Technology of quantum devices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2010
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXV, 560 S. Ill., graph. Darst. |
ISBN: | 9781441910554 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035807928 | ||
003 | DE-604 | ||
005 | 20101215 | ||
007 | t | ||
008 | 091104s2010 gw ad|| |||| 00||| eng d | ||
015 | |a 09,N26,0902 |2 dnb | ||
016 | 7 | |a 994589530 |2 DE-101 | |
020 | |a 9781441910554 |c GB. : ca. EUR 138.03 (freier Pr.), ca. sfr 165.00 (freier Pr.) |9 978-1-4419-1055-4 | ||
024 | 3 | |a 9781441910554 | |
028 | 5 | 2 | |a 12564897 |
035 | |a (OCoLC)634791914 | ||
035 | |a (DE-599)DNB994589530 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 |a DE-83 |a DE-20 | ||
084 | |a UH 5600 |0 (DE-625)145666: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Razeghi, Manijeh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Technology of quantum devices |c Manijeh Razeghi |
264 | 1 | |a New York [u.a.] |b Springer |c 2010 | |
300 | |a XXV, 560 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Quantenelektronik |0 (DE-588)4137298-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenelektronik |0 (DE-588)4137298-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4419-1056-1 |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018666904&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018666904 |
Datensatz im Suchindex
_version_ | 1804140757616951296 |
---|---|
adam_text | IMAGE 1
XIII
CONTENTS
FOREWORD
...................................................................................................
V
PREFACE
.....................................................................................................
VII
LIST OF SYMBOLS
....................................................................................
XXIII
1. SINGLE CRYSTAL GROWTH
................................................................... 1
1.1. INTRODUCTION
............................................................................
1
1.2. BULK SINGLE CRYSTAL GROWTH TECHNIQUES
................................... 2
1.2.1. OVERVIEW
.........................................................................
2
1.2.2. CZOCHRALSKI TECHNIQUES
................................................... 3
1.2.3. BRIDGMAN TECHNIQUES
...................................................... 4
1.3. LIQUID PHASE EPITAXY
.............................................................. 7
1.3.1. OVERVIEW
.........................................................................
7
1.3.2. MELT EPITAXY
.................................................................... 9
1.3.3. LIQUID PHASE ELECTROEPITAXY (LPEE) .............................
10
1.4. VAPOR PHASE EPITAXY (VPE)
.................................................. 11
1.5. METALORGANIC CHEMICAL VAPOR DEPOSITION (MOCVD) ........... 14
1.5.1. INTRODUCTION
................................................................... 14
1.5.2. MOCVD PRECURSORS
...................................................... 16
1.5.3. GROWTH CHAMBER DESIGNS
............................................... 18
1.5.4. IN SITU CHARACTERIZATION
.................................................. 20
1.6. MOLECULAR BEAM EPITAXY
(MBE)........................................... 27
1.6.1. INTRODUCTION
................................................................... 27
1.6.2. EFFUSION CELLS USED IN MBE SYSTEMS .............................
28
1.6.3. GAS SOURCE MBE
........................................................... 33
1.6.4. METALORGANIC MBE
........................................................ 35
1.7. SUMMARY
..............................................................................
36
REFERENCES
...................................................................................
38
FURTHER READING
............................................................................
39
PROBLEMS
.....................................................................................
39
2. SEMICONDUCTOR DEVICE TECHNOLOGY
............................................ 41
2.1. INTRODUCTION
..........................................................................
41
IMAGE 2
XIV TECHNOLOGY OF QUANTUM DEVICES
2.2. OXIDATION
..............................................................................
42
2.2.1. OXIDATION PROCESS
.......................................................... 42
2.2.2. MODELING OF OXIDATION
................................................... 44
2.2.3. FACTORS INFLUENCING OXIDATION RATE
................................. 50
2.2.4. OXIDE THICKNESS CHARACTERIZATION
.................................. 52
2.3. DIFFUSION OF DOPANTS
............................................................. 56
2.3.1. DIFFUSION PROCESS
.......................................................... 57
2.3.2. CONSTANT-SOURCE DIFFUSION: PREDEPOSITION ..................... 62
2.3.3. LIMITED-SOURCE DIFFUSION: DRIVE-IN
................................ 64
2.3.4. JUNCTION FORMATION
........................................................ 65
2.4. ION IMPLANTATION OF DOPANTS
................................................. 68
2.4.1. ION GENERATION
............................................................... 69
2.4.2. PARAMETERS OF ION IMPLANTATION
..................................... 70
2.4.3. ION RANGE DISTRIBUTION
.................................................... 71
2.5. CHARACTERIZATION OF DIFFUSED AND IMPLANTED LAYERS ...............
74 2.5.1. SHEET RESISTIVITY
............................................................. 74
2.5.2. JUNCTION DEPTH
............................................................... 76
2.5.3. IMPURITY CONCENTRATION
.................................................. 78
2.6. SUMMARY
..............................................................................
