Applied mechanics of solids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press
2010
|
Schlagworte: | |
Online-Zugang: | lizenzfrei Inhaltsverzeichnis |
Beschreibung: | XXV, 794 S. Ill., graph. Darst. |
ISBN: | 9781439802472 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035989943 | ||
003 | DE-604 | ||
005 | 20150707 | ||
007 | t | ||
008 | 100201s2010 ad|| |||| 00||| eng d | ||
020 | |a 9781439802472 |9 978-1-4398-0247-2 | ||
035 | |a (OCoLC)636299460 | ||
035 | |a (DE-599)OBVAC07531822 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-83 |a DE-29T |a DE-703 |a DE-91G |a DE-898 | ||
082 | 0 | |a 620.105 | |
084 | |a UF 1500 |0 (DE-625)145560: |2 rvk | ||
084 | |a MTA 010f |2 stub | ||
084 | |a PHY 210f |2 stub | ||
100 | 1 | |a Bower, Allan F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applied mechanics of solids |c Allan F. Bower |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press |c 2010 | |
300 | |a XXV, 794 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | |a Mechanics, Applied | |
650 | 0 | |a Solids | |
650 | 0 | |a Elasticity | |
650 | 0 | |a Strength of materials | |
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörpermechanik |0 (DE-588)4129367-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Festkörpermechanik |0 (DE-588)4129367-8 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | |u http://www.gbv.de/dms/weimar/toc/593899156_toc.pdf |z lizenzfrei |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018882673&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018882673 |
Datensatz im Suchindex
_version_ | 1804141013887877120 |
---|---|
adam_text | APPLIED MECHANICS OF SOLIDS ALLAN F. BOWER O CRC PRESS C;1LJ TAYLOR &
FRANCIS GROUP BOCA RATON LONDON NEW YORK CRC PRESS IS AN IMPRINT OF THE
TAYLOR & FRANCIS GROUP, AN INFORMA BUSINESS CONTENTS PREFACE, XXIII
AUTHOR, XXV CHAPTER 1 *OVERVIEW OF SOLID MECHANICS 1.1 DEFINING A
PROBLEM IN SOLID MECHANICS 1.1.1 DECIDING WHAT TO CALCULATE 1.1.2
DEFINING THE GEOMETRY OF THE SOLID 1.1.3 DEFINING LOADING 1.1.4 DECIDING
WHAT PHYSIES TO INCLUDE IN THE MODEL 1.1.5 DEFINING MATERIAL BEHAVIOR
1.1.6 A REPRESENTATIVE INITIAL VALUE PROBLEM IN SOLID MECHANIES 1.1.7
CHOOSING A METHOD OF ANALYSIS CHAPTER 2 *GOVERNING EQUATIONS 2.1
MATHEMATICAL DESCRIPTION OF SHAPE CHANGES IN SOLIDS 2.1.1 DISPLACEMENT
AND VELOCITY FIELDS 2.1.2 DISPLACEMENT GRADIENT AND DEFORMATION GRADIENT
TENSORS 2.1.3 DEFORMATION GRADIENT RESULTING FROM TWO SUCCESSIVE
DEFORMATIONS 2.1.4 THE JACOBIAN OFTHE DEFORMATION GRADIENT 2.1.5
LAGRANGE STRAIN TENSOR 2.1.6 EULERIAN STRAIN TENSOR 2.1.7 INFINITESIMAL
STRAIN TENSOR 2.1.8 ENGINEERING SHEAR STRAINS 2.1.9 DECOMPOSITION
OFINFINITESIMAL STRAIN INTO VOLUMETRIE AND DEVIATORIE PARTS 2.1.10
INFINITESIMAL ROTATION TENSOR 2.1.11 PRINCIPAL VALUES AND DIRECTIONS OF
THE INFINITESIMAL STRAIN TENSOR 2.1.12 CAUCHY-GREEN DEFORMATION TENSORS
2 3 4 5 6 7 10 11 13 13 13 14 18 19 20 22 22 24 24 25 26 27 V VI *
CONTENTS 2.2 2.3 2.4 2.1.13 ROTATION TENSOR AND LEFT AND RIGHT STRETCH
TENSORS 2.1.14 PRINCIPAL STRETCHES 2.1.15 GENERALIZED STRAIN MEASURES
2.1.16 THE VELOCITY GRADIENT 2.1.17 STRETCH RATE AND SPIN TENSORS 2.1.18
INFINITESIMAL STRAIN RATE AND ROTATION RATE 2.1.19 OTHER DEFORMATION
RATE MEASURES 2.1.20 STRAIN EQUATIONS OF COMPATIBILITY FOR INFINITESIMAL
STRAINS MATHEMATICAL DESCRIPTION OF INTERNAL FORCES IN SOLIDS 2.2.1
SURFACE TRACTION AND INTERNAL BODY FORCE 2.2.2 TRACTION ACTING ON PLANES
WITHIN ASOLID 2.2.3 CAUCHY (TRUE) STRESS TENSOR 2.2.4 OTHER STRESS
MEASURES: KIRCHHOFF, NOMINAL, AND MATERIAL STRESS TENSORS 2.2.5 STRESS
MEASURES FOR INFINITESIMAL DEFORMATIONS 2.2.6 PRINCIPAL STRESSES AND
DIRECTIONS 2.2.7 HYDROSTATIC, DEVIATORIC, AND VON MISES EFFECTIVE STRESS
2.2.8 STRESSES NEAR AN EXTERNAL SURFACE OR EDGE: BOUNDARY CONDITIONS ON
STRESSES EQUATIONS OF MOTION AND EQUILIBRIUM FOR DEFORMABLE SOLIDS 2.3.1
LINEAR MOMENTUM BALANCE IN TERMS OFCAUCHY STRESS 2.3.2 ANGULAR MOMENTUM
BALANCE IN TERMS OF CAUCHY STRESS 2.3.3 EQUATIONS OF MOTION IN TERMS OF
OTHER STRESS MEASURES WORK DONE BY STRESSES: PRINCLPLE OF VIRTUAL WORK
2.4.1 WORK DONE BY CAUCHY STRESSES 2.4.2 RATE OF MECHANICAL WORK IN
TERMS OF OTHER STRESS MEASURES 2.4.3 RATE OF MECHANICAL WORK FOR
INFINITESIMAL DEFORMATIONS 2.4.4 THE PRINCIPLE OFVIRTUAL WORK 2.4.5 THE
VIRTUAL WORK EQUATION IN TERMS OF OTHER STRESS MEASURES 2.4.6 THE
