Combustion theory: the fundamental theory of chemically reacting flow systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Reading, Mass. <<[u.a.]>>
Perseus Books
1999
|
Ausgabe: | 2. ed., [Nachdr.] |
Schriftenreihe: | Combustion science and engineering series
The Advanced Book Program |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 680 S. |
ISBN: | 0805398015 0201407779 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV035906808 | ||
003 | DE-604 | ||
005 | 20091228 | ||
007 | t | ||
008 | 091222s1999 |||| 00||| eng d | ||
020 | |a 0805398015 |9 0-8053-9801-5 | ||
020 | |a 0201407779 |9 0-201-40777-9 | ||
035 | |a (OCoLC)179818398 | ||
035 | |a (DE-599)BVBBV035906808 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a ERG 420f |2 stub | ||
100 | 1 | |a Williams, Forman A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Combustion theory |b the fundamental theory of chemically reacting flow systems |c Forman A. Williams |
250 | |a 2. ed., [Nachdr.] | ||
264 | 1 | |a Reading, Mass. <<[u.a.]>> |b Perseus Books |c 1999 | |
300 | |a XXIII, 680 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Combustion science and engineering series | |
490 | 0 | |a The Advanced Book Program | |
650 | 0 | 7 | |a Verbrennung |0 (DE-588)4062656-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zündung |0 (DE-588)4191084-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verbrennung |0 (DE-588)4062656-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Zündung |0 (DE-588)4191084-9 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018764160&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018764160 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804140888844140544 |
---|---|
adam_text | COMBUSTION THEORY THE FUNDAMENTAL THEORY OF CHEMICALLY REACTING FLOW
SYSTEMS SECOND EDITION FORMAN A. WILLIAMS PRINCETON UNIVERSITY THE
ADVANCED BOOK PROGRAM PERSEUS BOOKS READING, MASSACHUSETTS CONTENTS
PREFACE TO THE SECOND EDITION V PREFACE TO THE FIRST EDITION XI 1
SUMMARY OF RELEVANT ASPECTS OF FLUID DYNAMICS AND CHEMICAL KINETICS 1
1.1. THE CONSERVATION EQUATIONS FOR MULTICOMPONENT, REACTING, IDEAL-GAS
MIXTURES 2 1.2. ONE-DIMENSIONAL FLOW 4 1.2.1. UNSTEADY FLOW 4 1.2.2.
STEADY FLOW 7 1.3. COUPLING FUNCTIONS 9 1.4. CONSERVATION CONDITIONS AT
AN INTERFACE 13 1.5. DISCUSSION OF THE APPROACH ADOPTED IN THE FOLLOWING
DEVELOPMENT OF COMBUSTION THEORY 17 REFERENCES 18 2 RANKINE-HUGONIOT
RELATIONS 19 2.1. GENERAL RANKINE-HUGONIOT EQUATIONS 20 2.1.1.
DERIVATION OF THE EQUATIONS 20 2.1.2. THE COLD-BOUNDARY DIFFICULTY 22
2.1.3. USE OF THE RANKINE-HUGONIOT EQUATIONS 23 2.2. ANALYSIS OF A
SIMPLIFIED SYSTEM 24 2.2.1. SIMPLIFICATION OF THE RANKINE-HUGONIOT
EQUATIONS 24 2.2.2. DIMENSIONLESS FORM 26 2.2.3. PROPERTIES OF THE
HUGONIOT CURVE 26 2.2.4. ANALYSIS OF THE DETONATION BRANCH 28 2.2.5.
ANALYSIS OF THE DEFLAGRATION BRANCH 30 2.2.6. PROPERTIES OF
CHAPMAN-JOUGUET WAVES 30 2.3. EXTENSION OF THE RESULTS TO ARBITRARY
SYSTEMS 33 2.3.1. RANGE OF VALIDITY OF THE RESULTS OF SECTION 2.2 33
2.3.2. FROZEN VERSUS EQUILIBRIUM SOUND SPEEDS 33 2.3.3. PROOF THAT V N =
A E , AT THE CHAPMAN-JOUGUET POINTS 34 2.3.4. SUMMARY OF THE
PROPERTIES OF HUGONIOT CURVES 35 REFERENCES 37 XIV CONTENTS 3 DIFFUSION
FLAMES AND DROPLET BURNING 38 3.1. THE FLAME AT THE MOUTH OF A TUBE IN A
DUCT 39 3.1.1. DEFINITION OF THE PROBLEM 39 3.1.2. ASSUMPTIONS 40 3.1.3.