79
REFERENCES
...................................................................................
80
FURTHER READING
............................................................................
80
PROBLEMS
.....................................................................................
80
3. SEMICONDUCTOR DEVICE PROCESSING
.............................................. 83
3.1. INTRODUCTION
..........................................................................
84
3.2. PHOTOLITHOGRAPHY
.................................................................. 84
3.2.1. WAFER PREPARATION
......................................................... 84
3.2.2. POSITIVE AND NEGATIVE PHOTORESISTS
................................ 85
3.2.3. MASK ALIGNMENT AND FABRICATION
.................................... 89
3.2.4. EXPOSURE
.......................................................................
91
3.2.5. DEVELOPMENT
................................................................. 92
3.2.6. DIRECT PATTERNING AND LIFT-OFF TECHNIQUES .......................
93 3.2.7. ALTERNATIVE LITHOGRAPHIC TECHNIQUES
.............................. 95
3.3. ELECTRON-BEAM LITHOGRAPHY
................................................... 98
3.3.1. ELECTRON-BEAM LITHOGRAPHY SYSTEM ................................
98
3.3.2. ELECTRON-BEAM LITHOGRAPHY PROCESS .............................
100
3.3.3. PARAMETERS OF ELECTRON-BEAM LITHOGRAPHY ................... 102
3.3.4. MULTILAYER RESIST SYSTEMS
............................................. 104
3.3.5. EXAMPLES OF STRUCTURES
................................................ 106
3.4. ETCHING
...............................................................................
107
3.4.1. WET CHEMICAL ETCHING
.................................................. 107
3.4.2. PLASMA ETCHING
............................................................ 110
3.4.3. REACTIVE ION ETCHING
.................................................... 114
IMAGE 3
CONTENTS XV
3.4.4. SPUTTER ETCHING
............................................................ 114
3.4.5. ION MILLING
................................................................... 115
3.5. METALLIZATION
......................................................................
116
3.5.1. METAL INTERCONNECTIONS
................................................ 116
3.5.2. VACUUM EVAPORATION
................................................... 118
3.5.3. SPUTTERING DEPOSITION
.................................................. 121
3.6. PACKAGING OF DEVICES
.......................................................... 122
3.6.1. DICING
..........................................................................
122
3.6.2. WIRE BONDING
.............................................................. 123
3.6.3. PACKAGING
.................................................................... 126
3.7. SUMMARY
............................................................................
128
REFERENCES
.................................................................................
128
FURTHER READING
..........................................................................
128
PROBLEMS
...................................................................................
129
4. SEMICONDUCTOR P-N AND METAL-SEMICONDUCTOR JUNCTIONS .......... 133
4.1. INTRODUCTION
........................................................................
133
4.2. IDEAL P-N JUNCTION AT EQUILIBRIUM
........................................ 134
4.2.1. IDEAL P-N JUNCTION
........................................................ 134
4.2.2. DEPLETION APPROXIMATION
............................................ 135
4.2.3. BUILT-IN ELECTRIC FIELD
................................................... 140
4.2.4. BUILT-IN POTENTIAL
......................................................... 141
4.2.5. DEPLETION WIDTH
........................................................... 145
4.2.6. ENERGY BAND PROFILE AND FERMI ENERGY ....................... 145
4.3. NON-EQUILIBRIUM PROPERTIES OF P-N JUNCTIONS ......................
147 4.3.1. FORWARD BIAS: A QUALITATIVE DESCRIPTION
....................... 148 4.3.2. REVERSE BIAS: A QUALITATIVE
DESCRIPTION ........................ 151 4.3.3. A QUANTITATIVE
DESCRIPTION ........................................... 153
4.3.4. IDEAL P-N JUNCTION DIODE EQUATION
................................ 155
4.3.5. MINORITY AND MAJORITY CARRIER CURRENTS IN NEUTRAL REGIONS
.....................................................................
