Elements of automata theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German English French |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2009
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Aus d. Franz. übers. - Orig. ersch. 2003 |
Beschreibung: | XXIV, 758 S. graph. Darst. |
ISBN: | 9780521844253 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035810370 | ||
003 | DE-604 | ||
005 | 20121108 | ||
007 | t | ||
008 | 091105s2009 d||| |||| 00||| ger d | ||
020 | |a 9780521844253 |9 978-0-521-84425-3 | ||
035 | |a (OCoLC)148830849 | ||
035 | |a (DE-599)BVBBV035810370 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 1 | |a ger |a eng |h fre | |
049 | |a DE-355 |a DE-384 |a DE-11 |a DE-19 |a DE-473 |a DE-703 |a DE-706 |a DE-29T | ||
050 | 0 | |a QA267 | |
082 | 0 | |a 512 | |
084 | |a ST 136 |0 (DE-625)143591: |2 rvk | ||
100 | 1 | |a Sakarovitch, Jacques |d 1947- |e Verfasser |0 (DE-588)129256285 |4 aut | |
240 | 1 | 0 | |a Éléments de théorie des automates |
245 | 1 | 0 | |a Elements of automata theory |c Jacques Sakarovitch |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2009 | |
300 | |a XXIV, 758 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Aus d. Franz. übers. - Orig. ersch. 2003 | ||
650 | 4 | |a Automata math | |
650 | 4 | |a Automata theory | |
650 | 4 | |a Formal language | |
650 | 4 | |a Machine theory | |
650 | 0 | 7 | |a Automatentheorie |0 (DE-588)4003953-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Automatentheorie |0 (DE-588)4003953-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018669307&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018669307 |
Datensatz im Suchindex
_version_ | 1804140761471516672 |
---|---|
adam_text | TABLE
OF
CONTENTS
Preface to the English edition
xv
Preface
xvii
M. Pascal s division machine
1
0
Fundamental structures
7
1
Relations
...................................... 9
2
Monoids
....................................... 14
3
Words and languages
................................ 18
4
Free monoids
.................................... 24
5
Semirings
...................................... 27
6
Matrices
....................................... 30
7
Lexicon of graph theory
.............................. 33
8
Complexity and decidability
............................ 34
Solutions to the exercises
............................... 39
Notes
&
references
................................... 46
The three stages of rationality
1 The simplest possible machine.
.. 49
1
What is an automaton ?
............................. 51
1.1
First definitions
-
first examples
..................... 51
States, transitions, etc.
-
Computations, recognised languages etc.
-
Transposition and left-right duality
1.2
Basic constructions, basic properties
................... 60
Union
-
Cartesian product
-
Quotient (of a language)
1.3
The graph perspective
........................... 66
Trim automata ~ The empty and the
inñnite
-
Criteria for recognisabil-
ty
1.4
Some supplementary definitions
...................... 74
Unambiguous automata
-
Complete automata
-
Deterministic au¬
tomata
-
Automata with spontaneous transitions
2
Rational languages
................................. 82
2.1
Rational operations
............................ 82
Product of languages
-
Star of a language
-
national operations
2.2
Rational languages
............................. 86
vii
TABLE
OF
CONTENTS
2.3
Rational is recognisable
.......................... 87
Normalised automata
-
Closure under product and star
-
Standard
automata
2.4
Recognisable is rational
.......................... 94
The McNaughton-Yamada algorithm, or algorithm MNY- The state
elimination method
—
Solving equations
The functional perspective
............................. 101
3.1
Prom transitions to the transition function
............... 102
3.2
Deterministic automata
.......................... 104
Reformulation of the definition
-
Determinisation
-
The case of one-
ietter alphabets
-
Complement of recognisable languages
3.3
Minimisation
................................
Ill
The automaton of quotients of a language.
..- ..