SOLUTION OF THE SPECIES CONSERVATION EQUATION FOR THE COUPLING FUNCTION
FT 41 3.1.4. THE FLAME SHAPE AND THE FLAME HEIGHT 42 3.1.5. THE FLAME
SHEET APPROXIMATION 44 3.1.6. THE VALIDITY OF THE OTHER APPROXIMATIONS
45 3.1.7. COMMENTS ON THE FORMULATION AND THE ANALYSIS 46 3.2. THE
OXIDATION OF CARBON AT THE WALLS OF A DUCT 48 3.2.1. DEFINITION OF THE
PROBLEM 48 3.2.2. THE NATURE OF CARBON COMBUSTION 48 3.2.3. ANALYSIS 50
3.3. THE BURNING OF A FUEL PARTICLE IN AN OXIDIZING ATMOSPHERE 52 3.3.1.
BACKGROUND AND DEFINITION OF THE PROBLEM 52 3.3.2. ASSUMPTIONS 54 3.3.3.
ANALYSIS PREDICTING THE BURNING RATE 56 3.3.4. DISCUSSION OF THE
BURNING-RATE FORMULA 59 3.3.5. PREDICTIONS OF OTHER CHARACTERISTICS OF
BURNING DROPLETS 61 3.3.6. FURTHER REALITIES OF DROPLET BURNING 62 3.4.
STRUCTURE OF THE FLAME SHEET 69 3.4.1. APPROACH TO STRUCTURE QUESTIONS
69 3.4.2. THE MIXTURE-FRACTION VARIABLE 73 3.4.3. ACTIVATION-ENERGY
ASYMPTOTICS 76 3.4.4. IGNITION AND EXTINCTION 80 3.5. MONOPROPELLANT
DROPLET BURNING 84 REFERENCES 86 4 REACTIONS IN FLOWS WITH NEGLIGIBLE
MOLECULAR TRANSPORT 92 4.1. IGNITION DELAY AND THE WELL-STIRRED REACTOR
92 4.2. REACTIONS IN STEADY, QUASI-ONE-DIMENSIONAL FLOW 96 4.2.1.
STEADY-STATE, QUASI-ONE-DIMENSIONAL CONSERVATION EQUATIONS 96 4.2.2.
SPECIFIC IMPULSE OF ROCKETS 99 4.2.3. NEAR-EQUILIBRIUM AND NEAR-FROZEN
FLOWS 100 4.2.4. APPLICATION TO THE REACTION A*B WITH SPECIES A AND B
PRESENT IN ONLY TRACE AMOUNTS 103 4.2.5. FREEZING OF REACTIONS 105
4.2.6. TWO-PHASE NOZZLE FLOW 106 CONTENTS 4.3. REACTIONS IN UNSTEADY,
THREE-DIMENSIONAL FLOW 108 4.3.1. CONSERVATION EQUATIONS; CHARACTERISTIC
SURFACES 108 4.3.2. THE METHOD OF CHARACTERISTICS FOR STEADY, TWO-
DIMENSIONAL (AXIALLY SYMMETRICAL AND PLANE) FLOWS 113 4.3.3. THE METHOD
OF CHARACTERISTICS FOR ONE-DIMENSIONAL, UNSTEADY FLOWS 118 4.3.4.