161
4.4. METAL-SEMICONDUCTOR JUNCTIONS
.......................................... 163
4.4.1. FORMALISM
................................................................... 164
4.4.2. SCHOTTKY AND OHMIC
CONTACTS....................................... 166
4.5. SUMMARY
............................................................................
169
FURTHER READING
..........................................................................
170
PROBLEMS
...................................................................................
170
5. TRANSISTORS
.................................................................................
173
5.1. INTRODUCTION
........................................................................
173
5.2. OVERVIEW OF AMPLIFICATION AND SWITCHING ..........................
174
5.3. BIPOLAR JUNCTION TRANSISTORS
................................................ 176
5.3.1. PRINCIPLES OF OPERATION FOR BIPOLAR JUNCTION TRANSISTORS
................................................................ 177
IMAGE 4
XVI TECHNOLOGY OF QUANTUM DEVICES
5.3.2. AMPLIFICATION PROCESS USING BJTS ..............................
178
5.3.3. ELECTRICAL CHARGE DISTRIBUTION AND TRANSPORT IN BJTS ... 179
5.3.4. CURRENT GAIN
................................................................ 183
5.3.5. TYPICAL BJT CONFIGURATIONS
......................................... 186
5.3.6. DEVIATIONS FROM THE IDEAL BJT CASE ............................
189
5.4. HETEROJUNCTION BIPOLAR TRANSISTORS
...................................... 190
5.4.1. ALGAAS/GAAS HBT
.................................................... 191
5.4.2. GAINP/GAAS HBT
....................................................... 193
5.5. FIELD EFFECT TRANSISTORS
........................................................ 196
5.5.1. JFETS
..........................................................................
196
5.5.2. JFET GATE CONTROL
........................................................ 197
5.5.3. JFET CURRENT-VOLTAGE CHARACTERISTICS ...........................
198
5.5.4. MOSFETS
................................................................... 200
5.5.5. DEVIATIONS FROM THE IDEAL MOSFET CASE ................... 202
5.6. APPLICATION SPECIFIC TRANSISTORS
.......................................... 203
5.7. SUMMARY
............................................................................
204
REFERENCES
.................................................................................
204
PROBLEMS
...................................................................................
205
6. SEMICONDUCTOR LASERS
............................................................... 209
6.1. INTRODUCTION
........................................................................
209
6.2. TYPES OF LASERS
................................................................... 210
6.3. GENERAL LASER THEORY
........................................................... 211
6.3.1. STIMULATED EMISSION
.................................................... 212
6.3.2. RESONANT CAVITY
........................................................... 215
6.3.3. WAVEGUIDES
................................................................. 216
6.3.4. LASER PROPAGATION AND BEAM DIVERGENCE ..................... 225
6.3.5. WAVEGUIDE DESIGN CONSIDERATIONS ...............................
228
6.4. RUBY LASER
..........................................................................
228
6.5. SEMICONDUCTOR LASERS
......................................................... 232
6.5.1. POPULATION INVERSION
................................................... 233
6.5.2. THRESHOLD CONDITION AND OUTPUT POWER ....................... 234
6.5.3. LINEWIDTH OF SEMICONDUCTOR LASER DIODES ................... 238
6.5.4. HOMOJUNCTION LASERS
................................................... 239
6.5.5. HETEROJUNCTION LASERS
.................................................. 239
6.5.6. DEVICE FABRICATION
....................................................... 241
6.5.7. SEPARATE CONFINEMENT AND QUANTUM WELL LASERS .......... 246
6.5.8. LASER PACKAGING
.......................................................... 249
6.5.9. DISTRIBUTED FEEDBACK LASERS
......................................... 249
6.5.10. MATERIAL CHOICES FOR COMMON INTERBAND LASERS ......... 251
6.5.11. INTERBAND LASERS
......................................................... 252
6.5.12. QUANTUM CASCADE LASERS
............................................ 255
6.5.13. TYPE II LASERS
............................................................. 257
IMAGE 5
CONTENTS XVII
6.5.14. VERTICAL CAVITY SURFACE EMITTING LASERS ......................
260 6.5.15. LOW-DIMENSIONAL LASERS
............................................ 262
6.5.16. RAMAN LASERS
............................................................. 264
6.6. SUMMARY
............................................................................
265
REFERENCES
.................................................................................
266
FURTHER READING
..........................................................................
268
PROBLEMS
...................................................................................
269
7. QUANTUM CASCADE LASERS
.......................................................... 271
7.1. INTRODUCTION
........................................................................