VIRTUAL WORK EQUATION FOR INFINITESIMAL DEFORMATIONS 27 29 30 31 32 33
33 34 38 38 40 43 44 47 47 48 49 49 49 51 53 54 54 56 57 58 61 62
CHAPTER 3 *CONSTITUTIVE MODELS: RELATIONS BETWEEN STRESS ARID STRAIN 65
3.1 GENERAL REQUIREMENTS FOR CONSTITUTIVE EQUATIONS 66 3.1.1
THERMODYNAMIC RESTRICTIONS 66 3.1.2 OBJECTIVITY 66 3.1.3 DRUCKER
STABILITY 67 CONTENTS - VII 3.2 LINEAR ELASTIC MATERIAL BEHAVIOR 69
3.2.1 ISOTROPIE, LINEAR ELASTIE MATERIAL BEHAVIOR 69 3.2.2 STRESS-STRAIN
RELATIONS FOR ISOTROPIE, LINEAR ELASTIE MATERIALS: YOUNG SMODULUS,
POISSON S RATIO, AND THE THERMAL EXPANSION COEFFICIENT 70 3.2.3 REDUCED
STRESS-STRAIN EQUATIONS FOR PLANE DEFORMATION OF ISOTROPIE SOLIDS 72
3.2.4 REPRESENTATIVE VALUES FOR DENSITY AND ELASTIE CONSTANTS OF
ISOTROPIE SOLIDS 73 3.2.5 OTHER ELASTIC CONSTANTS: BULK, SHEAR, AND LAME
MODULUS 74 3.2.6 PHYSIEAL INTERPRETATION OF ELASTIE CONSTANTS FOR
ISOTROPIE SOLIDS 75 3.2.7 STRAIN ENERGY DENSITY FOR ISOTROPIE SOLIDS 75
3.2.8 STRESS-STRAIN RELATION FOR A GENERAL ANISOTROPIE LINEAR ELASTIE
MATERIAL: ELASTIE STIFFNESS AND COMPLIANCE TENSORS 76 3.2.9 PHYSIEAL
INTERPRETATION OF THE ANISOTROPIE ELASTIE CONSTANTS 78 3.2.10 STRAIN
ENERGY DENSITY FOR ANISOTROPIE, LINEAR ELASTIE SOLIDS 79 3.2.11 BASIS
CHANGE FORMULAS FOR ANISOTROPIE ELASTIE CONSTANTS 79 3.2.12 THE EFFECT
OF MATERIAL SYMMETRY ON STRESS-STRAIN RELATIONS FOR ANISOTROPIE
MATERIALS 81 3.2.13 STRESS-STRAIN RELATIONS FOR LINEAR ELASTIE
ORTHOTROPIE MATERIALS 82 3.2.14 STRESS-STRAIN RELATIONS FOR LINEAR
ELASTIE TRANSVERSELY ISOTROPIE MATERIAL 83 3.2.15 REPRESENTATIVE VALUES
FOR ELASTIC CONSTANTS OFTRANSVERSELY ISOTROPIE HEXAGONAL CLOSE-PACKED
CRYSTALS 85 3.2.16 LINEAR ELASTIE STRESS-STRAIN RELATIONS FOR CUBIE
MATERIALS 85 3.2.17 REPRESENTATIVE VALUES FOR ELASTIC PROPERTIES OF
CUBIE CRYSTALS AND COMPOUNDS 87 3.3 HYPOELASTICLTY: ELASTIC MATERIALS
WITH A NONLINEAR STRESS-STRAIN RELATION UNDER SMALL DEFORMATION 87 3.4
GENERALIZED HOOKE S LAW: ELASTIC MATERIALS SUBJECTED TO SMALL STRETCHES
BUT LARGE ROTATIONS 91 3.5 HYPERELASTICLTY: TIME-INDEPENDENT BEHAVIOR OF
RUBBERS AND FOAMS SUBJECTED TO LARGE STRAINS 93 3.5.1 DEFORMATION
MEASURES USED IN FINITE ELASTICITY 95 3.5.2 STRESS MEASURES USED IN
FINITE ELASTICITY 96 3.5.3 CALCULATING STRESS-STRAIN RELATIONS FROM THE
STRAIN ENERGY DENSITY 97 3.5.4 A NOTE ON PERFECTLY INCOMPRESSIBLE
MATERIALS 99 VIII * CONTENTS 3.5.5 SPECIFIC FORMS OF THE STRAIN ENERGY
DENSITY 100 3.5.6 CALIBRATING NONLINEAR ELASTICITY MODELS 102 3.5.7
REPRESENTATIVE VALUES OF MATERIAL PROPERTIES FOR RUBBERS 103 3.6 LINEAR
VISCOELASTIC MATERIALS: TIME-DEPENDENT BEHAVIOR OF POLYMERS AT SMALL
STRAINS 103 3.6.1 FEATURES OF THE SMALL STRAIN RATE-DEPENDENT RESPONSE
OF POLYMERS 104 3.6.2 GENERAL CONSTITUTIVE EQUATIONS FOR LINEAR
VISCOELASTIC SOLIDS 109 3.6.3 SPRING-DAMPER APPROXIMATIONS TO THE
RELAXATION MODULUS 110 3.6.4 PRONY SERIES REPRESENTATION FOR THE
RELAXATION MODULUS 112 3.6.5 CALIBRATING THE CONSTITUTIVE LAWS FOR
LINEAR VISCOELASTIC SOLIDS 112 3.6.6 REPRESENTATIVE VALUES FOR
VISCOELASTIC PROPERTIES OFPOLYMERS 113 3.7 SMALL STRAIN,
RATE-II LDEPENDENT PLASTICLTY: METALS LOADED BEYOND YIELD 113 3.7.1
FEATURES OF THE INELASTIC RESPONSE OF METALS 115 3.7.2 DECOMPOSITION OF
STRAIN INTO ELASTIC AND PLASTIC PARTS 118 3.7.3 YIELD CRITERIA 118 3.7.4
GRAPHICAL REPRESENTATION OF THE YIELD SURFACE 119 3.7.5 STRAIN HARDENING
LAWS 120 3.7.6 PLASTIC FLOW LAW 122 3.7.7 ELASTIC UNLOADING CONDITION
126 3.7.8 COMPLETE INCREMENTAL STRESS-STRAIN RELATIONS FOR A
RATE-INDEPENDENT ELASTIC- PLASTIC SOLID 126 3.7.9 TYPICAL VALUES FOR
YIELD STRESS OF POLYCRYSTALLINE METALS 129 3.7.10 PERSPECTIVES ON
PLASTIC CONSTITUTIVE EQUATIONS: PRINCIPLE OF MAXIMUM PLASTIC RESISTANCE
129 3.7.11 PERSPECTIVES ON PLASTIC CONSTITUTIVE EQUATIONS: DRUCKER S
POSTULATE 131 3.7.12 MICROSCOPIC PERSPECTIVES ON PLASTIC FLOW IN METALS
132 3.8 SMALL STRAIN VISCOPLASTICLTY: CREEP AND HIGH STRAIN RATE
DEFORMATION OF CRYSTALLINE SOLIDS 135 3.8.1 FEATURES OF CREEP BEHAVIOR
135 3.8.2 FEATURES OF HIGH STRAIN RATE BEHAVIOR 137 3.8.3 SMALL STRAIN,
VISCOPLASTIC CONSTITUTIVE EQUATIONS 137 3.8.4 REPRESENTATIVE VALUES
OFPARAMETERS FOR VISCOPLASTIC MODELS OF CREEPING SOLIDS 142 3.8.5
REPRESENTATIVE VALUES OF PARAMETERS FOR VISCOPLASTIC MODELS OF HIGH
STRAIN RATE DEFORMATION 142 CONTENTS - IX 3.9 LARGE STRAIN,
RATE-DEPENDENT PLASTICITY 143 3.9.1 KINEMATICS OFFINITE STRAIN
