Molecular biology of RNA:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2011
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | IX, 441 S. Ill., zahlr. graph. Darst. |
ISBN: | 9780199288373 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035837361 | ||
003 | DE-604 | ||
005 | 20210406 | ||
007 | t | ||
008 | 091120s2011 ad|| |||| 00||| eng d | ||
020 | |a 9780199288373 |9 978-0-19-928837-3 | ||
035 | |a (OCoLC)456181272 | ||
035 | |a (DE-599)BVBBV035837361 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-703 |a DE-19 |a DE-29T | ||
082 | 0 | |a 572.88 |2 22 | |
084 | |a WD 5355 |0 (DE-625)148201: |2 rvk | ||
100 | 1 | |a Elliott, David |d 1965- |e Verfasser |0 (DE-588)1076802869 |4 aut | |
245 | 1 | 0 | |a Molecular biology of RNA |c David Elliott ; Michael Ladomery |
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2011 | |
300 | |a IX, 441 S. |b Ill., zahlr. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 4 | |a Molecular biology | |
650 | 4 | |a RNA | |
650 | 0 | 7 | |a Molekulargenetik |0 (DE-588)4039987-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekularbiologie |0 (DE-588)4039983-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a RNS |0 (DE-588)4076759-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a RNS |0 (DE-588)4076759-0 |D s |
689 | 0 | 1 | |a Molekularbiologie |0 (DE-588)4039983-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a RNS |0 (DE-588)4076759-0 |D s |
689 | 1 | 1 | |a Molekulargenetik |0 (DE-588)4039987-4 |D s |
689 | 1 | |C b |5 DE-604 | |
700 | 1 | |a Ladomery, Michael |e Verfasser |0 (DE-588)1082788074 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018695756&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018695756 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804140803427139584 |
---|---|
adam_text | CONTENTS
Preface v
Acknowledgements x
1
Introduction to Molecular Biology of
RNA
1.1
Aims of this book
2
2
RNA
can form versatile structures
2.1 DNA
and
RNA
are composed of slightly
different building blocks
4
2.2
Nucleotides are joined together through
a phosphodiester backbone to give
nucleotidec hains
8
2.3
RNA
secondary structure: hydrogen
bonding between bases holds nucleotide
chains together in double helices
9
2.4
Nucleic acids have primary, secondary,
and, in the case of
RNA,
tertiary structure
12
2.5
Five common secondary structure
motifs are found within
RNA
molecules
14
2.6
Secondary structure motifs form through
base pairing in
RNA
molecules
1 6
2.7
The formation of
RNA
duplexes is
stimulated by positively charged
molecules and particularly metal ions
19
2.8
RNAs form tertiary structures
20
2.9
Complex folded RNAs which bind to
target molecules can be selected
24
2.10
Riboswitches are shape-changing RNAs
which can flip gene expression patterns
on binding specific target molecules
25
2.11
RNA
helices can connect different
molecules of
RNA
together
30
2.12
RNA
is a versatile molecule
32
3
Catalytic RNAs
3.1
RNA
is inherently chemically unstable
because of its
2
-OH group
35
3.2
The protein enzyme RNAse A uses acid-base
catalysis to carry out
RNA
strand cleavage
37
3.3
Three properties of
RNA
enable the
catalytic function of ribozymes
39
3.4
Ribozymes are widespread in nature
and fall into large and small groups
40
3.5
Small ribonucleolytic ribozymes
catalyse their own cleavage
43
3.6
The hammerhead ribozyme
43
3.7
The
Η
DV
ribozyme
46
3.8
RNA-cutting ribozymes are used
to control gene expression in both
bacteria and
eu
karyotes
46
3.9
The large ribozymes
47
3.10
Group I
introns
are spliced through a
two-step mechanism which uses metal
ions in their active sites
47
3.11
Group II
introns
are also spliced through
a two-step mechanism
51
3.12
RNAse
Ρ
is an essential ribozyme which
processes the
5
end of tRNA
53
3.13
Catalysis in the ribosome is
RNA
based
53
3.14
Are ribozymes true catalysts?