272
7.2. BASIC OPERATION PRINCIPLES
.................................................. 273
7.2.1. INTERSUBBAND TRANSITIONS
.............................................. 274
7.2.2. CASCADING
.................................................................... 275
7.2.3. RATE EQUATION
.............................................................. 276
7.2.4. POLAR OPTICAL PHONON RESONANCE ..................................
283
7.3. THE COMPONENTS OF A QUANTUM CASCADE LASER ..................... 285
7.3.1. CORE HETEROSTRUCTURE
.................................................... 285
7.3.2. LASER WAVEGUIDE
......................................................... 288
7.4. MAKING A QUANTUM CASCADE LASER
........................................ 289
7.4.1. EPITAXIAL GROWTH AND MATERIAL CHARACTERIZATION........... 289
7.4.2. PROCESSING AND PACKAGING
........................................... 290
7.5. DEVICE PERFORMANCE
........................................................... 292
7.5.1. POWER-CURRENT-VOLTAGE CHARACTERISTICS .........................
292 7.5.2. TEMPERATURE DEPENDENT CHARACTERISTICS .......................
294 7.5.3. WALL PLUG EFFICIENCY
.................................................... 296
7.5.4. SPECTRA AND FAR FIELD
.................................................... 299
7.6. WALL PLUG EFFICIENCY OPTIMIZATION
...................................... 300
7.6.1. ELECTRICAL CONTACT RESISTANCE
........................................ 300
7.6.2. WAVEGUIDE GEOMETRY
.................................................. 301
7.6.3. BONDING METHOD
.......................................................... 304
7.7. POWER SCALING
.....................................................................
306
7.8. PHOTONIC CRYSTAL DISTRIBUTED FEEDBACK QUANTUM CASCADE LASERS
................................................................................
308
7.8.1. PATTERN DESIGN
.............................................................. 309
7.8.2. COUPLING COEFFICIENTS
.................................................. 311
7.8.3. TESTING RESULTS
............................................................. 312
7.9. QUANTUM CASCADE LASERS AT DIFFERENT WAVELENGTHS .............. 314
7.9.1. SHORT WAVELENGTH QUANTUM CASCADE LASERS ( 4 * M) .... 314 7.9.2.
MID WAVELENGTH QUANTUM CASCADE LASERS (4-9 * M) .... 315 7.9.3. LONG
WAVELENGTH QUANTUM CASCADE LASERS ( 9 * M) .... 315
7.10. SUMMARY
..........................................................................
316
REFERENCES
.................................................................................
316
FURTHER READING
..........................................................................
317
IMAGE 6
XVIII TECHNOLOGY OF QUANTUM DEVICES
PROBLEMS
...................................................................................
318
8. PHOTODETECTORS: GENERAL CONCEPTS
............................................ 321
8.1. INTRODUCTION
........................................................................
321
8.2. ELECTROMAGNETIC RADIATION
.................................................. 323
8.3. PHOTODETECTOR PARAMETERS
................................................... 325
8.3.1. RESPONSIVITY
................................................................ 326
8.3.2. NOISE IN PHOTODETECTORS
............................................... 326
8.3.3. NOISE MECHANISMS
...................................................... 329
8.3.4. DETECTIVITY
................................................................... 332
8.3.5. DETECTIVITY LIMITS AND BLIP
........................................ 333
8.3.6. FREQUENCY RESPONSE
..................................................... 335
8.4. THERMAL DETECTORS
............................................................... 335
8.5. SUMMARY
............................................................................
339
REFERENCES
.................................................................................
339
FURTHER READING
..........................................................................
339
PROBLEMS
...................................................................................
339
9. PHOTON DETECTORS
.......................................................................
343
9.1. INTRODUCTION
........................................................................
343
9.2. TYPES OF PHOTON DETECTORS
.................................................. 345
9.2.1. PHOTOCONDUCTIVE DETECTORS
.......................................... 345
9.2.2. PHOTOVOLTAIC DETECTORS
................................................. 348
9.3. EXAMPLES OF PHOTON DETECTORS
............................................ 351
9.3.1. P-I-N PHOTODIODES
........................................................ 351
9.3.2. AVALANCHE PHOTODIODES
............................................... 353
9.3.3. SCHOTTKY BARRIER PHOTODIODES
...................................... 355
9.3.4. METAL-SEMICONDUCTOR-METAL PHOTODIODES .................... 357
9.3.5. TYPE II SUPERLATTICE PHOTODETECTORS .............................
357
9.3.6. PHOTOELECTROMAGNETIC DETECTORS ..................................
360
9.3.7. QUANTUM WELL INTERSUBBAND PHOTODETECTORS ................ 361
9.3.8. QUANTUM DOT INFRARED PHOTODETECTORS ......................... 362
9.4. FOCAL PLANE ARRAYS
............................................................. 363
9.5. SUMMARY
............................................................................