PLASTICITY 143 3.9.2 STRESS MEASURES FOR FINITE DEFORMATION PLASTICITY
145 3.9.3 ELASTIC STRESS-STRAIN RELATION FOR FINITE STRAIN PLASTICITY
146 3.9.4 PLASTIC CONSTITUTIVE LAW FOR FINITE STRAIN VISCOPLASTICITY 147
3.10 LARGE STRAIN VISCOELASTICITY 148 3.10.1 KINEMATICS FOR FINITE
STRAIN VISCOELASTICITY 148 3.10.2 STRESS MEASURES FOR FINITE STRAIN
VISCOELASTICITY 150 3.10.3 RELATION AMONG STRESS, DEFORMATION MEASURES,
AND STRAIN ENERGY DENSITY 150 3.10.4 STRAIN RELAXATION 151 3.10.5
REPRESENTATIVE VALUES FOR MATERIAL PARAMETERS IN A FINITE STRAIN
VISCOELASTIC MODEL 152 3.11 CRITICAL STATE MODELS FOR SOLLS 152 3.11.1
FEATURES OF THE BEHAVIOR OF SOILS 152 3.11.2 CONSTITUTIVE EQUATIONS FOR
CAM-CLAY 153 3.11.3 APPLICATION OF THE CRITICAL STATE EQUATIONS TO
SIMPLE 2D LOADING 160 3.11.4 TYPICAL VALUES OF MATERIAL PROPERTIES FOR
SOILS 161 3.12 CONSTITUTIVE MODELS FOR METAL SINGLE CRYSTALS 161 3.12.1
REVIEW OFSOME IMPORTANT CONCEPTS FROM CRYSTALLOGRAPHY 162 3.12.2
FEATURES OF PLASTIC FLOW IN SINGLE CRYSTALS 166 3.12.3 KINEMATIC
DESCRIPTIONS USED IN CONSTITUTIVE MODELS OF SINGLE CRYSTALS 171 3.12.4
STRESS MEASURES USED IN CRYSTAL PLASTICITY 173 3.12.5 ELASTIC
STRESS-STRAIN RELATION USED IN CRYSTAL PLASTICITY 174 3.12.6 PLASTIC
STRESS-STRAIN RELATION USED IN CRYSTAL PLASTICITY 174 3.12.7
REPRESENTATIVE VALUES FOR PLASTIC PROPERTIES OFSINGLE CRYSTALS 176 3.13
CONSTITUTIVE MODELS FOR CONTACTING SURFACES AND II LTERFACES IN SOLIDS
176 3.13.1 COHESIVE ZONE MODELS OFINTERFACES 176 3.13.2 MODELS OF
CONTACT AND FRICTION BETWEEN SURFACES 182 CHARTER 4* SOLUTIONS TO SIMPLE
BOUNDARY AND INITIAL VALUE PROBLEMS 193 4.1 AXIALLY AND SPHERICALLY
SYMMETRIC SOLUTIONS TO QUASI-STATIC LINEAR ELASTIC PROBLEMS 193 4.1.1
SUMMARY OF GOVERNING EQUATIONS OF LINEAR ELASTICITY IN CARTESIAN
COMPONENTS 193 X * CONTENTS 4.1.2 SIMPLIFIED EQUATIONS FOR SPHERIEALLY
SYMMETRIE LINEAR ELASTICITY PROBLEMS 194 4.1.3 GENERAL SOLUTION TO THE
SPHERIEALLY SYMMETRIE LINEAR ELASTICITY PROBLEM 197 4.2 4.3 4.4 4.1.4
PRESSURIZED HOLLOW SPHERE 4.1.5 GRAVITATING SPHERE 4.1.6 SPHERE WITH
STEADY-STATE HEAT FLOW 4.1.7 SIMPLIFIED EQUATIONS FOR AXIALLY SYMMETRIE
LINEAR ELASTICITY PROBLEMS 4.1.8 GENERAL SOLUTION TO THE AXISYMMETRIE
BOUNDARY VALUE PROBLEM 4.1.9 LONG (GENERALIZED PLANE STRAIN) CYLINDER
SUBJECTED TO INTERNAL AND EXTERNAL PRESSURE 4.1.10 SPINNING CIREULAR
PLATE 4.1.11 STRESSES INDUEED BYAN INTERFERENEE FIT BETWEEN TWO
CYLINDERS AXIALLY AND SPHERICALLY SYMMETRIC SOLUTIONS TO QUASI-STATIC
ELASTIC-PLASTIC PROBLEMS 4.2.1 SUMMARY OF GOVERNING EQUATIONS 4.2.2
SIMPLIFIED EQUATIONS FOR SPHERIEALLY SYMMETRIE PROBLEMS 4.2.3 ELASTIE
PERFEETLY PLASTIE HOLLOW SPHERE SUBJEETED TO MONOTONIEALLY INEREASING
INTERNAL PRESSURE 4.2.4 ELASTIE PERFEETLY PLASTIE HOLLOW SPHERE
SUBJEETED TO CYCLIE INTERNAL PRESSURE 4.2.5 SIMPLIFIED EQUATIONS FOR
PLANE STRAIN AXIALLY SYMMETRIE ELASTIC- PERFEETLY PLASTIE SOLIDS 4.2.6
LONG (PLANE STRAIN) CYLINDER SUBJEETED TO INTERNAL PRESSURE SPHERICALLY
SYMMETRIC SOLUTION TO QUASI-STATIC LARGE STRAIN ELASTICITY PROBLEMS
4.3.1 SUMMARY OF GOVERNING EQUATIONS OF FINITE ELASTIEITY IN CARTESIAN
COMPONENTS 4.3.2 SIMPLIFIED EQUATIONS FOR INEOMPRESSIBLE SPHERIEALLY
SYMMETRIE SOLIDS 4.3.3 PRESSURIZED HOLLOW SPHERE MADE FROM AN
INEOMPRESSIBLE RUBBER SIMPLE DYNAMIC SOLUTIONS FOR LINEAR ELASTIC
MATERIALS 4.4.1 SURFAEE SUBJEETED TO TIME-VARYING NORMAL PRESSURE 4.4.2
SURFAEE SUBJEETED TO TIME-VARYING SHEAR TRACTION 4.4.3 ONE-DIMENSIONAL
BAR SUBJEETED TO END LOADING 4.4.4 PLANE WAVES IN AN INFINITE SOLID
4.4.5 SUMMARY OFWAVE SPEEDS IN ISOTROPIE ELASTIC SOLIDS 197 199 200 202
205 206 208 209 211 212 213 215 219 223 226 229 229 230 232 236 236 239
239 240 241 CONTENTS - XI 4.4.6 4.4.7 4.4.8 REFLECTION OFWAVES TRAVELING
NORMAL TO A FREE SURFACE REFLECTION AND TRANSMISSION OFWAVES NORMAL TO
AN INTERFACE SIMPLE EXAMPLE INVOLVING PLANE WAVE PROPAGATION: PLATE
IMPACT EXPERIMENT 242 243 245 270 274 277 278 280 272 257 259 260 262
264 265 266 266 255 256 267 268 CYLINDRICAL HOLE IN AN INFINITE SOLID
UNDER REMOTE LOADING CRACK IN AN INFINITE ELASTIC SOLID UNDER REMOTE
LOADING FIELDS NEAR THE TIP OF A CRACK ON BIMATERIAL INTERFACE 5.3.5
5.3.6 5.3.7 5.2.1 AIRY SOLUTION IN RECTANGULAR COORDINATES 5.2.2
DEMONSTRATION THAT THE AIRY SOLUTION SATISFIES THE GOVERNING EQUATIONS
5.2.3 AIRY SOLUTION IN CYLINDRICAL-POLAR COORDINATES 5.2.4 AIRY FUNCTION