-is minimal
-
Compu¬
tation of the minimal automaton
-
Another minimisation method
3.4
Return to the Star Lemma
........................ 118
Block iteration and block
simpliñcation
-
Ramsey s Theorem Proof
of Theorem
3.3
Rational expressions
................................ 123
4.1
Rational expressions and languages
.................... 124
Rational expressions over an alphabet
—
Rational expressions over a set
of variables
4.2
Rational identities
............................. 128
Classical identities
-
A formal computation
4.3
Expressions for the behaviour of a finite automaton
.......... 133
The state elimination and equation solution methods
-
The
В
MC
and
MN
Y
algorithms,
identica]
orders
-
The
В
MC
and
MN
Y aigorithms,
distinct
orders
4.4
Derivation of
expressions
......................... 138
Derivatives of an expression
-
A theorem of J.
Brzozowski
—
Derivative
automaton
Prom expressions to automata
........................... 145
5.1
The standard automaton of an expression
................ 145
Direct construction ~ Thompson s construction
5.2
The derived term automaton
....................... 149
Derived terms
-
A theorem of V. Antimirov
5.3
String matching
.............................. 152
Automaton for
fínding
a word
-
Searching by sliding window
-
Imple¬
mentation with a default successor
Star height
..................................... 157
6.1
Two heights and a degree
......................... 158
Star height of an expression
-
Star height of a language
-
Loop com¬
plexity of an automaton
6.2
Eggan s Theorem
..............................
Ig2
From expressions to automata
-
From automata to expressions: calcu¬
lating the index- Not so fast
6.3
An infinite hierarchy
............................ 167
6.4
Generalised star height
........................... 170
A field of automata
................................. 171
TABLE
OF
CONTENTS
ix
7.1
The Rabin-Scott
model
.......................... 171
7.2
Two-way automaton
............................ 172
7.3
Moore and Mealy machines
........................ 174
8
A crop of properties
................................ 175
Solutions to the exercises
............................... 179
Notes
&
references
................................... 214
II The power of algebra
217
1
Automata and rational sets
............................ 219
1.1
Automata over a monoid
......................... 219
1.2
Rational sets
................................ 220
The semiring
9ß(M) -
Rational operations and subsets
-
Rational ex¬
pressions
-
Image under morphism
-
Intersection and inverse morphism
1.3
Behaviour of finite automata
....................... 225
1.4
Unambiguous rational sets
......................... 228
Definitions
-
The family URat
2
Actions and recognisable sets
........................... 231
2.1
Actions on a set
.............................. 232
Definition
-
Matrix representation of actions
—
Subsets recognised by
an action
2.2
Recognisable here, recognisable there
................... 238
Consistency
-
Kleene s Theorem
-
Automaton of an action
2.3
Elementary operations on recognisable subsets
............. 243
Boolean operations
-
Inverse morphism
-
Quotient
-
Morphism and
product
2.4
Minimisation
................................ 246
Action morphisms
-
Minimal action
-
Syntactic congruence and monoid
2.5
Algebra at work
.............................. 251
Two examples
-
Recognisable subsets included in a product
3
Morphisms and coverings
............................. 255
3.1
Automata morphisms
........................... 255
Definitions and examples
-
Conformai
morphisms
-
iocal properties
3.2
Quotients of automata
........................... 261
Out-surjective morphisms
-
Totally surjective morphisms
-
Moore s al¬
gorithm
3.3
Automata coverings
............................ 264
From
locai
to
globa]
-
Product of an automaton with an action
-
The
Coloured Transition Lemma
3.4
The Schiitzenberger covering
....................... 270
4
Universal automaton
................................ 273
TABLE
OF
CONTENTS
4.1
Factorisations
................................ 275
2-factorisations
-
Sub-factorisations and factorisations
-
Morphisms and
factorisations
4.2
Universal automata of a subset
...................... 279
Definitions and examples
-
Properties
-
Universal automaton relative
to a generating set
-
Universality of universal automata
4.3
Construction of the universal automaton
................. 286
Expansion of a deterministic automaton
-
Extraction of the universal
automaton
4.4
Language approximations
......................... 291
5
The importance of being well ordered
...................... 293
5.1
Well quasi-orderings
............................ 293
5.2
Derivations
................................. 297
Preparations
-
Proof of Theorem
5.4
6
Rationals in the free group
............................ 301
6.1
Recognisable and rational in groups
................... 301
Recognisable subsets Rational subgroiips
■
Fatou property
6.2
Description of the free group
....................... 305
Dyck congruence and Dyck words Shamir congruence and parenthetic
words
-
Shnplifícations
Reduction associated with
a simplifìcation
-
Unambiguous factorisation induced by a reduction
6.3
Rationals of the free group
........................ 314
Rationals of
simplifìcatìon
monoids Return to the free group
6.4
Buchi
systems
............................... 319
7
Rationals in conimutative monoids
........................ 323
7.1
The natural order on A®
......................... 323
The free commutative monoid
-
Dickson s Lemma
7.2
The lexicographic order on Nfc
...................... 326
Congruences of
ΝΛ
-
Lexicographic decomposition
7.3
Subtractive submonoids and
affine
sets
.................. 330
7.4
Semi-linear and semi-simple sets
..................... 333
7.5
Rationals of N*
............................... 335
The Freedom Lemma
-
Positive solutions of Diophantine linear systems
-
Semi-simple subsets of Z*
-
Proof of Theorems
7.3
and
7.4
7.6
Rationals of commutative monoids
.................... 341
8
Star height of group languages
.......................... 342
Solutions to the exercises
...............................
