Natural based polymers for biomedical applications:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press [u.a.]
2008
|
Schriftenreihe: | Woodhead publishing in materials
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXV, 802 S. Ill., graph. Darst. |
ISBN: | 9781420076073 9781845692643 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035813706 | ||
003 | DE-604 | ||
005 | 20120321 | ||
007 | t | ||
008 | 091106s2008 ad|| |||| 00||| eng d | ||
020 | |a 9781420076073 |9 978-1-4200-7607-3 | ||
020 | |a 9781845692643 |9 978-1-84569-264-3 | ||
035 | |a (OCoLC)278229136 | ||
035 | |a (DE-599)BVBBV035813706 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-29T |a DE-703 | ||
082 | 0 | |a 610.28 |b N178 |2 21 | |
084 | |a UV 9500 |0 (DE-625)146930: |2 rvk | ||
084 | |a ZM 5300 |0 (DE-625)157065: |2 rvk | ||
084 | |a ZM 7070 |0 (DE-625)157109: |2 rvk | ||
245 | 1 | 0 | |a Natural based polymers for biomedical applications |c ed.-in-chief: Rui L. Reis |
246 | 1 | 3 | |a Natural-based polymers for biomedical applications |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press [u.a.] |c 2008 | |
300 | |a XXV, 802 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Woodhead publishing in materials | |
650 | 4 | |a Polymers | |
650 | 4 | |a Biocompatible Materials | |
650 | 4 | |a Biomimetic Materials | |
650 | 4 | |a Tissue Engineering | |
650 | 4 | |a Biomedical materials | |
650 | 4 | |a Polymers in medicine | |
650 | 4 | |a Polymers / Biodegradation | |
650 | 0 | 7 | |a Polymere |0 (DE-588)4046699-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biomaterial |0 (DE-588)4267769-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polymere |0 (DE-588)4046699-1 |D s |
689 | 0 | 1 | |a Biomaterial |0 (DE-588)4267769-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Reis, Rui L. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-84569-481-4 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018672580&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018672580 |
Datensatz im Suchindex
_version_ | 1804140766420795392 |
---|---|
adam_text | Titel: Natural based polymers for biomedical applications
Autor: Reis, Rui L.
Jahr: 2008
Contents
Contributor contact details xvii
Preface xxiii
Part I Sources, properties, modification and processing
of natural-based polymers
1 Polysaccharides as carriers of bioactive agents for
medical applications 3
R. Pawar, W. Jadhav, S. Bhosare and R. Borade, Dnyanopasak
College, India, S. Farber, D. Itzkowitz and A. Domb, The Hebrew
University, Jerusalem, Israel
1.1 Introduction 3
1.2 Starch 6
1.3 Cellulose 7
1.4 Heparinoid (sulfated polysaccharides) 8
1.5 Dextran 10
1.6 Pectin 12
1.7 Arabinogalactan 13
1.8 Drug conjugated polysaccharides 15
1.9 Polysaccharide dextrans 19
1.10 Mannan 22
1.11 Pullulan 23
1.12 Polysaccharide macromolecule-protein conjugates 24
1.13 Cationic polysaccharides for gene delivery 25
1.14 Diethylaminoethyl-dextran 26
1.15 Polysaccharide-oligoamine based conjugates 27
1.16 Chitosan 27
1.17 Applications of polysaccharides as drug carriers 31
1.18 Applications of dextran conjugates 33
1.19 Site-specific drug delivery 38
vi Contents
1.20 Pectin drug site-specific delivery 38
1.21 Liposomal drug delivery 40
1.22 References 45
2 Purification of naturally occurring biomaterials 54
M. N. Gupta, Indian Institute of Technology Delhi, India
2.1 Introduction 54
2.2 Classes of naturally occurring biomaterials 55
2.3 Downstream processing of small molecular weight natural
products 57
2.4 Purification strategies for proteins 60
2.5 Purification of lipids 67
2.6 Purification of polysaccharides 71
2.7 Purification of nucleic acids 72
2.8 Purification of complex biomaterials 75
2.9 Future trends 76
2.10 Acknowledgement 77
2.11 Sources of further information 77
2.12 References 78
3 Processing of starch-based blends for biomedical
applications 85
R. A. Sousa, V. M. CorRelo, S. Chung, N. M. Neves, J. F. Mano
and R. L. Reis, 3B s Research Group, University of Minho, Portugal