SOLUTION TO THE END-LOADED CANTILEVER 5.2.5 2D LINE LOAD ACTING
PERPENDICULAR TO THE SURFACE OF AN INFINITE SOLID 5.2.6 2D LINE LOAD
ACTING PARALLEL TO THE SURFACE OF AN INFINITE SOLID 5.2.7 ARBITRARY
PRESSURE ACTING ON A FLAT SURFACE 5.2.8 UNIFORM NORMAL PRESSURE ACTING
ON A STRIP 5.2.9 STRESSES NEAR THE TIP OF A CRACK COMPLEX VARIABLE
SOLUTION TO PLANE STRAIN STATIC LINEAR ELASTIC PROBLEMS 5.3.1 COMPLEX
VARIABLE SOLUTIONS TO ELASTICITY PROBLEMS 5.3.2 DEMONSTRATION THAT THE
COMPLEX VARIABLE SOLUTION SATISFIES THE GOVERNING EQUATIONS 5.3.3
COMPLEX VARIABLE SOLUTION FOR A LINE FORCE IN AN INFINITE SOLID (PLANE
STRAIN DEFORMATION) 5.3.4 COMPLEX VARIABLE SOLUTION FOR AN EDGE
DISLOCATION IN AN INFINITE SOLID 5.2 5.3 CHAPTER 5 *SOLUTIONS FUER LINEAR
ELASTIC SOLIDS 249 5.1 GENERAL PRIT ICIPLES 250 5.1.1 SUMMARY OFTHE
GOVERNING EQUATIONS OFLINEAR ELASTICITY 250 5.1.2 ALTERNATIVE FORM OFTHE
GOVERNING EQUATIONS: NAVIER EQUATION 251 5.1.3 SUPERPOSITION AND
LINEARITY OF SOLUTIONS 251 5.1.4 UNIQUENESS AND EXISTENCE OFSOLUTIONS TO
THE LINEAR ELASTICITY EQUATIONS 252 5.1.5 SAINT-VENANT SPRINCIPLE 252
AIRY FUNCTION SOLUTION TO PLANE STRESS AT ID STRAIN STATIC LINEAR
ELASTIC PROBLEMS XII * CONTENTS 5.3.8 FRICTIONLESS RIGID FLAT INDENTER
IN CONTACT WITH A HALF-SPACE 283 5.3.9 FRICTIONLESS PARABOLIC
(CYLINDRIEAL) INDENTER IN CONTACT WITH A HALF-SPACE 284 5.3.10 LINE
CONTACT BETWEEN TWO NONCONFORMAL FRIETIONLESS ELASTIE SOLIDS 286 5.3.11
SLIDING CONTACT BETWEEN TWO ROUGH ELASTIC CYLINDERS 287 5.3.12
DISLOCATION NEAR THE SURFACE OF A HALF-SPACE 289 5.4 SOLUTIONS TO 3D
STATIC PROBLEMS IN LINEAR ELASTICITY 290 5.4.1 PAPKOVIEH NEUBER
POTENTIAL REPRESENTATIONS FOR 3D SOLUTIONS FOR ISOTROPIE SOLIDS 290
5.4.2 DEMONSTRATION THAT THE PAPKOVICH NEUBER SOLUTION SATISFIES THE
GOVERNING EQUATIONS 291 5.4.3 POINT FORCE IN AN INFINITE SOLID 292 5.4.4
POINT FORCE NORMAL TO THE SURFACE OF AN INFINITE HALF-SPACE 293 5.4.5
POINT FORCE TANGENT TO THE SURFACE OF AN INFINITE HALF-SPACE 293 5.4.6
THE ESHELBY INCLUSION PROBLEM 294 5.4.7 ELASTICALLY MISMATCHED
ELLIPSOIDAL INCLUSION IN AN INFINITE SOLID SUBJECTED TO REMOTE STRESS
299 5.4.8 SPHERIEAL CAVITY IN AN INFINITE SOLID SUBJECTED TO REMOTE
STRESS 300 5.4.9 FLAT-ENDED CYLINDRICAL INDENTER IN CONTACT WITH AN
ELASTIE HALF-SPACE 302 5.4.10 FRIETIONLESS CONTACT BETWEEN TWO ELASTIC
SPHERES 304 5.4.11 CONTACT AREA, PRESSURE, STIFFNESS, AND ELASTIE LIMIT
FOR GENERAL NONCONFORMAL CONTACTS 306 5.4.12 LOAD DISPLACEMENT-CONTACT
AREA RELATIONS FOR ARBITRARILY SHAPED AXISYMMETRIE CONTACTS 308 5.5
SOLUTIONS TO GENERALIZED PLANE PROBLEMS FOR ANISOTROPIC LINEAR ELASTIC
SOLIDS 310 5.5.1 GOVERNING EQUATIONS OF ELASTICITY FOR ANISOTROPIE
SOLIDS 310 5.5.2 STROH REPRESENTATION FOR FIELDS IN ANISOTROPIE SOLIDS
312 5.5.3 DEMONSTRATION THAT THE STROH REPRESENTATION SATISFIES THE
GOVERNING EQUATIONS 314 5.5.4 STROH EIGENVALUES AND ANISOTROPY MATRICES
FOR CUBIE MATERIALS 316 5.5.5 DEGENERATE MATERIALS 317 5.5.6 FUNDAMENTAL
ELASTICITY MATRIX 317 5.5.7 ORTHOGONAL PROPERTIES OF STROH MATRICES A
AND B 318 5.5.8 BARNETT-LOTHE TENSORS AND THE IMPEDANCE TENSOR 319
CONTENTS - XIII 5.6 5.7 5.8 5.9 5.5.9 USEFUL PROPERTIES OF MATRIEES IN
ANISOTROPIE ELASTICITY 5.5.10 BASIS CHANGE FORMULAS FOR MATRIEES USED IN
ANISOTROPIE ELASTICITY 5.5.11 BARNETT-LOTHE INTEGRALS 5.5.12 STROH
REPRESENTATION FOR ASTATE OF UNIFORM STRESS 5.5.13 LINE LOAD AND
DISLOEATION IN AN INFINITE ANISOTROPIE SOLID 5.5.14 LINE LOAD AND
DISLOEATION BELOW THE SURFAEE OF AN ANISOTROPIE HALF-SPAEE SOLUTIONS TO
DYNAMIC PROBLEMS FOR ISOTROPIC LINEAR ELASTIC SOLIDS 5.6.1 LOVE
POTENTIALS FOR DYNAMIE SOLUTIONS FOR ISOTROPIE SOLIDS 5.6.2 PRESSURE
SUDDENLY APPLIED TO THE SURFAEE OF A SPHERIEAL CAVITY IN AN INFINITE
SOLID 5.6.3 RAYLEIGH WAVES 5.6.4 LOVE WAVES 5.6.5 ELASTIE WAVES IN
WAVEGUIDES ENERGY METHODS FOR SOLVII LG STATIC LINEAR ELASTICITY
PROBLEMS 5.7.1 DEFINITION OF THE POTENTIAL ENERGY OF A LINEAR ELASTIE
SOLID UNDER STATIE LOADING 5.7.2 PRINEIPLE OF STATIONARY AND MINIMUM
POTENTIAL ENERGY 5.7.3 UNIAXIAL COMPRESSION OF A CYLINDER SOLVED BY
ENERGY METHODS 5.7.4 VARIATIONAL DERIVATION OF THE BEAM EQUATIONS 5.7.5
ENERGY METHODS FOR CALCULATING STIFFNESS RECLPROCAL THEOREM AND
APPLICATIONS 5.8.1 STATEMENT AND PROOF OFTHE REEIPROEAL THEOREM 5.8.2
SIMPLE EXAMPLE USING THE RECIPROEAL THEOREM 5.8.3 FORMULAS RELATING