ONE-DIMENSIONAL, UNSTEADY SOUND PROPAGATION IN A BINARY, REACTING
IDEAL-GAS MIXTURE FOR THE REACTION ,4 5*2? 119 4.3.4.1. PRELIMINARY
RELATIONSHIPS 119 4.3.4.2. LINEARIZATION 120 4.3.4.3. REDUCTION TO A
SINGLE PARTIAL DIFFERENTIAL EQUATION 120 4.3.4.4. DISPERSION RELATIONS
123 4.3.4.5. AN INITIAL-VALUE PROBLEM 124 4.3.4.6. RELATED PROBLEMS 126
REFERENCES 127 5 THEORY OF LAMINAR FLAMES 130 5.1. DESCRIPTION OF
LAMINAR FLAMES 131 5.1.1. EXPERIMENTS 131 5.1.2. PHENOMENOLOGICAL
ANALYSIS OF A DEFLAGRATION WAVE 135 5.2. MATHEMATICAL FORMULATION 136
5.2.1. INTRODUCTORY REMARKS 136 5.2.2. PRELIMINARY ASSUMPTIONS AND
EQUATIONS 137 5.2.3. APPROXIMATIONS THAT FURTHER SIMPLIFY THE ENERGY
EQUATION 138 5.2.4. SIMPLIFICATIONS IN THE ENERGY AND DIFFUSION
EQUATIONS FOR UNIMOLECULAR REACTIONS IN BINARY MIXTURES 139 5.2.5.
SOLUTION OF THE DIFFUSION EQUATION WHEN LE = 1 141 5.2.6. DIMENSIONLESS
FORMS FOR THE MOMENTUM EQUATION AND THE SPECIES CONSERVATION EQUATION
141 5.2.7. SUMMARY OF THE SIMPLIFIED MATHEMATICAL PROBLEM 142 5.3. THE
UNIMOLECULAR DECOMPOSITION FLAME WITH LEWIS NUMBER OF UNITY 143 5.3.1.
GOVERNING EQUATIONS 143 5.3.2. THE COLD-BOUNDARY DIFFICULTY 145 5.3.3.
BOUNDS ON THE BURNING-RATE EIGENVALUE 149 5.3.4. ITERATIVE PROCEDURES
AND VARIATIONAL METHODS 151 5.3.5. THE APPROXIMATIONS OF ZEL DOVICH,
FRANK-KAMENETSKII, AND VON KANNAN 153 5.3.6. ASYMPTOTIC ANALYSIS FOR
STRONGLY TEMPERATURE-DEPENDENT RATES 154 5.3.7. GENERALIZATIONS TO OTHER
FLAMES 160 XVI CONTENTS 5.4. FLAMES WITH MULTIPLE-STEP CHEMISTRY 165
5.4.1. DISCUSSION OF THE BACKGROUND AND THE NATURE OF THE PROBLEM 165
5.4.1.1. FORMULATION 165 5.4.1.2. OBJECTIVES OF ANALYSES 167 5.4.1.3.
LITERATURE 167 5.4.1.4. BURNING-VELOCITY CALCULATIONS 170 5.4.2. THE
EXTENDED STEADY-STATE APPROXIMATION 172 5.4.3. CONSERVATION EQUATIONS
FOR REACTION INTERMEDIARIES 173 5.4.4. A CRITERION FOR THE APPLICABILITY
OF THE EXTENDED STEADY-STATE APPROXIMATION 174 5.4.5. METHODS OF
ANALYSIS FOR TESTING STEADY-STATE APPROXIMATIONS 175 5.4.6. OBSERVATIONS
ON THEORIES OF FLAME STRUCTURE 177 REFERENCES 179 6 DETONATION PHENOMENA
182 6.1. PLANAR DETONATION STRUCTURE 183 6.1.1. GOVERNING EQUATIONS 183
6.1.2. PROPERTIES OF THE GOVERNING EQUATIONS 183 6.1.2.1. LOCATION OF
SINGULARITIES 18 4 6.1.2.2. SOLUTIONS IN THE NEIGHBORHOODS OF SINGULAR
POINTS * 187 6.1.2.3. GENERAL PROPERTIES OF THE INTEGRAL CURVES 188
6.1.3. REMARKS ON DEFLAGRATIONS 190 6.1.4. APPROXIMATE SOLUTION FOR THE
STRUCTURE OF A DETONATION 191 6.1.5. DISCUSSION OF DETONATION STRUCTURE
192 6.1.6. THE STRUCTURE OF ZND DETONATIONS 194 6.2. PROPAGATION
VELOCITIES FOR DETONATIONS TRAVELING IN TUBES 197 6.2.1. BASIC
CONSIDERATIONS FOR PLANAR WAVES 197 6.2.2. FURTHER COMMENTS ON WEAK
DETONATIONS 199 6.2.3. EFFECTS OF TUBE WALLS 199 6.2.4. AMBIGUITIES
ASSOCIATED WITH FROZEN AND EQUILIBRIUM SOUND SPEEDS 201 6.2.5. EFFECTS
OF THREE-DIMENSIONAL STRUCTURES 203 6.2.6. CHEMICAL REACTIONS BEHIND A
SHOCK WAVE PRODUCED IN A SHOCK TUBE 204 CONTENTS XVII 6.3. TRANSVERSE
STRUCTURES FOR DETONATIONS 204 6.3.1. SPINNING DETONATIONS AND STABILITY
CONSIDERATIONS 204 6.3.2. THEORIES OF TRANSVERSE STRUCTURES 208 6.3.3.