56
3.15
The
RNA
World hypothesis: a time when
RNA
was used as a genetic material
57
3.16
Experiments have been carried out to
model the early steps that might have
occurred during the evolution of life
58
4
The RNA-binding proteins
4.1
The
RNA
recognition motif (RRM)
66
4.2
The K-homology (KH) domain
69
4.3
The cold-shock domain
70
4.4
Double-stranded RNA-binding proteins
73
4.5
The zinc-finger domain
75
4.6
Other RNA-binding domains
77
4.7
Investigating protein-RNA interactions
79
5
Co-transcriptional pre-mRNA processing
5.1
Transcription and the
RNA polymerases
85
5.2
Formation of the ends of an
m
RNA
88
5.3
The
C-terminal
domain (CTD) of
RNA
polymerase II
91
5.4
The link between splicing and
transcription
92
Contents
5.5
The spatial organization of pre-mRNA
processing
96
5.6
Histone mRNAS end formation
100
6
Pre-mRNA splicing by the spliceosome
6.1
RNA
splicing was discovered in a virus
104
6.2
Spliceosomal
introns
play a critical role
in efficient eukaryotic gene expression
106
6.3
Introns
enhance eukaryotic gene
expression at several levels
108
6.4
Pre-mRNAs are punctuated by splice
sites at intron-exon junctions
109
6.5
Splice sites are complementary to
a group of small nuclear RNAs
111
6.6
snRNAs are associated with proteins
togivesnRNPs
112
6.7
Splicing follows a two-step reaction
pathway
114
6.8
Splicing happens in a series of
spliceosomal protein complexes
115
6.9
The spliceosome cycle
117
6.10
Spliceosome assembly and disassembly
are cyclical
121
6.11
A minor class of eukaryotic spliceosomal
introns
have different splice sites
123
6.12
Major and minor spliceosomes
coexist in most eukaryotes
124
6.13
Trans-splicing is common in
trypanosome parasites and in the
nematode
C elegans,
where it enables
efficient translation
124
6.14
Pre-mRNA splicing is thought to have
evolved from parasitic
DNA
elements
128
6.15
Introns
evolved early in eukaryotes
129
6.16
Introns
and exons can both appear and
disappear in evolution
130
7
How pre-mRNAs are decoded by the splicing
machinery
7.1
Intron
and exon definition
137
7.2
A splicing code helps exon recognition
and so controls splicing
140
7.3
Discovery of the splicing code
140
7.4
The splicing code comprises binding
sites for nuclear RNA-binding proteins
embedded in transcribed sequences
141
7.5
The as-splicing code is read by nuclear
RNA-binding proteins
142
7.6
Splicing enhancers bind proteins to
activate the use of splice sites
145
7.7
Proteins bound to splicing enhancers act as
patches of glue on the
RNA
for attaching
the splicing machinery, thereby directing
exons to be spliced
145
7.8
Negative splicing complexes exclude
assembly of the spliceosome
148
7.9
How the splicing code is being
deciphered
150
7.10
The splicing code can be predicted using
bioinformatics
151
7.11
Experimental identification of splicing
silencers
151
7.12
Most exons contain multiple binding
sites for antagonistic splicing factors
153
7.13
Four features affect how pre-mRNAs
are coded by the spliceosome
154
8
Regulated
RNA
processing-alternative splicing
8.1
Alternative splicing produces different
mRNAisoforms from the same gene
159
8.2
The different mRNA isoforms made by
alternative splicing can be detected by
RT-PCR
160
8.3
Alternatively spliced mRNAisoforms
can be displayed on genome browsers
161
8.4
Alternative splicing increases the coding
capacity of the genome by challenging
the one gene-one protein rule
162
8.5
Alternative splicing can regulate both
protein-coding information and gene
expression
164
8.6
Changes in the splicing code can
regulate alternative splicing patterns
167
8.7
Signal transduction pathways can
regulate alternative splicing by changing
the function and location of splicing
factors
172
8.8
Protein phosphorylation
172
8.9
Stimulation of cells with growth factors
switches the splicing of the cell surface
molecule CD44
173
8.10
The splicing
repressor
hnRN
Ρ
Al
relocalizes to the cytoplasm in response
to cellular stress
1
74
8.11
Splicing decisions can be regulated by
dephosphorylation of splicing factors
177
8.12
Transcription elongation speeds can
regulate alternative splicing choices
178
8.13
Rates of elongation of
RNA polymerase
II
can be regulated to affect alternative
splicing
180
8.14
Transcription can aiso modulate splicing
pathways via the recruitment of cofactors
181