INTERNAL AND BOUNDARY VALUES OF FIELD QUANTITIES 5.8.4 CLASSIEAL
SOLUTIONS FOR DISPLAEEMENT AND STRESS INDUEED BY A 3D DISLOEATION LOOP
IN AN INFINITE SOLID ENERGETICS OF DISLOCATIONS IN ELASTIC SOLIDS 320
321 323 325 327 329 330 330 331 333 335 337 339 339 341 344 346 350 352
352 353 355 356 359 5.9.1 5.9.2 5.9.3 5.9.4 5.9.5 CLASSIEAL SOLUTION FOR
POTENTIAL ENERGY OF AN ISOLATED DISLOEATION LOOP IN AN INFINITE SOLID
NONSINGULAR DISLOEATION THEORY ENERGY OF A DISLOEATION LOOP IN A
STRESSED, FINITE ELASTIE SOLID ENERGY OF TWO INTERAETING DISLOEATION
LOOPS DRIVING FOREE FOR DISLOEATION MOTION: PEAEH-KOEHLER FORMULA 359
362 365 369 370 XIV * CONTENTS 5.10 RAYLEIGH-RITZ METHOD FOR ESTIMATING
NATURAL FREQUENCY OF AN ELASTIC SOLID 375 5.10.1 MODE SHAPES AND NATURAL
FREQUENCIES; ORTHOGONALITY OF MODE SHAPES AND RAYLEIGH S PRINCIPLE 375
5.10.2 ESTIMATE OFNATURAL FREQUENCY OFVIBRATION FOR A BEAM USING
RAYLEIGH-RITZ METHOD 379 CHARTER 6* SOLUTIONS FUER PLASTIC SOLIDS 381 6.1
SLLP-L1NE FIELD THEORY 381 6.1.1 INTERPRETING A SLIP-LINE FIELD 382
6.1.2 DERIVATION OF THE SLIP-LINE FIELD METHOD 386 6.1.3 EXAMPLES OF
SLIP-LINE FIELD SOLUTIONS TO BOUNDARY VALUE PROBLEMS 392 BOUNDING
THEOREMS IN PLASTICITY AND THEIR APPLICATIONS 6.2 6.2.1 6.2.2 6.2.3
6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 DEFINITION OF THE PLASTIC
DISSIPATION PRINCIPLE OF MINIMUM PLASTIC DISSIPATION UPPER BOUND PLASTIC
COLLAPSE THEOREM EXAMPLES OF APPLICATIONS OF THE UPPER BOUND THEOREM
LOWER BOUND PLASTIC COLLAPSE THEOREM EXAMPLES OF APPLICATIONS OF THE
LOWER BOUND PLASTIC COLLAPSE THEOREM LOWER BOUND SHAKEDOWN THEOREM
EXAMPLES OF APPLICATIONS OF THE LOWER BOUND SHAKEDOWN THEOREM UPPER
BOUND SHAKEDOWN THEOREM EXAMPLES OF APPLICATIONS OF THE UPPER BOUND
SHAKEDOWN THEOREM 398 399 401 404 405 410 411 412 415 417 419 CHARTER 7*
FINITE ELEMENT ANALYSIS: AN INTRODUCTION 421 7.1 A GUIDE TO USING FINITE
ELEMENT SOFTWARE 423 7.1.1 FINITE ELEMENT MESH FOR A 2D OR 3D COMPONENT
425 7.1.2 NODES AND ELEMENTS IN A MESH 428 7.1.3 SPECIAL ELEMENTS:
BEAMS, PLATES, SHELLS, AND TRUSS ELEMENTS 432 7.1.4 MATERIAL BEHAVIOR
434 7.1.5 BOUNDARY CONDITIONS 435 7.1.6 CONSTRAINTS 438 CONTENTS - XV
7.1.7 CONTACTING SURFACES AND INTERFACES 439 7.1.8 INITIAL CONDITIONS
AND EXTERNAL FIELDS 441 7.1.9 SOLUTION PROCEDURES AND TIME INCREMENTS
441 7.1.10 OUTPUT 445 7.1.11 UNITS IN FINITE ELEMENT COMPUTATIONS 446
7.1.12 USING DIMENSIONAL ANALYSIS TO SIMPLIFY FEA 447 7.1.13 SIMPLIFYING
FEA BY SCALING THE GOVERNING EQUATIONS 449 7.1.14 DIMENSIONAL ANALYSIS:
CLOSING REMARKS 451 7.2 A SIMPLE FINITE ELEMENT PROGRAM 451 7.2.1 FINITE
ELEMENT MESH AND ELEMENT CONNECTIVITY 452 7.2.2 GLOBAL DISPLACEMENT
VECTOR 453 7.2.3 ELEMENT INTERPOLATION FUNCTIONS 453 7.2.4 ELEMENT
STRAINS, STRESSES, AND STRAIN ENERGY DENSITY 454 7.2.5 ELEMENT STIFFNESS
MATRIX 455 7.2.6 GLOBAL STIFFNESS MATRIX 456 7.2.7 BOUNDARY LOADING 459
7.2.8 GLOBAL RESIDUAL FORCE VECTOR 461 7.2.9 MINIMIZING THE POTENTIAL
ENERGY 461 7.2.10 ELIMINATING PRESCRIBED DISPLACEMENTS 462 7.2.11
SOLUTION 463 7.2.12 POSTPROCESSING 463 7.2.13 EXAMPLE FEA CODE 464
CHAPTER 8* FINITE ELEMENT ANALYSIS: THEORY AND IMPLEMENTATION 467 8.1
GENERALIZED FEM FOR STATIC LINEAR ELASTICITY 468 8.1.1 REVIEW OF THE
PRINCIPLE OFVIRTUAL WORK 468 8.1.2 INTEGRAL (WEAK) FORM OFTHE GOVERNING
EQUATIONS OFLINEAR ELASTICITY 469 8.1.3 INTERPOLATING THE DISPLACEMENT
FIELD AND THE VIRTUAL VELOCITY FIELD 470 8.1.4 FINITE ELEMENT EQUATIONS
472 8.1.5 SIMPLE ID IMPLEMENTATION OF THE FEM 472 8.1.6 SUMMARY OFTHE ID
FINITE ELEMENT PROCEDURE 476 8.1.7 EXAMPLE FEM CODE AND SOLUTION 477
8.1.8 EXTENDING THE ID FEM TO 2D AND 3D 480 8.1.9 INTERPOLATION
FUNCTIONS FOR 2D ELEMENTS 481 8.1.10 INTERPOLATION FUNCTIONS FOR 3D
ELEMENTS 481 XVI * CONTENTS 8.1.11 VOLUME INTEGRALS FOR STIFFNESS AND
FORCE IN TERMS OFNORMALIZED COORDINATES 482 8.1.12 NUMERICAL INTEGRATION
SCHEMES FOR 2D AND 3D ELEMENTS 485 8.1.13 SUMMARY OFFORMULAS FOR ELEMENT
STIFFNESS AND FORCE MATRICES 486 8.1.14 SAMPIE 2D/3D LINEAR ELASTOSTATIC
FEM CODE 486 8.2 THE FEM FOR DYNAMIC LINEAR ELASTICITY 490 8.2.1 REVIEW
OF THE GOVERNING EQUATIONS OF DYNAMIC LINEAR ELASTICITY 490 8.2.2
EXPRESSING THE GOVERNING EQUATIONS USING THE PRINCIPLE OFVIRTUAL WORK
491 8.2.3 FINITE ELEMENT EQUATIONS OF MOTION FOR LINEAR ELASTIC SOLIDS
491 8.2.4 NEWMARK TIME INTEGRATION FOR ELASTODYNAMICS 493 8.2.5 1D