34g
N otes
&
references
................................... 372
III The
pertinente
of enumeration
375
1
Formal power series on a graded monoid
..................... 379
1.1
Formal power series over
M
with coefficients in
К
........... 379
Operations on K{{AI}) Support of a series
-
characteristic series
-
Hadamard
product
-
Scalar product
1.2
Graded monoids
.............................. 333
TABLE
OF
CONTENTS
xi
1.3
Topology
on
Kpi»
............................ 385
Distance Distance on K((M)} ~ Summable families
-
Continuous
шог-
phisms
2
K-automata and K-rational power series
..................... 392
2.1
Star of a power series
........................... 393
Star in a topological semiring
-
Star of a proper series
-
Star of an
arbitrary series
2.2
K-rational series
.............................. 398
K-rational operations
-
Rational ^-expressions
-
Star of a matrix
2.3
Weighted automaton in a semiring
.................... 402
K-automaton over
M
-
Behaviour of a K-automaton Notes Some
other
defìnitions
and examples
2.4
The Fundamental Theorem of finite automata
.............. 409
Proper automata
-
proper families of series Statement and proof
-
Notes and corollaries
2.5
K-coverings
-
K-quotients
......................... 416
From coverings to
ÌL-coverings
-
Matrix description
-
Co-WL-covering
-
Minimal IK-quotient
3
K-recognisable series
................................ 424
3.1
K-representations
.............................. 424
3.2
Products
.................................. 426
Tensor product of K-representations
Hadamard
product
-
Tensor
product of series
-
Shuffle product
3.3
The
Kleene-Schützenberger
Theorem
.................. 433
4
Series on a free monoid
.............................. 438
4.1
A characterisation of recognisable series
................. 438
Quotients of series
-
Stable modules
-
The Kleene-Schtitzenberger The¬
orem revisited
4.2
Derivation of rational K-expressions
................... 443
Polynomials of K-expressions
-
K-derivatives of a DC-expression
-
De¬
rived terms
-
The derived term automaton
4.3
Series on a field
............................... 451
Raníc
of a series
-
Reduced representation Linear recurrence
-
Effec¬
tive computations
4.4
Rational series and their supports
.................... 463
Rationality of supports
-
The Rational Skimming Theorem, I
-
Unde-
cidable questions
5
Series on an arbitrary monoid
........................... 470
5.1
Complete semirings, continuous semirings
................ 470
5.2
Star of a series
............................... 472
5.3
K-rational series
.............................. 474
6
Rational subsets in free products
......................... 476
6.1
Free product of monoids
.......................... 476
6.2
Bipartite automaton over a free product
................. 478
6.3
Bipartite deterministic automaton
.................... 482
6.4
Minimal deterministic bipartite automaton
............... 484
7
A non-commutative linear algebra primer
.................... 488
Solutions to the exercises
............................... 498
xii
TABLE
OF
CONTENTS
Notes
&
references...................................