3.1 Introduction 85
3.2 Starch 85
3.3 Starch-based blends 88
3.4 Conclusions 98
3.5 References 99
4 Controlling the degradation of natural polymers for
biomedical applications 106
H. S. Azevedo, T. C. Santos and R. L. Reis, 3B s Research Group,
University of Minho, Portugal
4.1 Introduction 106
4.2 The importance of biodegradability of natural polymers
in biomedical applications 106
4.3 Degradation mechanisms of natural polymers and
metabolic pathways for their disposal in the body 107
4.4 Assessing the in vitro and in vivo biodegradability of
natural polymers HI
4.5 Controlling the degradation rate of natural polymers 120
Contents vii
4.6 Concluding remarks 124
4.7 Acknowledgements 125
4.8 References 125
5 Smart systems based on polysaccharides 129
M. N. Gupta and S. Raghava, Indian Institute of Technology Delhi,
India
5.1 What are smart materials? 129
5.2 Chitin and chitosan 131
5.3 Alginates 136
5.4 Carrageenans 140
5.5 Other miscellaneous smart polysaccharides and their
applications 145
5.6 Polysaccharide-based composite materials 146
5.7 Future trends 149
5.8 Acknowledgement 152
5.9 Sources of further information 152
5.10 References 154
Part II Surface modification and biomimetic coatings
6 Surface modification for natural-based biomedical
polymers 165
I. Pashkuleva, P. M. L6pez-Perez and R. L. Reis, 3B s Research
Group, University of Minho, Portugal
6.1 Introduction 165
6.2 Some terms and classifications 165
6.3 Wet chemistry in surface modification 167
6.4 Physical methods for surface alterations 171
6.5 Grafting 177
6.6 Bio-approaches: Mimicking the cell-cell interactions 179
6.7 Future trends 186
6.8 Acknowledgements 186
6.9 References 186
7 New biomineralization strategies for the use of
natural-based polymeric materials in bone-tissue
engineering 193
I. B. Leonor, S. Gomes, P. C. Bessa, J. F. Mano, R. L. Reis,
3B s Research Group, University of Minho, Portugal and M. Casal,
CBMA - Molecular and Environmental Biology Center, University
of Minho, Portugal
7.1 Introduction 193
viii Contents
7.2 The structure, development and mineralization of bone 194
7.3 Bone morphogenetic proteins in tissue engineering 201
7.4 Bio-inspired calcium-phosphate mineralization from solution 206
7.5 General remarks and future trends 216
7.6 Acknowledgments 217
7.7 References 217
8 Natural-based multilayer films for biomedical
applications 231
C. Picart, Universite Montpellier, France
8.1 Introduction 231
8.2 Physico-chemical properties 234
8.3 Different types of natural-based multilayer films for
different applications 240
8.4 Bioactivity, cell adhesion, and biodegradability properties 244
8.5 Modulation of film mechanical properties 248
8.6 Future trends 250
8.7 Sources of further information and advice 251
8.8 References 252
9 Peptide modification of polysaccharide scaffolds for
targeted cell signaling 260
S. Levesque, R. Wylib, Y. Aizawa and M. Shoichet, University of
Toronto, Canada
9.1 Introduction 260
9.2 Polysaccharide scaffolds in tissue engineering 265
9.3 Peptide immobilization 267
9.4 Measurement 272
9.5 Challenges associated with peptide immobilization 274
9.6 Tissue engineering approaches targeting cell signaling 275
9.7 References 277
Part III Biodegradable scaffolds for tissue regeneration
10 Scaffolds based on hyaluronan derivatives in
biomedical applications 291
E. Tognana, Fidia Advanced Biopolymers s.r.l., Italy
10.1 Introduction 291
10.2 Hyaluronan 291
10.3 Hyaluronan-based scaffolds for biomedical applications 293
10.4 Clinical applications 298
Contents ix
10.5 Future trends 308
10.6 Sources of further information and advice 309
10.7 References 310
11 Electrospun elastin and collagen nanofibers and their
application as biomaterials 315
R- Sallach and E. Chaikof, Emory University/Georgia Institute of
Technology, USA
11.1 Introduction 315
11.2 Electrospinning as a biomedical fabrication technology 316
11.3 Generation of nanofibers with controlled structures and
morphology 317