IMPLEMENTATION OF A NEWMARK SCHEME 495 8.2.6 EXAMPLE 1D DYNAMIC FEM CODE
AND SOLUTION 497 8.2.7 LUMPED MASS MATRICES 499 8.2.8 EXAMPLE 2D AND 3D
DYNAMIC LINEAR ELASTIC CODE AND SOLUTION 501 8.2.9 MODAL METHOD OFTIME
INTEGRATION 501 8.2.10 NATURAL FREQUENCIES AND MODE SHAPES 502 8.2.11
EXAMPLE 1D CODE WITH MODAL DYNAMICS 503 8.2.12 EXAMPLE 2D AND 3D FEM
CODE TO COMPUTE MODE SHAPES AND NATURAL FREQUENCIES 505 8.3 FEM FOR
NONLINEAR (HYPOELASTIC) MATERIALS 505 8.3.1 SUMMARY OF GOVERNING
EQUATIONS 505 8.3.2 GOVERNING EQUATIONS IN TERMS OF THE VIRTUAL WORK
PRINCIPLE 507 8.3.3 FINITE ELEMENT EQUATIONS 507 8.3.4 SOLVING THE
FINITE ELEMENT EQUATIONS USING NEWTON-RAPHSON ITERATION 509 8.3.5
TANGENT MODULI FOR THE HYPOELASTIC SOLID 510 8.3.6 SUMMARY OF THE
NEWTON-RAPHSON PROCEDURE FOR HYPOELASTIC SOLIDS 511 8.3.7 WHAT TO DO IF
THE NEWTON-RAPHSON ITERATIONS DO NOT CONVERGE 511 8.3.8 VARIATIONS ON
NEWTON-RAPHSON ITERATION 512 8.3.9 EXAMPLE HYPOELASTIC FEM CODE 512 8.4
FEM FOR LARGE DEFORMATIONS: HYPERELASTIC MATERIALS 514 8.4.1 SUMMARY OF
GOVERNING EQUATIONS 514 8.4.2 GOVERNING EQUATIONS IN TERMS OF THE
PRINCIPLE OF VIRTUAL WORK 515 8.4.3 FINITE ELEMENT EQUATIONS 515
CONTENTS - XVII 8.4.4 SOLUTION USING CONSISTENT NEWTON-RAPHSON ITERATION
517 8.4.5 TANGENT STIFFNESS FOR THE NEO-HOOKEAN MATERIAL 519 8.4.6
EVALUATING THE BOUNDARY TRACTION INTEGRALS 520 8.4.7 EXAMPLE
HYPERELASTIE FINITE ELEMENT CODE 521 8.5 THE FEM FOR VISCOPLASTICITY 522
8.5.1 SUMMARY OF GOVERNING EQUATIONS 522 8.5.2 GOVERNING EQUATIONS IN
TERMS OF THE VIRTUAL WORK PRINCIPLE 523 8.5.3 FINITE ELEMENT EQUATIONS
524 8.5.4 INTEGRATING THE PLASTIE STRESS-STRAIN LAW 525 8.5.5 MATERIAL
TANGENT 527 8.5.6 SOLUTION USING CONSISTENT NEWTON-RAPHSON ITERATION 528
8.5.7 EXAMPLE SMALL STRAIN PLASTIE FEM CODE 529 8.6 ADVANCED ELEMET IT
FORMULATIONS: INCOMPATIBLE MODES, REDUCED INTEGRATION, AND HYBRID
ELEMET ITS 530 8.6.1 SHEAR LOCKING AND INCOMPATIBLE MODE ELEMENTS 531
8.6.2 VOLUMETRIE LOCKING AND REDUCED INTEGRATION ELEMENTS 533 8.6.3
HYBRID ELEMENTS FOR MODELING NEAR-INCOMPRESSIBLE MATERIALS 541 8.7 LIST
OF EXAMPLE FEA PROGRAMS AND INPUT FILES 544 CHAPTER 9* MODELING MATERIAL
FAILURE 547 9.1 SUMMARY OF MECHANISMS OF FRACTURE AND FATIGUE UNDER
STATIC AND CYCLIC LOADING 548 9.2 9.1.1 FAILURE UNDER MONOTONIE LOADING
9.1.2 FAILURE UNDER CYDIE LOADING STRESS- AND STRAIN-BASED FRACTURE AND
FATIGUE CRITERIA 9.2.1 STRESS-BASED FAILURE CRITERIA FOR BRITTLE SOLIDS
AND COMPOSITES 9.2.2 PROBABILISTIC DESIGN METHODS FOR BRITTLE FRACTURE
(WEIBULL STATISTICS) 9.2.3 STATIC FATIGUE CRITERION FOR BRITTLE
MATERIALS 9.2.4 CONSTITUTIVE LAWS FOR CRUSHING FAILURE OFBRITTLE
MATERIALS 9.2.5 DUCTILE FRACTURE CRITERIA 9.2.6 DUCTILE FAILURE BY
STRAIN LOCALIZATION 9.2.7 CRITERIA FOR FAILURE BY HIGH CYDE FATIGUE
UNDER CONSTANT AMPLITUDE CYDIC LOADING 9.2.8 CRITERIA FOR FAILURE BY LOW
CYDE FATIGUE 9.2.9 CRITERIA FOR FAILURE UNDER VARIABLE AMPLITUDE CYDIC
LOADING 548 550 553 553 556 557 558 559 562 564 565 566 XVIII * CONTENTS
9.3 MODELING FALLURE BY CRACK GROWTH: LINEAR ELASTIC FRACTURE MECHANICS
567 9.3.1 CRACK TIP FIELDS IN AN ISOTROPIE, LINEAR ELASTIE SOLID 567
9.3.2 ASSUMPTIONS AND APPLICATION OFPHENOMENOLOGIEAL LINEAR ELASTIE
FRACTURE MECHANICS 569 9.3.3 CALCULATING STRESS INTENSITY FACTORS 572
9.3.4 CALCULATING STRESS INTENSITY FACTORS USING FEA 578 9.3.5 MEASURING
FRACTURE TOUGHNESS 580 9.3.6 TYPIEAL VALUES FOR FRACTURE TOUGHNESS 581
9.3.7 STABLE TEARING: KR CURVES AND CRACK STABILITY 581 9.3.8 MIXED-MODE
FRACTURE CRITERIA 584 9.3.9 STATIC FATIGUE CRACK GROWTH 584 9.3.10 CYDIC
FATIGUE CRACK GROWTH 586 9.3.11 FINDING CRACKS IN STRUCTURES 587 9.4
ENERGY METHODS IN FRACTURE MECHANICS 588 9.4.1 DEFINITION OF CRACK TIP
ENERGY RELEASE RATE FOR CRACKS IN LINEAR ELASTIC SOLIDS 588 9.4.2 ENERGY
RELEASE RATE AS A FRACTURE CRITERION 589 9.4.3 RELATION BETWEEN ENERGY
RELEASE RATE AND STRESS INTENSITY FACTOR 589 9.4.4 RELATION BETWEEN
ENERGY RELEASE RATE AND COMPLIANCE 591 9.4.5 CALCULATING STRESS
INTENSITY FACTORS USING COMPLIANCE 592 9.4.6 INTEGRAL EXPRESSIONS FOR
ENERGY FLUX TO A CRACK TIP 593 9.4.7 RICE S!INTEGRAL 596 9.4.8
CALCULATING ENERGY RELEASE RATES USING THE J INTEGRAL 598 9.5 PLASTIC
FRACTURE MECHANICS 599 9.5.1 DUGDALE-BARENBLATT COHESIVE ZONE MODEL
OFYIELD AT A CRACK TIP 599 9.5.2 HUTCHINSON-RICE-ROSENGREN CRACK TIP