Contents
8.15 Alternative
splicing in action:
alternative
splicing pathways can control complex
developmental pathways in metazoans
183
9
Pre-mRNA splicing defects in development and
disease
9.1
Splicing mutations are very frequent
causes of human genetic disease
193
9.2
Mutations in splicing control sequences
frequently cause exon skipping in humans
194
9.3
Molecular diagnosis of splicing mutations
195
9.4
Mutation of an exonic splicing enhancer
in
a
DNA
damage control gene leads to
breast cancer
197
9.5
Genetic mutations create a new splice
site in a premature ageing disease
200
9.6
Mutations which affect splicing can
deregulate the ratio of alternatively
spliced mRNAs
201
9.7
Mutations affecting splicing signals can
be particularly severe since they change
the structure of mRNAs
203
9.8
Manipulating pre-mRNA splicing offers
a route to treating muscular dystrophy
205
9.9
Diseases caused by mutations in the trans¬
acting machinery which recognizes and
splices together exons in the nucleus
207
9.10
The genes which encode important
spliceosomal proteins are mutated in
patients with
retinitis pigmentosa (RP)
208
9.11
A protein important for snRNP assembly
is affected by mutations causing spinal
muscular atrophy (SMA)
211
9.12
There is scientific controversy about why
exon
7
of the SMN2 gene is inefficiently
spliced
212
9.13
Molecular therapy for SMA is targeted at
correctingthe splicing of SMN2 exon
7 214
9.14
Diseases caused by mis-expression of
levels of splicing factor
216
9.15
The splicing regulator ASF/SF2 is
misregulated in some cancers
21 6
9.1 6 Myotonie
dystrophy is caused by the
expression of pathogenic RNAs which
affect pre-mRNA splicing by changing the
nuclear concentration of nuclear
pre-mRNA splicing proteins
219
9.17
Splicing proteins can play an important
role in autoimmunity
223
9.18
Splicing as a route to therapy for
infectious diseases like AIDS
225
10
Nucleocytoplasmic traffic of messenger
RNA
10.1
Common themes in
RNA
nuclear
export pathways
231
10.2
The nuclear pore complex (NPC)
232
10.3
Nuclear export of mRNA
233
10.4
The cell biology of nuclear export of
mRNA: mRNA transcripts reach the nuclear
pore by random nuclear diffusion
234
10.5
As they are synthesized, mRNAs are
dressed for export into mRNPs by the
addition of nuclear export adaptors
236
10.6
The molecular mechanism of
RNA
export
239
10.7
Export adiptors
239
10.8
Addition of export adaptors is
coupled to splicing in metazoans and
transcription in yeast
244
10.9
Nuclear export receptors move
export-competent mRNPs through
the nuclear pore
246
10.10
The logic of
m
RNA
export
247
10.11
Hijacking of the mRNA export machinery:
the constitutive transport element sequence
directs the nuclear export of unspliced
transcripts from the MPMV virus
247
10.12
Movement of mRNP through the nuclear
pore
248
11
Nucleocytoplasmic traffic of non-coding
RNA
11.1
Compartment-specific transport
complexes
252
11.2
Nuclear transport of rRNA, tRNA,
snRNAs, and microRNAs is dependent
on the RAN GTPase protein
253
11.3
Different forms of RAN are found in
the nucleus and cytoplasm
253
11.4
Non-coding
RNA
nuclear export
complexes contain adaptors and
receptors
254
11.5
Nuclear export of ncRNA is dependent
on nuclear export adaptor and
receptor proteins
255
11.6
Karyopherins are an important group
of nuclear export receptors which
respond to positional information
provided by RAN
256
11.7
CRM1 is the nuclear export receptor
(karyopherin) for rRNAs and snRNAs
258
Π
.8
Different karyopherins act as export
receptors for tRNA and microRNAs
259
11.9
After releasing their loads in the cytoplasm
nuclear
RNA
export components are
moved back into the nucleus
259
Contents
11.10
Nuclear
transport
of
sn
RN
As
11.11
Mature snRNPs are re-imported into
the nucleus using the nuclear protein
import machinery
11.12
Mature U6 snRNP is made exclusively
in the nucleus
11.13
Retroviruses have hijacked the
RNA
export machinery to assist in the export
of partially processed mRNAs
12
Messenger RNA localization
12.1
The need for mRNA localization
12.2
The machinery of mRNA localization
12.3
Classical examples of mRNA localization
in development
12.4
Localization of mRNA in differentiated
somatic cells
12.5
Localization of mRNA in plants
Τ
3
Translation of messenger RNA
13.1
What is translation?