519
Rationality in relations
IV The richness of transducers
523
1
Rational relations: an introduction
........................ 525
1.1
Rational relations
............................. 525
Rational relations between free monoids
-
Raţionai
relations between
arbitrary monoids
1.2
Realisation by automata
.......................... 529
1.3
Realisation by morphisms
......................... 531
Realisation
-
.Evaluation Theorem
-
Composition Theorem
-
Star
Lemma
1.4
Recognisable relations
........................... 539
1.5
Realisation by representation
....................... 540
Real-time transducers
-
From real-time transducers to representations
-
Theorem of evaluation and composition of representations
1.6
The Rabin -Scott model
.......................... 545
2
K-relations
..................................... 546
2.1
Definitions
................................. 548
The
canonical
isomorphism
-
^.-relations
-
Support of relations
-
char¬
acteristic relations Continuity
2.2
Composition
................................ 553
2.3
Multiplicative K-relations
......................... 555
3
Rational K-relations
................................ 557
3.1
Reasonable semirings
............................ 558
Image of series under continuous morphisms
-
Image of seres under
projections
-
^-intersections
3.2
Realisation of rational K-relations
.................... 561
Realisation by Wi-automaton
-
Realisation by K-representation
-
Real¬
isation by morphisms
3.3
Evaluation and Composition Theorems
................. 564
Using recognition by morphisms
-
Using recognition by representation
4
Equivalence of finite K-transducers
........................ 568
4.1
Equivalence of B-transducers, general case
................ 569
4.2
Equivalence of B-transducers. case of small alphabets
......... 571
4.3
Equivalence of N-transducers
....................... 574
5
Deterministic rational relations
.......................... 577
5.1
Transducers with an
endmarker
...................... 577
5.2
Deterministic transducers
......................... 578
.
Defínition
Uniqueness of computations
-
Almost an action
5.3
Deterministic relations
........................... 584
Deñnitions
-
Complement ~ Iteration Lemma
5.4
Geography of Rat
Л хй І
........................ 588
TABLE
OF
CONTENTS
xiii
5.5
Matrix
representations...........................
590
Representation of a deterministic transducer
-
Representation of a de¬
terministic relation
5.6
An example: the map equivalence of a morphism
............ 592
6
Synchronisation of transducers
.......................... 595
6.1
Rational relations of bounded length discrepancy
............ 596
Definitions, notation and conventions
-
Characterisation of rational bid-
relations
-
Translation into automata theoretic terms, and corollaries
6.2
Transducers of bounded lag
........................ 602
Lag in a computation or transducer
-
Resynchronisation
algorithm for
transducers
-
Composition of ¡etter-to-letter transducers
6.3
Synchronous relations
........................... 609
Another family of rational relations
-
Determinisation and minimisation
-
Geography of Rat A xB* II
7
Malcev-Neumann series
.............................. 616
7.1
Order on the free group
.......................... 617
On ordered groups
-
Representation of the free group
-
A detour via
ordered rings
-
Order on the free group
7.2
Series on an ordered group
........................ 622
The semiring Kmo«G)>
-
Ordered semigroups
-
The fieid
K»vo({G))
-
A
iast inclusion
Solutions to the exercises
............................... 627
Notes
&
references
................................... 641
V The simplicity op functional transducers
643
1
Functionary
..................................... 645
1.1
Deciding functionality
........................... 645
An effective characterisation of functionality
-
Equivalence of rational
functions
1.2
Sequential functions
............................ 651
Some unconventional terminology
-
Dual
defìnitions
-
Composition
1.3
Pure sequential functions
......................... 658
1.4
Local functions
............................... 661
2
Uniformisation
of rational relations
........................ 664
2.1
Proof of Theorem
2.1
(transducer version)
................ 666
2.2
Proof of Theorem
2.1
(representation version)
.............. 667
Represent of S-immersions of an automaton
-
Semi-monomial matrices
-
Representation of S-uniformisations
2.3
Decomposition of rational functions
................... 673
The Weak Decomposition Theorem
-
The Strong Decomposition The¬
orem
2.4
The Rational Skimming Theorem II
................... 677
3
Cross-section of rational functions
........................ 679
TABLE
OF
CONTENTS
3.1
The rational
cross-süction
property
.................... 680
Tiie Rational Cross-Section Theorem
-
The rational cross-section prop¬
erty for a monoid
-
Return to simplification monoids
3.2
Choosing the
uniformisation
(or the cross-section)
........... 685
Uniformisation
of synchronous relations
-
Uniformisation
of determin¬
istic relations
-
Тії.