11.4 Generation of collagen and elastin small-diameter fibers
and fiber networks 318
11.5 Biological role of elastin 321
11.6 Generation of crosslinked fibers and fiber networks 328
11.7 MulticompoOent electrospun assemblies 329
11.8 Future trends 331
11.9 References 332
12 Starch-polycaprolactone based scaffolds in bone and
cartilage tissue engineering approaches 337
Nl- E. Gomes, J. T. Oliveira, M. T. Rodrigues, M. I. Santos,
IC- TuzlakoqlU. C. A. Viegas, I. R. Dias and R. L. Reis, 3B s
Research Group. University of Minho, Portugal
12.1 Introduction 337
12.2 Starch+ e-polycaprolactone (SPCL) fiber meshes 338
12.3 SPCL-based scaffold architecture, stem cell proliferation
and differentiation 339
12.4 In vivo functionality of SPCL fiber-mesh scaffolds 341
12.5 Cartilage tissue engineering using SPCL fiber-mesh
scaffolds 342
12.6 Advanced approaches using SPCL scaffolds for bone
tissue engineering aiming at improved vascularization 346
12.7 Conclusions 350
12.8 Acknowledgments 351
12.9 References 351
13 Chitosan-based scaffolds in orthopedic applications 357
%¦¦ TuzlakcxjlU and R. L. Reis, 3B s Research Group, University of
frfinho, Portugal
13.1 Introduction: Chemical and physical structure of chitosan
and its derivatives 357
x Contents
13.2 Production methods for scaffolds based on chitosan and
its composites or blends 358
13.3 Orthopedic applications 365
13.4 Conclusions and future trends 369
13.5 Acknowledgements 369
13.6 References 369
14 Elastin-like systems for tissue engineering 374
J. Rodriguez-Cabello, A. Ribeiro, I. Reguera, A. Girotti and
A. Testera, Universidad de Valladolid, Spain
14.1 Introduction 374
14.2 Genetic engineering of protein-based polymers 375
14.3 Genetic strategies for synthesis of protein-based
polymers 376
14.4 State-of-the-art in genetically-engineered protein-based
polymers (GEBPs) 377
14.5 Elastin-like polymers 377
14.6 Self-assembly behaviour of peptides and proteins 379
14.7 Self-assembly of elastin-like polymers (ELPs) 379
14.8 Biocompatibility of ELPs 3 81
14.9 Biomedical applications 382
14.10 ELPs for drug delivery 382
14.11 Tissue engineering 383
14.12 Self-assembling properties of ELPs for tissue
engineering 388
14.13 Processability of ELPs for tissue engineering 388
14.14 Future trends 389
14.15 References 391
15 Collagen-based scaffolds for tissue engineering 396
G. Chen, N. Kawazoe and T. Tateishi, National Institute for
Materials Science, Japan
15.1 Introduction 3%
15.2 Structure and properties of collagen 396
15.3 Collagen sponge 397
15.4 Collagen gel 400
15.5 Collagen-glycosoaminoglycan (GAG) scaffolds 402
15.6 Acellularized scaffolds 404
15.7 Hybrid scaffolds 405
15.8 Future trends 409
15.9 References 409
Contents xi
16 Polyhydroxyalkanoate and its potential for
biomedical applications 416
P. Furrer and M. Zinn, Swiss Federal Laboratories for Materials
Testing and Research (Empa), Switzerland, and S. Panke, Swiss
Federal Institute of Technology (ETH), Switzerland
16.1 Introduction 416
16.2 Biosynthesis 417
16.3 Chemical digestion of non-PHA biomass 425
16.4 Purification of PHA 431
16.5 Potential applications of PHA in medicine and pharmacy 434
16.6 Conclusions and future trends 437
16.7 References 437
17 Electrospinning of natural proteins for tissue
engineering scaffolding 446
P. I. Lelkes, M. Li, A. Perets, L. Lin, J. Han and D. Woerdeman,
Drexel University, USA
17.1 Introduction 446
17.2 The electrospinning process 448
17.3 Electrospinning natural animal polymers 455
17.4 Electrospinning blends of synthetic and natural polymers 460
17.5 Electrospinning novel natural green plant polymers for
tissue engineering 466
17.6 Cellular responses to electrospun scaffolds: Does fiber
diameter matter? 474
17.7 Conclusions and future trends 474
17.8 Sources of further information and advice 475
17.9 References 476
Part IV Naturally-derived hydrogels: Fundamentals,
challenges and applications in tissue engineering
and regenerative medicine
18 Hydrogels from polysaccharide-based materials:
Fundamentals and applications in regenerative
medicine 485
J. T. Oliveira and R. L. Reis, 3B s Research Group, University of
Minho, Portugal
18.1 Introduction: Definitions and properties of hydrogels 485
18.2 Applications of hydrogels produced from different
polysaccharides in tissue engineering and regenerative
medicine 487
xii Contents
18.3 Agarose 488
18.4 Alginate 489
18.5 Carrageenan 491
18.6 Cellulose 492
18.7 Chitin/chitosan 493
18.8 Chondroitin sulfate 495
18.9 Dextran 496
18.10 Gellan 497
18.11 Hyaluronic acid 498
18.12 Starch 500
18.13 Xanthan 501
18.14 Conclusion 502
18.15 References 503
19 Alginate hydrogels as matrices for tissue
engineering 515
H. Park and K.-Y. Lee, Hanyang University, South Korea
19.1 Introduction 515
19.2 Properties of alginate 516
19.3 Methods of gelling 520
19.4 Applications of alginate hydrogels in tissue engineering 523
19.5 Summary and future trends 528
19.6 References 528
20 Fibrin matrices in tissue engineering 533
B. Tawil, H. Duong and B. Wu, University of California
Los Angeles, USA
20.1 Introduction 533
20.2 Fibrin formation 534
20.3 Fibrin use in surgery 535
20.4 Fibrin matrices to deliver bioactive molecules 535
20.5 Fibrin - cell constructs 536
20.6 Mechanical characteristics of fibrin scaffold 540
20.7 Future trends 541
20.8 Conclusions 542
20.9 References 543
21 Natural-based polymers for encapsulation of living
cells: Fundamentals, applications and challenges 549
P. De Vos, University Hospital of Groningen, The Netherlands
21.1 Introduction 549
Contents xiii
21.2 Approaches of encapsulation: Materials and
biocompatibility issues 550
21.3 Physico-chemistry of microcapsules and biocompatibility 556
21.4 Immunological considerations 559
21.5 Conclusions and future trends 561
21.6 Sources of further information and advice 563
21.7 References 564
22 Hydrogels for spinal cord injury regeneration 570
A. J. Salgado and N. Sousa, Life and Health Sciences Research
Institute (ICVS), University of Minho, Portugal, and N. A. Silva,
N. M. Neves and R. L. Reis, 3B s Research Group, University of
Minho, Portugal
22.1 Introduction 570
22.2 Brief insights on central nervous system biology 571
22.3 Current approaches for SCI repair 576
22.4 Hydrogel-based systems in SCI regenerative medicine 578
22.5 Conclusions and future trends 587
22.6 Acknowledgements 588
22.7 References 588
Part V Systems for the sustained release of molecules
23 Particles for controlled drug delivery 597
E. T. Baran and R. L. Reis, 3B s Research Group, University of
Minho, Portugal
23.1 Introduction 597
23.2 Novel particle processing methods 597
23.3 Hiding particles: The stealth principle 602
23.4 Finding the target 604
23.5 Delivery of bioactive agents at the target site and novel
deliveries 608
23.6 Viral delivery systems 611
23.7 Conclusions 612
23.8 Acknowledgements 613
23.9 References 613
24 Thiolated chitosans in non-invasive drug delivery 624
A. Bernkop-Schnurch, Leopold-Franzens University, Austria
24.1 Introduction 624
24.2 Thiolated chitosans 625
xiv Contents
24.3 Properties of thiolated chitosans 625
24.4 Drug delivery systems 633
24.5 In vivo performance 634
24.6 Conclusion 638
24.7 References 639
25 Chitosan-polysaccharide blended nanoparticles for
controlled drug delivery 644
J. M. Alonso and F. M. Goycoolea, Universidad de Santiago de
Compostela, Spain, and I. Higuera-Ciapara, Centro de
Investigation en Alimentation y Desarrollo, Mexico
25.1 Introduction 644
25.2 Polysaccharides in nanoparticle formation 645
25.3 Nanoparticles constituted by chitosan 651
25.4 Drug delivery properties and biopharmaceutical applications 654
25.5 Hybrid nanoparticles consisting of chitosan and other
polysaccharides 656
25.6 Future trends 668
25.7 Sources of further information and advice 668
25.8 Acknowledgements 671
25.9 References 671
Part VI Biocompatibility of natural-based polymers
26 In vivo tissue responses to natural-origin biomaterials 683
T. C. Santos, A. P. Marques and R. L. Reis, 3B s Research Group,