13.2
The structure of the ribosome
13.3
Deciphering the genetic code
13.4
Three key steps in translation
13.5
Regulation of mRNA translation
13.6
The masked messages
13.7
Manipulating translation
14
Stability and degradation of mRNA
14.1
Messenger RNAs have a half-life
14.2
Sites and mechanisms of mRNA
degradation
14.3
The process of
m
RNA
degradation
14.4
Extracellular stimuli influence the
stability of mRNA
14.5
Nonsense-mediated mRNA decay
14.6
Degradation of mRNA in bacteria and
plants
15
RNA
editing
15.1
Why edit
RNA?
15.2
A
->
I editing takes place by modification
of adenosine through removal of an
amino
group
15.3
A
->
I editing affects
RNA
hydrogen
bonding between bases since
inosine
forms stable base pairs with cytosine
15.4
A
—>
I editing was discovered because
it destabilized dsRNAs
261
263
265
266
270
272
274
277
281
285
285
287
290
292
299
302
307
308
309
314
316
319
322
323
15.5
Alu
elements are the main targets of
A
->
I editing in humans
327
15.6
Selective A
->·
I RNA editing by ADAR
enzymes modifies mRNAs that contain
short regions of dsRNA
329
15.7
The four known biological functions of
A
->
I mRNA editing in the cell
329
15.8
ADAR proteins are essential for normal
nervous system development, but also
play roles elsewhere in the body
334
15.9
A
->
I editing plays an important role
in the function of tRNAs
335
15.10
С
-»
U
RNA
editing takes place through
base deamination (removal of an
amino
group from cytidine)
336
15.11
С
-»
U
RNA
editing makes two different
forms of the
АРОВ
mRNA in different
tissues, and was the first RNA editing
reaction to be discovered in animals
336
15.12
An RNA editing complex containing the
cytosine deaminase ApoBeci binds and
ed
its
АРОВ
mRNA
337
15.13
ApoBec proteins play an important role
in innate immunity to retroviruses like
HIV
and
in generating an antibody
response
339
15.14
Trypanosome mitochondrial RNA is
edited by base insertions and deletions
to create ORFs from frameshifted
transcripts
342
15.15
RNA editing was discovered in
trypanosomes by sequencing cDNAs
encoded by mitochondrial genes
343
15.16
Short RNAs called guide RNAs target
trypanosome mitochondrial RNA
editing
345
15.17
Guide RNAs are used as a template for
RNA editing through uridine insertions
and deletions
346
15.18
Trypanosome mitochondrial RNA
editing requires nuclear-encoded
proteins which might be useful
therapeutic targets
346
1
б
The biogenesis of non-coding RNAs
16.1
The snoRNAs and scaRNAs: multiple
roles in RNA biogenesis
352
325 16.2
Structure and function of the nucleolus
358
16.3
Processing of tRNA and of mitochondrial
326
transcripts
361
17
The mega
RNAs :
long non-coding RNAs with
important roles in epigenetic regulation of gene
expression
17.1
Introduction to epigenetic regulatory
ncRNAs
366
17.2
Transcriptionally active and inactive
DNA
is created by tagging chromatin
with simple chemical groups
368
17.3
Long ncRNAs help epigenetically
programme important developmental
control genes
374
17.4
A difference in size of the sex
chromosomes means there is a
requirement for dosage compensation
377
17.5
Dosage compensation in female
mammals uses non-coding RNAs to
inactivate one female X chromosome
377
17.6
Dosage compensation ¡n fruit flies uses
a dosage compensation complex including
a long ncRNA to up-regulate expression
from a single male X chromosome
381
17.7
Similarities and differences between
mechanisms of dosage compensation
in fruit flies and mammals
382
Contents
17.8
Genetic imprinting controls gene
expression depending on the parent of
origin of the gene or chromosome
384
17.9
Parentally imprinted gene clusters often
include long ncRNAs
385
17.10
The ncRNA AIR epigenetically represses
IGF2R gene expression by directing
epigenetic chromatin modification
385
17.11
Transcription of HI
9
ncRNA acts as a
decoy for transcription of the /GF2 gene
387
18
The short non-coding RNAs and gene silencing
18.1
Key concepts and common pathways
391
18.2
Discovery and mechanism of
RNA
interference
394
18.3
The uses of
RNA
interference
398
18.4
Discovery, biogenesis, and
developmental roles of microRNAs
403
18.5
Transcriptional silencing by non-coding
RNAs in the centromere
408
18.6
RNA-induced transcriptional silencing
of
transposons
411
Glossary
421
|
any_adam_object | 1 |
author | Elliott, David 1965- Ladomery, Michael |
author_GND | (DE-588)1076802869 (DE-588)1082788074 |
author_facet | Elliott, David 1965- Ladomery, Michael |
author_role | aut aut |