STANDING DETONATIONS 212 6.3.4. DETONABILITY LIMITS AND QUENCHING
THICKNESS 212 6.3.5. THE TRANSITION FROM DEFLAGRATION TO DETONATION 217
6.4. DETONATIONS IN SOLIDS, LIQUIDS, AND SPRAYS 219 REFERENCES 221 7
COMBUSTION OF SOLID PROPELLANTS 229 7.1. DESCRIPTION OF STEADY
DEFLAGRATION OF A HOMOGENEOUS SOLID 230 7.2. APPLICATIONS OF
TRANSITION-STATE THEORY 232 7.3. APPROACH TO INTERFACIAL EQUILIBRIUM 235
7.4. DEFLAGRATION CONTROLLED BY CONDENSED-PHASE REACTION RATES 238 7.5.
DEFLAGRATION CONTROLLED BY GAS-PHASE REACTION RATES 243 7.6. DISPERSION
PHENOMENA AND OTHER INFLUENCES 249 7.7. COMBUSTION OF HETEROGENEOUS
PROPELLANTS 251 7.8. EROSIVE BURNING 258 REFERENCES 261 8 IGNITION,
EXTINCTION, AND FLAMMABILTTY LIMITS 265 8.1. MINIMUM IGNITION ENERGIES
AND QUENCHING DISTANCES 268 8.2. PREMIXED FLAMES WITH HEAT LOSSES 271
8.2.1. METHODS OF ANALYSIS 271 8.2.2. THE EXISTENCE OF TWO FLAME SPEEDS
277 8.2.3. CONCENTRATION LIMITS OF FLAMMABILITY 277 8.2.4. PRESSURE
LIMITS OF FLAMMABILITY 279 8.2.5. ESTIMATES OF HEAT LOSS 279 8.3.
ACTIVATION-ENERGY ASYMPTOTICS IN IGNITION THEORY 284 REFERENCES 291 ,.9
COMBUSTION INSTABILITIES 294 9.1. ACOUSTIC INSTABILITIES IN
SOLID-PROPELLANT ROCKET MOTORS 295 9.1.1. OSCILLATION MODES 295 9.1.2.