University of Minho, Portugal
26.1 Introduction 683
26.2 Inflammation and foreign-body reactions to biomaterials 684
26.3 Role of host tissues in biomaterials implantation 686
26.4 Assessing the in vivo tissue responses to natural-origin
biomaterials 690
26.5 Controlling the in vivo tissue reactions to natural-origin
biomaterials 693
26.6 Final remarks 695
26.7 Acknowledgements 695
26.8 References 695
27 Immunological issues in tissue engineering 699
N. Rotter, Ulm University, Germany
27.1 Introduction 699
Contents xv
27.2 Immune reactions to biomaterials 699
27.3 Host reactions related to the implant site 701
27.4 Immune reactions to different types of cells 701
27.5 Immune reactions to in vitro engineered tissues 704
27.6 Immune protection of engineered constructs 705
27.7 Strategies directed towards reactions to biomaterials 706
27.8 Strategies directed towards reactions to implanted cells 707
27.9 Future trends 709
27.10 References 710
28 Biocompatibility of hyaluronic acid: From cell
recognition to therapeutic applications 716
K. Ghosh, Children s Hospital and Harvard Medical School, USA
28.1 Introduction 716
28.2 Native hyaluronan 717
28.3 Therapeutic implications of native hyaluronan 721
28.4 Engineered hyaluronan 722
28.5 Implications for regenerative medicine 727
28.6 Conclusion 728
28.7 Future trends 728
28.8 References 728
29 Biocompatibility of starch-based polymers 738
A. P. Marques, R. P. Pirraco and R. L. Reis, 3B s Research Group,
University of Minho, Portugal
29.1 Introduction 738
29.2 Starch-based polymers in the biomedical field 740
29.3 Cytocompatibility of starch-based polymers 745
29.4 Immunocompatibility of starch-based polymers 748
29.5 Conclusions 752
29.6 Acknowledgements 753
29.7 References 753
30 Vascularization strategies in tissue engineering 761
M. I. Santos, and R. L. Reis, 3B s Research Group, University
of Minho, Portugal
30.1 Introduction 761
30.2 Biology of vascular networks - angiogenesis versus
vasculogenesis 761
30.3 Vascularization: The hurdle of tissue engineering 762
30.4 Neovascularization of engineered bone 763
xvi Contents
30.5 Strategies to enhance vascularization in engineered
grafts 765
30.6 In vivo models to evaluate angiogenesis in tissue
engineered products 774
30.7 Future prospects 776
30.8 Sources of further information and advice 776
30.9 References 776
Index 781
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV035813706 |
classification_rvk | UV 9500 ZM 5300 ZM 7070 |
ctrlnum | (OCoLC)278229136 (DE-599)BVBBV035813706 |
dewey-full | 610.28 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610.28 |
dewey-search | 610.28 |
dewey-sort | 3610.28 |
dewey-tens | 610 - Medicine and health |
discipline | Physik Werkstoffwissenschaften / Fertigungstechnik Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01913nam a2200505 c 4500</leader><controlfield tag="001">BV035813706</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120321 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091106s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420076073</subfield><subfield code="9">978-1-4200-7607-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781845692643</subfield><subfield code="9">978-1-84569-264-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)278229136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035813706</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610.28</subfield><subfield code="b">N178</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UV 9500</subfield><subfield code="0">(DE-625)146930:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 5300</subfield><subfield code="0">(DE-625)157065:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 7070</subfield><subfield code="0">(DE-625)157109:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural based polymers for biomedical applications</subfield><subfield code="c">ed.-in-chief: Rui L. Reis</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Natural-based polymers for biomedical applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press [u.a.]