4166857-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Latente Variable</subfield><subfield code="0">(DE-588)4166860-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Latent-Class-Analyse</subfield><subfield code="0">(DE-588)4166857-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Latente Variable</subfield><subfield code="0">(DE-588)4166860-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lanza, Stephanie T.</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142626376</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018928222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018928222</subfield></datafield></record></collection> |
id | DE-604.BV036036249 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:09:54Z |
institution | BVB |
isbn | 9780470228395 0470228393 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018928222 |
oclc_num | 401168852 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-91 DE-BY-TUM DE-706 DE-188 |
owner_facet | DE-473 DE-BY-UBG DE-91 DE-BY-TUM DE-706 DE-188 |
physical | XXXIII, 285 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Wiley |
record_format | marc |
series2 | Wiley series in probability and statistics |
spelling | Collins, Linda M. 1955- Verfasser (DE-588)1028211910 aut Latent class and latent transition analysis with applications in the social, behavioral, and health sciences Linda M. Collins ; Stephanie T. Lanza Hoboken, NJ Wiley 2010 XXXIII, 285 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Wiley series in probability and statistics Statistik Latent structure analysis Latent variables Statistics Latent-Class-Analyse (DE-588)4166857-1 gnd rswk-swf Latente Variable (DE-588)4166860-1 gnd rswk-swf Latent-Class-Analyse (DE-588)4166857-1 s Latente Variable (DE-588)4166860-1 s DE-604 Lanza, Stephanie T. 1969- Verfasser (DE-588)142626376 aut Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018928222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Collins, Linda M. 1955- Lanza, Stephanie T. 1969- Latent class and latent transition analysis with applications in the social, behavioral, and health sciences Statistik Latent structure analysis Latent variables Statistics Latent-Class-Analyse (DE-588)4166857-1 gnd Latente Variable (DE-588)4166860-1 gnd |
subject_GND | (DE-588)4166857-1 (DE-588)4166860-1 |
title | Latent class and latent transition analysis with applications in the social, behavioral, and health sciences |
title_auth | Latent class and latent transition analysis with applications in the social, behavioral, and health sciences |
title_exact_search | Latent class and latent transition analysis with applications in the social, behavioral, and health sciences |
title_full | Latent class and latent transition analysis with applications in the social, behavioral, and health sciences Linda M. Collins ; Stephanie T. Lanza |
title_fullStr | Latent class and latent transition analysis with applications in the social, behavioral, and health sciences Linda M. Collins ; Stephanie T. Lanza |
title_full_unstemmed | Latent class and latent transition analysis with applications in the social, behavioral, and health sciences Linda M. Collins ; Stephanie T. Lanza |
title_short | Latent class and latent transition analysis |
title_sort | latent class and latent transition analysis with applications in the social behavioral and health sciences |
title_sub | with applications in the social, behavioral, and health sciences |
topic | Statistik Latent structure analysis Latent variables Statistics Latent-Class-Analyse (DE-588)4166857-1 gnd Latente Variable (DE-588)4166860-1 gnd |
topic_facet | Statistik Latent structure analysis Latent variables Statistics Latent-Class-Analyse Latente Variable |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018928222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT collinslindam latentclassandlatenttransitionanalysiswithapplicationsinthesocialbehavioralandhealthsciences AT lanzastephaniet latentclassandlatenttransitionanalysiswithapplicationsinthesocialbehavioralandhealthsciences |