FIELDS FOR STATIONARY CRACK IN APOWER LAW HARDENING SOLID 601 9.5.3
PLASTIC FRACTURE MECHANIES BASED ON J 605 9.6 LINEAR ELASTIC FRACTURE
MECHANICS OF INTERFACES 607 9.6.1 9.6.2 9.6.3 9.6.4 CRACK TIP FIELDS FOR
A CRACK ON AN INTERFACE PHENOMENOLOGICAL THEORY OF INTERFACE FRACTURE
STRESS INTENSITY FACTORS FOR SOME INTERFACE CRACKS CRACK PATH SELECTION
607 610 612 613 617 CONTENTS - XIX CHAPTER 10* SOLUTIONS FUER RADS,
BEAMS, MEMBRANES, PLATES, AND SHELLS 615 10.1 PRELIMINARIES: DYADIC
NOTATION FOR VECTORS AND TENSORS 616 10.2 MOTION AND DEFORMATION OF
SLENDER RODS 617 10.2.1 VARIABLES CHARACTERIZING THE GEOMETRY OF A
ROD SCROSS SEETION 10.2.2 COORDINATE SYSTEMS AND VARIABLES
CHARAETERIZING THE DEFORMATION OF A ROD 10.2.3 ADDITIONAL DEFORMATION
MEASURES AND USEFUL KINEMATIE RELATIONS 618 620 10.2.4 APPROXIMATING THE
DISPLACEMENT, VELOCITY, AND ACCELERATION IN A ROD 624 10.2.5
APPROXIMATING THE DEFORMATION GRADIENT 625 10.2.6 OTHER STRAIN MEASURES
626 10.2.7 KINEMATIES OF RODS LHAT ARE BENT AND TWISTED IN THE
UNSTRESSED STATE 628 10.2.8 REPRESENTATION OF FOREES AND MOMENTS IN
SLENDER RODS 630 10.2.9 EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 631
10.2.10 CONSTITUTIVE EQUATIONS RELATING FOREES TO DEFORMATION MEASURES
~FU~K~~ 6~ 10.2.11 STRAIN ENERGY OF AN ELASTIC ROD 639 10.3 SIMPLIFIED
VERSIONS OF THE GENERAL THEORY OF DEFORMABLE RODS 641 10.3.1 STRETCHED
FLEXIBLE STRING WITH SMALL TRANSVERSE DEFLEETIONS 641 10.3.2 STRAIGHT
ELASTK BEAM WITH SMALL DEFLECTIONS AND NO AXIAL FORCE (EULER-BERNOULLI
BEAM LHEORY) 642 10.3.3 STRAIGHT ELASTIC BEAM WITH SMALL TRANSVERSE
DEFLECTIONS AND SIGNIFICANT AXIAL FORCE 643 10.4 EXACT SOLUTIONS TO
SIMPLE PROBLEMS INVOLVING ELASTIC RODS 644 10.4.1 FREE VIBRATION OF A
STRAIGHT BEAM WITHOUT AXIAL FORCE 645 10.4.2 BUCKLING OF A COLUMN
SUBJECTED TO GRAVITATIONAL LOADING 648 10.4.3 POST-BUCKLED SHAPE OF AN
INITIALLY STRAIGHT ROD SUBJECTED TO END LHRUST 650 10.4.4 ROD BENT AND
TWISTED INTO A HELIX 653 10.4.5 HE/KAI SPRING 655 XX * CONTENTS 10.5
MOTION AND DEFORMATION OF THIN SHELLS: GENERAL THEORY 657 10.5.1
COORDINATE SYSTEMS AND VARIABLES CHARACTERIZING DEFORMATION OF SHELLS
657 10.5.2 10.5.3 10.5.4 10.5.5 10.5.6 10.5.7 10.5.8 10.5.9 VECTORS AND
TENSOR COMPONENTS IN NONORTHOGONAL BASES: COVARIANT AND CONTRAVARIANT
COMPONENTS ADDITIONAL DEFORMATION MEASURES AND KINEMATIC RELATIONS
APPROXIMATING THE DISPLAEEMENT AND VELOEITY FIELD APPROXIMATING THE
DEFORMATION GRADIENT OTHER DEFORMATION MEASURES REPRESENTATION OF FOREES
AND MOMENTS IN SHELLS EQUATIONS OF MOTION AND BOUNDARY CONDITIONS
CONSTITUTIVE EQUATIONS RELATING FOREES TO DEFORMATION MEASURES IN
ELASTIC SHELLS 10.5.10 STRAIN ENERGY AND KINETIE ENERGY OF AN ELASTIE
SHELL 10.6 SIMPLIFIED VERSIONS OF GENERAL SHELL THEORY: FLAT PLATES AND
MEMBRAN ES 10.6.1 FLAT PLATES WITH SMALL OUT-OF-PLANE DEFLEETIONS AND
NEGLIGIBLE IN-PLANE LOADING 10.6.2 FLAT PLATES WITH SMALL OUT-OF-PLANE
DEFLECTIONS AND SIGNIFIEANT IN-PLANE LOADING 10.6.3 FLAT PLATES WITH
SMALLLN-PLANE AND LARGE TRANSVERSE DEFLEETIONS (VON KARMAN THEORY)
10.6.4 STRETCHED, FLAT MEMBRANE WITH SMALL OUT-OF-PLANE DEFLECTIONS
10.6.5 MEMBRANE EQUATIONS IN CYLINDRICAL-POLAR COORDINATES 10.7
SOLUTIONS TO SIMPLE PROBLEMS INVOLVING MEMBRAN ES, PLATES, AND SHELLS
10.7.1 THIN CIREULAR PLATE BENT BY PRESSURE APPLIED TO ONE FACE 10.7.2
VIBRATION MODES AND NATURAL FREQUENCIES FOR A CIRCULAR MEMBRANE 659 660
664 665 666 667 670 678 680 681 681 684 686 688 689 692 692 694 10.7.3
ESTIMATE FOR THE FUNDAMENTAL FREQUENCY OFVIBRATION OF A SIMPLY SUPPORTED
RECTANGULAR FLAT PLATE 696 10.7.4 BENDING INDUCED BY INELASTIC STRAIN IN
A THIN FILM ON A SUBSTRATE 697 10.7.5 BENDING OF A CIRCULAR PLATE CAUSED
BY A THROUGH-THIEKNESS TEMPERATURE GRADIENT 700 CONTENTS * XXI 10.7.6
10.7.7 10.7.8 BUCKLING OF A CYLINDRICAL SHELL SUBJECTED TO AXIAL LOADING
TORSION OF AN OPEN-WALLED CIRCULAR CYLINDER MEMBRANE SHELL THEORY
ANALYSIS OF A SPHERICAL DOME UNDER GRAVITATIONAL LOADING 703 705 708
APPENDIX A: REVIEW OFVECTORS AND MATRICES 711 APPENDIX B: INTRODUCTION
TO TENSORS AND THEIR PROPERTIES 729 APPENDIX C: INDEX NOTATION FOR
VECTOR AND TENSOR OPERATIONS 741 APPENDIX 0: VECTORS AND TENSOR
OPERATIONS IN POLAR COORDINATES 749 APPENDIX E: MISCELLANEOUS
DERIVATIONS 765 REFERENCES 771 INDEX 775
|
any_adam_object | 1 |
author | Bower, Allan F. |
author_facet | Bower, Allan F. |
author_role | aut |