</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 802 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Woodhead publishing in materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biocompatible Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomimetic Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tissue Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers in medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers / Biodegradation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomaterial</subfield><subfield code="0">(DE-588)4267769-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polymere</subfield><subfield code="0">(DE-588)4046699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biomaterial</subfield><subfield code="0">(DE-588)4267769-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reis, Rui L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-84569-481-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018672580&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018672580</subfield></datafield></record></collection> |
id | DE-604.BV035813706 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:05:12Z |
institution | BVB |
isbn | 9781420076073 9781845692643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018672580 |
oclc_num | 278229136 |
open_access_boolean | |
owner | DE-83 DE-29T DE-703 |
owner_facet | DE-83 DE-29T DE-703 |
physical | XXV, 802 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | CRC Press [u.a.] |
record_format | marc |
series2 | Woodhead publishing in materials |
spelling | Natural based polymers for biomedical applications ed.-in-chief: Rui L. Reis Natural-based polymers for biomedical applications Boca Raton [u.a.] CRC Press [u.a.] 2008 XXV, 802 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Woodhead publishing in materials Polymers Biocompatible Materials Biomimetic Materials Tissue Engineering Biomedical materials Polymers in medicine Polymers / Biodegradation Polymere (DE-588)4046699-1 gnd rswk-swf Biomaterial (DE-588)4267769-5 gnd rswk-swf Polymere (DE-588)4046699-1 s Biomaterial (DE-588)4267769-5 s DE-604 Reis, Rui L. Sonstige oth Erscheint auch als Online-Ausgabe 978-1-84569-481-4 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018672580&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Natural based polymers for biomedical applications Polymers Biocompatible Materials Biomimetic Materials Tissue Engineering Biomedical materials Polymers in medicine Polymers / Biodegradation Polymere (DE-588)4046699-1 gnd Biomaterial (DE-588)4267769-5 gnd |
subject_GND | (DE-588)4046699-1 (DE-588)4267769-5 |
title | Natural based polymers for biomedical applications |
title_alt | Natural-based polymers for biomedical applications |
title_auth | Natural based polymers for biomedical applications |
title_exact_search | Natural based polymers for biomedical applications |
title_full | Natural based polymers for biomedical applications ed.-in-chief: Rui L. Reis |
title_fullStr | Natural based polymers for biomedical applications ed.-in-chief: Rui L. Reis |
title_full_unstemmed | Natural based polymers for biomedical applications ed.-in-chief: Rui L. Reis |
title_short | Natural based polymers for biomedical applications |
title_sort | natural based polymers for biomedical applications |
topic | Polymers Biocompatible Materials Biomimetic Materials Tissue Engineering Biomedical materials Polymers in medicine Polymers / Biodegradation Polymere (DE-588)4046699-1 gnd Biomaterial (DE-588)4267769-5 gnd |
topic_facet | Polymers Biocompatible Materials Biomimetic Materials Tissue Engineering Biomedical materials Polymers in medicine Polymers / Biodegradation Polymere Biomaterial |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018672580&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT reisruil naturalbasedpolymersforbiomedicalapplications |