CONSERVATION OF ACOUSTIC ENERGY 298 9.1.3. THE ACOUSTIC ADMITTANCE 301
9.1.4. DAMPING MECHANISMS 304 9.1.4.1. RELATIVE IMPORTANCE 304 9.1.4.2.
NOZZLE DAMPING 305 9.1.4.3. WALL DAMPING 308 9.1.4.4. HOMOGENEOUS
DAMPING 309 9.1.4.5. SOLID VIBRATIONS 309 9.1.4.6. RELAXATION DAMPING
311 9.1.4.7. PARTICLE DAMPING 312 9.1.5. AMPLIFICATION MECHANISMS 315
9.1.5.1. RELATIVE IMPORTANCE 315 9.1.5.2. AMPLIFICATION CRITERIA 315
9.1.5.3. TIME-LAG THEORIES 318 9.1.5.4. COMBUSTION RESPONSE 319 9.1.5.5.
HETEROGENEITY EFFECTS 323 9.1.6. NONLINEAR EFFECTS 324 9.2. INHERENT
OSCILLATIONS OF BURNING SOLIDS 328 9.3. OSCILLATORY BURNING IN
LIQUID-PROPELLANT ROCKET MOTORS 336 9.4. SYSTEM INSTABILITIES IN
COMBUSTION EQUIPMENT 339 9.5. HYDRODYNAMIC AND DIFFUSIVE INSTABILITIES
IN PREMIXED FLAMES 341 9.5.1. FORMULATION THROUGH ASYMPTOTIC METHODS 341
9.5.2. CELLULAR FLAMES 349 9.5.2.1. BODY-FORCE INSTABILITIES 350
9.5.2.2. HYDRODYNAMIC INSTABILITIES 352 9.5.2.3. DIFFUSIVE-THERMAL
INSTABILITIES 357 REFERENCES 365 10 THEORY OF TURBULENT FLAMES 373 10.1.
PROBABILISTIC DESCRIPTIONS 375 10.1.1. PROBABILITY-DENSITY FUNCTIONALS
375 10.1.2. AVERAGES 377 10.1.3. PROPERTIES OF PROBABILITY-DENSITY
FUNCTIONS 381 10.1.4. FOURIER DECOMPOSITIONS 385 10.1.5. SCALES OF
TURBULENCE 388 10.2. TURBULENT DIFFUSION FLAMES 392 10.2.1. OBJECTIVES
OF ANALYSES 392 10.2.2. USE OF COUPLING FUNCTIONS 394 10.2.3. PRODUCTION
OF TRACE SPECIES 402 10.2.4. AVERAGE RATES OF HEAT RELEASE 405 10.2.5.
EFFECTS OF STRAIN ON FLAME SHEETS 408 CONTENTS XIX 10.3. TURBULENT
PREMIXED FLAMES 411 10.3.1. OBJECTIVES OF ANALYSIS 411 10.3.2. EFFECTS
OF STRAIN ON LAMINAR FLAMES 415 10.3.3. THEORY OF WRINKLED LAMINAR
FLAMES 423 10.3.4. TURBULENT FLAME SPEEDS 429 10.3.5. FLAMES IN
TURBULENCE OF HIGH INTENSITY OR SMALL SCALE 437 REFERENCES 440 11 SPRAY
COMBUSTION 446 11.1. SPRAY STATISTICS 448 11.1.1. PARTICLE SIZE AND
SHAPE 448 11.1.2. THE DISTRIBUTION FUNCTION 449 11.1.3. THE SPRAY
EQUATION 449 11.2. SIMPLIFIED MODEL OF COMBUSTION IN A LIQUID-PROPELLANT
ROCKET MOTOR 450 11.2.1. THE MODEL 450 11.2.2. SIMPLIFIED SPRAY EQUATION
451 11.2.3. SOLUTION OF THE SPRAY EQUATION 452 11.2.4. DROPLET SIZE
DISTRIBUTIONS 453 11.2.5. THE COMBUSTION EFFICIENCY AND OTHER SPRAY
PROPERTIES 455 11.3. THE CONSERVATION EQUATIONS FOR DILUTE SPRAYS 458
11.3.1. MOTIVATION 458 11.3.2. OVERALL CONTINUITY 459 11.3.3. SPECIES
CONSERVATION 460 11.3.4. MOMENTUM CONSERVATION 460 11.3.5. ENERGY
CONSERVATION 462 11.3.6. COMMENTS ON FORMULATIONS 462 11.4. SIMPLIFIED
CONSERVATION EQUATIONS 463 11.4.1. ASSUMPTIONS 463 11.4.2. OVERALL
CONTINUITY 463 11.4.3. SPECIES CONSERVATION 464 11.4.4. MOMENTUM
CONSERVATION 464 11.4.5. ENERGY CONSERVATION 465 11.5. EXTENDED MODEL OF
COMBUSTION IN A LIQUID-PROPELLANT ROCKET MOTOR 466 11.5.1. THE MODEL 466
11.5.2. THE SPRAY EQUATION 467 11.5.3. DROPLET VAPORIZATION RATE 468
11.5.4. DROPLET DRAG 468 XX CONTENTS 11.5.5. CONTINUITY 469 11.5.6.
SOLUTION TO THE PROBLEM 469 11.5.7. THE CHAMBER LENGTH FOR COMPLETE
COMBUSTION 471 11.6. DEFLAGRATIONS IN SPRAYS 472 11.6.1. DESCRIPTION 472
11.6.2. OVERALL CONTINUITY AND THE SPRAY EQUATION 474 11.6.3. SPECIES
CONSERVATION 475 11.6.4. MOMENTUM AND ENERGY CONSERVATION 476 11.6.5.