author_sort | Elliott, David 1965- |
author_variant | d e de m l ml |
building | Verbundindex |
bvnumber | BV035837361 |
classification_rvk | WD 5355 |
ctrlnum | (OCoLC)456181272 (DE-599)BVBBV035837361 |
dewey-full | 572.88 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.88 |
dewey-search | 572.88 |
dewey-sort | 3572.88 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01865nam a2200469 c 4500</leader><controlfield tag="001">BV035837361</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210406 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091120s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199288373</subfield><subfield code="9">978-0-19-928837-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)456181272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035837361</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.88</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5355</subfield><subfield code="0">(DE-625)148201:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elliott, David</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1076802869</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular biology of RNA</subfield><subfield code="c">David Elliott ; Michael Ladomery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 441 S.</subfield><subfield code="b">Ill., zahlr. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekulargenetik</subfield><subfield code="0">(DE-588)4039987-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">RNS</subfield><subfield code="0">(DE-588)4076759-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">RNS</subfield><subfield code="0">(DE-588)4076759-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">RNS</subfield><subfield code="0">(DE-588)4076759-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Molekulargenetik</subfield><subfield code="0">(DE-588)4039987-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ladomery, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082788074</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018695756&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018695756</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV035837361 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:05:47Z |
institution | BVB |
isbn | 9780199288373 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018695756 |
oclc_num | 456181272 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-703 DE-19 DE-BY-UBM DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-703 DE-19 DE-BY-UBM DE-29T |
physical | IX, 441 S. Ill., zahlr. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Elliott, David 1965- Verfasser (DE-588)1076802869 aut Molecular biology of RNA David Elliott ; Michael Ladomery Oxford [u.a.] Oxford Univ. Press 2011 IX, 441 S. Ill., zahlr. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Molecular biology RNA Molekulargenetik (DE-588)4039987-4 gnd rswk-swf Molekularbiologie (DE-588)4039983-7 gnd rswk-swf RNS (DE-588)4076759-0 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content RNS (DE-588)4076759-0 s Molekularbiologie (DE-588)4039983-7 s DE-604 Molekulargenetik (DE-588)4039987-4 s b DE-604 Ladomery, Michael Verfasser (DE-588)1082788074 aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018695756&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Elliott, David 1965- Ladomery, Michael Molecular biology of RNA Molecular biology RNA Molekulargenetik (DE-588)4039987-4 gnd Molekularbiologie (DE-588)4039983-7 gnd RNS (DE-588)4076759-0 gnd |
subject_GND | (DE-588)4039987-4 (DE-588)4039983-7 (DE-588)4076759-0 (DE-588)4123623-3 |
title | Molecular biology of RNA |
title_auth | Molecular biology of RNA |
title_exact_search | Molecular biology of RNA |
title_full | Molecular biology of RNA David Elliott ; Michael Ladomery |
title_fullStr | Molecular biology of RNA David Elliott ; Michael Ladomery |
title_full_unstemmed | Molecular biology of RNA David Elliott ; Michael Ladomery |
title_short | Molecular biology of RNA |
title_sort | molecular biology of rna |
topic | Molecular biology RNA Molekulargenetik (DE-588)4039987-4 gnd Molekularbiologie (DE-588)4039983-7 gnd RNS (DE-588)4076759-0 gnd |
topic_facet | Molecular biology RNA Molekulargenetik Molekularbiologie RNS Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018695756&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT elliottdavid molecularbiologyofrna AT ladomerymichael molecularbiologyofrna |