364
REFERENCES
.................................................................................
364
FURTHER READING
..........................................................................
365
PROBLEMS
...................................................................................
365
10. TYPE-II INAS/GASB SUPERLATTICE PHOTON DETECTORS ...................
367 10.1. INTRODUCTION
......................................................................
367
10.2. MATERIAL SYSTEM AND VARIANTS OF TYPE II SUPERLATTICES ...... 368
10.2.1. THE 6.1 ANGSTROM FAMILY
........................................... 368
10.2.2. TYPE II INAS/GASB SUPERLATTICE .................................
370
IMAGE 7
CONTENTS XIX
10.2.3. VARIANTS OF SB-BASED SUPERLATTICES ............................
370
10.3. HISTORIC DEVELOPMENT OF TYPE II SUPERLATTICE PHOTODETECTORS
................................................................. 374
10.4. PHYSICS OF TYPE II INAS/GASB SUPERLATTICES ....................
376 10.4.1. QUALITATIVE DESCRIPTION
.............................................. 376
10.4.2. QUANTITATIVE CALCULATIONS OF ELECTRONIC BANDSTRUCTURE
........................................................... 378
10.5. ADVANTAGES OF TYPE II SUPERLATTICE
.................................. 381
10.5.1. BAND GAP ENGINEERING
............................................... 381
10.5.2. AUGER SUPPRESSION
..................................................... 382
10.5.3. LARGE EFFECTIVE MASS
................................................. 382
10.5.4. NORMAL INCIDENT, BROAD BAND ABSORPTION ................... 383
10.5.5. GOOD UNIFORMITY
........................................................ 384
10.6. MATERIAL GROWTH AND CHARACTERIZATION
............................... 385
10.7. DEVICE FABRICATION
............................................................ 387
10.7.1. SINGLE ELEMENT DEVICE FOR TESTING ..............................
387
10.7.2. FOCAL PLANE ARRAY
FABRICATION..................................... 388
10.8. SUMMARY
..........................................................................
390
REFERENCES
.................................................................................
390
FURTHER READING
..........................................................................
392
PROBLEMS
...................................................................................
392
11. QUANTUM DOT INFRARED PHOTODETECTORS
...................................... 395
11.1. INTRODUCTION
......................................................................
396
11.1.1. OPERATING PRINCIPLES OF QWIPS AND QDIPS .............. 396
11.1.2. PHOTOCURRENT
.............................................................. 397
11.1.3. DARK CURRENT
.............................................................. 399
11.1.4. NOISE
.........................................................................
399
11.2. ADVANTAGES OF QDIPS
....................................................... 400
11.2.1. INTRODUCTION
............................................................... 400
11.2.2. HIGH GAIN AND THE PHONON BOTTLENECK ....................... 400
11.2.3. LOW DARK CURRENT
....................................................... 401
11.2.4. NORMAL INCIDENCE ABSORPTION ....................................
402
11.2.5. VERSATILITY
.................................................................. 403
11.2.6. SUMMARY
................................................................... 403
11.3. QUANTUM DOT FABRICATION FOR QDIPS
................................. 404
11.3.1. INTRODUCTION
............................................................... 404
11.3.2. THE FORMATION OF QUANTUM DOTS IN THE STRANSKIKRASTANOV GROWTH
MODE .......................................... 405
11.3.3. PROPERTIES OF STRANSKI-KRASTANOV GROWN DOTS AND THEIR EFFECT ON
QDIP PERFORMANCE ........................... 406
11.3.4. QUANTUM DOT SIZE
...................................................... 407
11.3.5. QUANTUM DOT SHAPE
................................................... 408
11.3.6. QUANTUM DOT DENSITY
................................................. 409
IMAGE 8
XX TECHNOLOGY OF QUANTUM DEVICES
11.3.7. QUANTUM DOT UNIFORMITY
........................................... 410
11.3.8. CONCLUSION AND FUTURE DIRECTIONS FOR DOT FABRICATION
............................................................... 412
11.4. REVIEW OF ACTUAL QDIP PERFORMANCE ...............................
412
11.4.1. INTRODUCTION
............................................................... 412
11.4.2. HIGH OPERATING TEMPERATURE
...................................... 412
11.4.3. FPA IMAGING
............................................................. 416
11.4.4. SUMMARY
................................................................... 420
11.5. SUMMARY
..........................................................................