THE MATHEMATICAL PROBLEM AND BOUNDARY CONDITIONS 478 11.6.6. SOLUTION TO
THE PROBLEM 479 11.7. SPRAY PENETRATION AND CLOUD COMBUSTION 480
REFERENCES 481 12 FLAME ATTACHMENT AND FLAME SPREAD 485 12.1. THE
BOUNDARY-LAYER APPROXIMATION FOR LAMINAR FLOWS WITH CHEMICAL REACTIONS
486 12.1.1. DERIVATION OF SIMPLIFIED GOVERNING EQUATIONS 486 12.1.2.
GENERALIZATIONS 489 12.2. COMBUSTION OF A FUEL PLATE IN AN OXIDIZING
STREAM 495 12.2.1. DEFINITION OF THE PROBLEM 495 12.2.2. BOUNDARY
CONDITIONS 496 12.2.3. SOLUTION 498 12.2.4. THE BURNING RATE 500 12.2.5.
THE FORCE ON THE PLATE 501 12.2.6. RELEVANCE TO OTHER PROBLEMS 502 12.3.
MECHANISMS OF FLAME STABILIZATION 503 12.4. PROCESSES OF FLAME SPREAD
509 REFERENCES 516 APPENDIX A SUMMARY OF APPLICABLE RESULTS OF
THERMODYNAMICS AND STATISTICAL MECHANICS 521 A.I. GENERAL
THENNODYNAMICAL RESULTS 522 A. 1.1. THE LAWS OF THERMODYNAMICS 522 A.
1.2. THERMODYNAMIC FUNCTIONS 523 A.2. PERTINENT RESULTS OF STATISTICAL
MECHANICS 524 A.2.1. BACKGROUND 524 A.2.2. SUMMARY OF RESULTS 526 A.2.3.
EVALUATION OF PARTITION FUNCTIONS 527 CONTENTS XXI A.3. CHEMICAL
EQUILIBRIUM 529 A.3.1. GENERAL EQUILIBRIUM CONDITION 529 A.3.2. PHASE
EQUILIBRIA 531 A.3.3. IDEAL-GAS REACTIONS 532 A.3.4. NONIDEAL-GAS
REACTIONS 533 A.3.5. REACTIONS IN CONDENSED PHASES 533 A.3.6.
HETEROGENEOUS REACTIONS 535 A.3.7. CALCULATION OF EQUILIBRIUM
COMPOSITIONS 535 A.4. HEATS OF REACTION 538 A.4.1. DEFINITION OF HEAT OF
REACTION 538 A.4.2. DIFFERENTIAL HEAT OF REACTION 539 A.4.3. HEAT OF
FORMATION AND OTHER PROPERTIES 540 A.4.4. THE EQUATIONS OF KIRCHHOFF AND
VAN T HOFF 541 A.4.5. THE ADIABATIC FLAME TEMPERATURE 543 A.5. CONDENSED
PHASES 544 A.5.1. THE PHASE RULE 544 A.5.2. VAPOR PRESSURES OF BINARY
MIXTURES 545 A.5.3. BOILING POINTS OF BINARY MIXTURES 547 A.5.4.
TEMPERATURE DEPENDENCE OF VAPOR PRESSURES OF BINARY MIXTURES 548 A.5.5.
COLLIGATIVE PROPERTIES OF SOLUTIONS 550 REFERENCES 552 APPENDIX B REVIEW
OF CHEMICAL KINETICS 554 B.I. THE LAW OF MASS ACTION 554 B. 1.1.
STATEMENT OF THE LAW 554 B.I.2. MULTIPLE REACTIONS; EQUILIBRIUM CONSTANT
555 B.1.3. REACTION ORDER AND MOLECULARITY 557 B.2. REACTION MECHANISMS
558 B.2.1. GENERAL METHODS 558 B.2.2. FIRST-ORDER REACTIONS AND
UNIMOLECULAR REACTIONS 559 B.2.3. HIGHER-ORDER REACTIONS 561 B.2.4.