3.3
back on the loom
4
Sequential functions
................................ 692
4.1
Two characterisations
........................... 692
Translations of a function
-
A functional characterisation
-
A quasi-
topological point of view
4.2
Deciding sequentiality
........................... 699
4.3
Minimisation
................................ 704
Conjugation
-
Blockage of a sequential transducer
-
Reduction
-
Effec¬
tive computation
4.4
The (Great) Sequentiality Theorem
................... 711
Differential of a function
-
Proof of Theorem
4.5
iii)
=>
і)
-
Proof of
Theorem
4.5
ii)
=>
iii)
-
Return to the Sequentiality Theorem
4.5
Pure sequential functions and local functions
.............. 717
Solutions to the exercises
............................... 719
Notes
&
references
................................... 737
Bibliography
739
Index
749
|
any_adam_object | 1 |
author | Sakarovitch, Jacques 1947- |
author_GND | (DE-588)129256285 |
author_facet | Sakarovitch, Jacques 1947- |
author_role | aut |
author_sort | Sakarovitch, Jacques 1947- |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV035810370 |
callnumber-first | Q - Science |
callnumber-label | QA267 |
callnumber-raw | QA267 |
callnumber-search | QA267 |
callnumber-sort | QA 3267 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 136 |
ctrlnum | (OCoLC)148830849 (DE-599)BVBBV035810370 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01564nam a2200421 c 4500</leader><controlfield tag="001">BV035810370</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121108 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091105s2009 d||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521844253</subfield><subfield code="9">978-0-521-84425-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)148830849</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035810370</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA267</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 136</subfield><subfield code="0">(DE-625)143591:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sakarovitch, Jacques</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129256285</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Éléments de théorie des automates</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of automata theory</subfield><subfield code="c">Jacques Sakarovitch</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 758 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus d. Franz. übers. - Orig. ersch. 2003</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automata math</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automata theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formal language</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatentheorie</subfield><subfield code="0">(DE-588)4003953-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Automatentheorie</subfield><subfield code="0">(DE-588)4003953-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018669307&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018669307</subfield></datafield></record></collection> |
id | DE-604.BV035810370 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:05:07Z |
institution | BVB |
isbn | 9780521844253 |
language | German English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018669307 |
oclc_num | 148830849 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-384 DE-11 DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-703 DE-706 DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-384 DE-11 DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-703 DE-706 DE-29T |
physical | XXIV, 758 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Sakarovitch, Jacques 1947- Verfasser (DE-588)129256285 aut Éléments de théorie des automates Elements of automata theory Jacques Sakarovitch 1. publ. Cambridge Cambridge Univ. Press 2009 XXIV, 758 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Aus d. Franz. übers. - Orig. ersch. 2003 Automata math Automata theory Formal language Machine theory Automatentheorie (DE-588)4003953-5 gnd rswk-swf Automatentheorie (DE-588)4003953-5 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018669307&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sakarovitch, Jacques 1947- Elements of automata theory Automata math Automata theory Formal language Machine theory Automatentheorie (DE-588)4003953-5 gnd |
subject_GND | (DE-588)4003953-5 |
title | Elements of automata theory |
title_alt | Éléments de théorie des automates |
title_auth | Elements of automata theory |
title_exact_search | Elements of automata theory |
title_full | Elements of automata theory Jacques Sakarovitch |
title_fullStr | Elements of automata theory Jacques Sakarovitch |
title_full_unstemmed | Elements of automata theory Jacques Sakarovitch |
title_short | Elements of automata theory |
title_sort | elements of automata theory |
topic | Automata math Automata theory Formal language Machine theory Automatentheorie (DE-588)4003953-5 gnd |
topic_facet | Automata math Automata theory Formal language Machine theory Automatentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018669307&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sakarovitchjacques elementsdetheoriedesautomates AT sakarovitchjacques elementsofautomatatheory |