author_sort | Bower, Allan F. |
author_variant | a f b af afb |
building | Verbundindex |
bvnumber | BV035989943 |
classification_rvk | UF 1500 |
classification_tum | MTA 010f PHY 210f |
ctrlnum | (OCoLC)636299460 (DE-599)OBVAC07531822 |
dewey-full | 620.105 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.105 |
dewey-search | 620.105 |
dewey-sort | 3620.105 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01659nam a2200445 c 4500</leader><controlfield tag="001">BV035989943</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150707 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100201s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439802472</subfield><subfield code="9">978-1-4398-0247-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)636299460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC07531822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.105</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1500</subfield><subfield code="0">(DE-625)145560:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 010f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 210f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bower, Allan F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied mechanics of solids</subfield><subfield code="c">Allan F. Bower</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 794 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mechanics, Applied</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Solids</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Strength of materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörpermechanik</subfield><subfield code="0">(DE-588)4129367-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Festkörpermechanik</subfield><subfield code="0">(DE-588)4129367-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.gbv.de/dms/weimar/toc/593899156_toc.pdf</subfield><subfield code="z">lizenzfrei</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018882673&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018882673</subfield></datafield></record></collection> |
id | DE-604.BV035989943 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:09:08Z |
institution | BVB |
isbn | 9781439802472 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018882673 |
oclc_num | 636299460 |
open_access_boolean | |
owner | DE-634 DE-83 DE-29T DE-703 DE-91G DE-BY-TUM DE-898 DE-BY-UBR |
owner_facet | DE-634 DE-83 DE-29T DE-703 DE-91G DE-BY-TUM DE-898 DE-BY-UBR |
physical | XXV, 794 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | CRC Press |
record_format | marc |
spelling | Bower, Allan F. Verfasser aut Applied mechanics of solids Allan F. Bower Boca Raton, Fla. [u.a.] CRC Press 2010 XXV, 794 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mechanics, Applied Solids Elasticity Strength of materials Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf Festkörpermechanik (DE-588)4129367-8 gnd rswk-swf Kontinuumsmechanik (DE-588)4032296-8 s DE-604 Festkörpermechanik (DE-588)4129367-8 s http://www.gbv.de/dms/weimar/toc/593899156_toc.pdf lizenzfrei Inhaltsverzeichnis GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018882673&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bower, Allan F. Applied mechanics of solids Mechanics, Applied Solids Elasticity Strength of materials Kontinuumsmechanik (DE-588)4032296-8 gnd Festkörpermechanik (DE-588)4129367-8 gnd |
subject_GND | (DE-588)4032296-8 (DE-588)4129367-8 |
title | Applied mechanics of solids |
title_auth | Applied mechanics of solids |
title_exact_search | Applied mechanics of solids |
title_full | Applied mechanics of solids Allan F. Bower |
title_fullStr | Applied mechanics of solids Allan F. Bower |
title_full_unstemmed | Applied mechanics of solids Allan F. Bower |
title_short | Applied mechanics of solids |
title_sort | applied mechanics of solids |
topic | Mechanics, Applied Solids Elasticity Strength of materials Kontinuumsmechanik (DE-588)4032296-8 gnd Festkörpermechanik (DE-588)4129367-8 gnd |
topic_facet | Mechanics, Applied Solids Elasticity Strength of materials Kontinuumsmechanik Festkörpermechanik |
url | http://www.gbv.de/dms/weimar/toc/593899156_toc.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018882673&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bowerallanf appliedmechanicsofsolids |