OPPOSING REACTIONS 561 B.2.5. CHAIN REACTIONS AND RELATED PROCESSES 563
B.2.5.1. INITIATION, PROPAGATION, AND TERMINATION STEPS 563 B.2.5.2. THE
STEADY-STATE AND PARTIAL-EQUILIBRIUM APPROXIMATIONS 565 B.2.5.3.
BRANCHED-CHAIN EXPLOSIONS 570 B.2.5.4. THERMAL EXPLOSIONS 576 B.2.5.5.
KINETICS OF HYDROCARBON COMBUSTION 581 B.2.6. CATALYSIS 584 XXII
CONTENTS B.3. DETERMINATION OF THE SPECIFIC REACTION-RATE CONSTANT 585
B.3.1. THE ARRHENIUS LAW 585 B.3.2. THE ACTIVATION ENERGY 585 B.3.3.
COLLISION REACTION-RATE THEORY 587 B.3.4. TRANSITION-STATE THEORY 589
B.3.5. COMPARISON BETWEEN TRANSITION-STATE THEORY AND COLLISIONAL THEORY
591 B.3.6. OTHER APPLICATIONS OF TRANSITION-STATE THEORY 593 B.3.7.
MODERN, DEVELOPMENTS IN REACTION-RATE THEORY 593 B.4. THE RATES OF
HETEROGENEOUS PROCESSES 595 B.4.1. DESCRIPTION OF THE HETEROGENEOUS
PROCESSES TO BE DISCUSSED 595 B.4.2. GAS TRANSPORT RATE-CONTROLLING 595
B.4.3. ADSORPTION OR DESORPTION RATE-CONTROLLING 595 B.4.4. SURFACE
REACTION RATE-CONTROLLING 598 REFERENCES 601 APPENDIX C CONTINUUM
DERIVATION OF THE CONSERVATION EQUATIONS 604 C.I. DEFINITIONS AND BASIC
MATHEMATICAL RELATIONS 605 C.2. CONTINUITY EQUATIONS 607 C.3. MOMENTUM
EQUATION 608 C.4. ENERGY EQUATION 610 C.5. COMPARISON BETWEEN THE
CONSERVATION LAWS DERIVED FOR INDEPENDENT COEXISTENT CONTINUA AND THE
KINETIC THEORY RESULTS FOR MULTICOMPONENT GAS MIXTURES 612 C.5.1.
DEFINITIONS OF KINETIC THEORY 613 C.5.2. COMPARISON OF CONSERVATION
EQUATIONS 614 C.6. PROOF OF EQUATION (6) 615 REFERENCES 617 APPENDIX D
MOLECULAR DERIVATION OF THE CONSERVATION EQUATIONS 618 D.I. THE VELOCITY
DISTRIBUTION FUNCTION AND THE BOLTZMANN EQUATION 618 D.2. DEFINITIONS OF
FLUID DYNAMICAL VARIABLES 620 D.3. THE EQUATION OF CHANGE 624 CONTENTS
D.4. SUMMATIONAL INVARIANTS 624 D.5. MACROSCOPIC CONSERVATION EQUATIONS
625 D.5.1. OVERALL CONTINUITY 625 D.5.2. MOMENTUM CONSERVATION 625
D.5.3. ENERGY CONSERVATION 626 D.5.4. SPECIES CONSERVATION 626 D.5.5.
SUMMARY 627 REFERENCES 627 APPENDIX E TRANSPORT PROPERTIES 628 E.I.
COLLISION INTEGRALS 629 E.2. DIFFUSION 631 E.2.1. PHYSICAL DERIVATION OF
THE MULTICOMPONENT DIFFUSION EQUATION 631 E.2.2. SIMPLIFIED DIFFUSION
EQUATIONS 634 E.2.3. BINARY DIFFUSION COEFFICIENTS 635 E.2.4.
MULTICOMPONENT DIFFUSION COEFFICIENTS 636 E.2.5. THERMAL DIFFUSION
COEFFICIENTS 637 E.3. UNIFIED ELEMENTARY TREATMENT OF TRANSPORT
PROCESSES 638 E.4. VISCOSITY 640 E.4.1. COEFFICIENT OF VISCOSITY 640
E.4.2. THE PRESSURE TENSOR 641 E.5. HEAT FLUX 642 E.5.1. THERMAL
CONDUCTIVITY 642 E.5.2. THE HEAT-FLUX VECTOR 643 E.6. DIMENSIONLESS
RATIOS OF TRANSPORT COEFFICIENTS 646 REFERENCES 647 SUBJECT INDEX 651
AUTHOR INDEX 667
|
any_adam_object | 1 |
author | Williams, Forman A. |
author_facet | Williams, Forman A. |
author_role | aut |
author_sort | Williams, Forman A. |
author_variant | f a w fa faw |
building | Verbundindex |
bvnumber | BV035906808 |
classification_rvk | SK 950 |
classification_tum | ERG 420f |
ctrlnum | (OCoLC)179818398 (DE-599)BVBBV035906808 |
discipline | Energietechnik, Energiewirtschaft Mathematik |
edition | 2. ed., [Nachdr.] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01750nam a22004451c 4500</leader><controlfield tag="001">BV035906808</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091228 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091222s1999 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0805398015</subfield><subfield code="9">0-8053-9801-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0201407779</subfield><subfield code="9">0-201-40777-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)179818398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035906808</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 420f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Williams, Forman A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combustion theory</subfield><subfield code="b">the fundamental theory of chemically reacting flow systems</subfield><subfield code="c">Forman A. Williams</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., [Nachdr.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Reading, Mass. <<[u.a.]>></subfield><subfield code="b">Perseus Books</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 680 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Combustion science and engineering series</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Advanced Book Program</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zündung</subfield><subfield code="0">(DE-588)4191084-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zündung</subfield><subfield code="0">(DE-588)4191084-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018764160&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018764160</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV035906808 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:07:08Z |
institution | BVB |
isbn | 0805398015 0201407779 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018764160 |
oclc_num | 179818398 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | XXIII, 680 S. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Perseus Books |
record_format | marc |
series2 | Combustion science and engineering series The Advanced Book Program |
spelling | Williams, Forman A. Verfasser aut Combustion theory the fundamental theory of chemically reacting flow systems Forman A. Williams 2. ed., [Nachdr.] Reading, Mass. <<[u.a.]>> Perseus Books 1999 XXIII, 680 S. txt rdacontent n rdamedia nc rdacarrier Combustion science and engineering series The Advanced Book Program Verbrennung (DE-588)4062656-8 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Zündung (DE-588)4191084-9 gnd rswk-swf Verbrennung (DE-588)4062656-8 s DE-604 Zündung (DE-588)4191084-9 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018764160&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Williams, Forman A. Combustion theory the fundamental theory of chemically reacting flow systems Verbrennung (DE-588)4062656-8 gnd Mathematisches Modell (DE-588)4114528-8 gnd Zündung (DE-588)4191084-9 gnd |
subject_GND | (DE-588)4062656-8 (DE-588)4114528-8 (DE-588)4191084-9 |
title | Combustion theory the fundamental theory of chemically reacting flow systems |
title_auth | Combustion theory the fundamental theory of chemically reacting flow systems |
title_exact_search | Combustion theory the fundamental theory of chemically reacting flow systems |
title_full | Combustion theory the fundamental theory of chemically reacting flow systems Forman A. Williams |
title_fullStr | Combustion theory the fundamental theory of chemically reacting flow systems Forman A. Williams |
title_full_unstemmed | Combustion theory the fundamental theory of chemically reacting flow systems Forman A. Williams |
title_short | Combustion theory |
title_sort | combustion theory the fundamental theory of chemically reacting flow systems |
title_sub | the fundamental theory of chemically reacting flow systems |
topic | Verbrennung (DE-588)4062656-8 gnd Mathematisches Modell (DE-588)4114528-8 gnd Zündung (DE-588)4191084-9 gnd |
topic_facet | Verbrennung Mathematisches Modell Zündung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018764160&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT williamsformana combustiontheorythefundamentaltheoryofchemicallyreactingflowsystems |