420
REFERENCES
.................................................................................
421
FURTHER READING
..........................................................................
422
PROBLEMS
...................................................................................
422
12. SINGLE-PHOTON AVALANCHE PHOTODIODES
..................................... 425
12.1. INTRODUCTION
......................................................................
425
12.2. AVALANCHE PHOTODETECTORS, LINEAR MODE ...........................
427
12.2.1. DEVICE FABRICATION.
.................................................... 427
12.2.2. LINEAR-MODE OPERATION.
............................................. 429
12.2.3. EXCESS NOISE.
............................................................. 433
12.3. EXAMPLES OF APD STRUCTURES
............................................ 434
12.3.1. REACH-THROUGH AVALANCHE PHOTODIODES. .................... 435
12.3.2. SEPARATE ABSORPTION CHARGE MULTIPLICATION (SACM) APD
.........................................................................
436
12.4. GEIGER MODE OPERATION
..................................................... 436
12.4.1. BASIC THEORY.
............................................................. 436
12.4.2. PASSIVE AVALANCHE QUENCHING ....................................
440
12.4.3. ACTIVE AVALANCHE QUENCHING .....................................
441
12.4.4. GATED DETECTION
......................................................... 442
12.4.5. DEVICE LIMITATIONS
..................................................... 445
12.4.6. AFTER-PULSING
............................................................. 446
12.5. EXAMPLES OF SINGLE-PHOTON AVALANCHE PHOTODIODES ......... 447
12.5.1. SILICON SINGLE-PHOTON AVALANCHE DIODES .................... 447
12.5.2. INGAAS/INP SINGLE-PHOTON AVALANCHE DIODES ............ 449
12.5.3. GAN SINGLE-PHOTON AVALANCHE DIODES ........................ 450
12.6. SUMMARY
..........................................................................
452
REFERENCES
.................................................................................
453
FURTHER READING
..........................................................................
454
PROBLEMS
...................................................................................
454
13. TERAHERTZ DEVICE TECHNOLOGY
................................................... 457
13.1. INTRODUCTION
......................................................................
457
13.2. APPLICATIONS
.....................................................................
458
13.2.1. THZ SPECTROSCOPY
...................................................... 458
IMAGE 9
CONTENTS XXI
13.2.2. T-RAY IMAGING
............................................................ 460
13.2.3. THZ RESEARCH TOOL
...................................................... 462
13.3. BROADBAND TERAHERTZ SOURCES
............................................ 464
13.4. NARROW BAND TERAHERTZ SOURCES
......................................... 466
13.4.1. OPTICAL CONVERTER
....................................................... 466
13.4.2. OPTICALLY PUMPED GAS LASERS
..................................... 469
13.4.3. SEMICONDUCTOR SOURCE BASED ON SILICON AND GERMANIUM
.............................................................. 469
13.5. QUANTUM CASCADE TERAHERTZ SOURCES
................................. 472
13.5.1. GAAS BASED TERAHERTZ QCLS ......................................
472
13.5.2. INP BASED TERAHERTZ QCLS
......................................... 473
13.6. MAGNETIC FIELD EFFECTS
....................................................... 474
13.7. DIFFERENCE FREQUENCY GENERATION
...................................... 480
13.8. GAN QCLS FOR HIGH TEMPERATURE OPERATION ...................... 481
13.9. SUMMARY
..........................................................................
487
REFERENCES
.................................................................................
488
FURTHER READING
..........................................................................
493
PROBLEMS
...................................................................................
493
APPENDICES
............................................................................................
497
A.1. PHYSICAL CONSTANTS
............................................................ 499
A.2. INTERNATIONAL SYSTEM OF UNITS (SI UNITS)
........................... 501
A.3. PHYSICAL PROPERTIES OF ELEMENTS IN THE PERIODIC TABLE ...... 503
A.4. PHYSICAL PROPERTIES OF IMPORTANT SEMICONDUCTORS ............ 517
A.5. THERMIONIC EMISSION
....................................................... 521
A.6. MINORITY CARRIER LIFETIME MEASUREMENT ............................
525
A.7. ADVANCED TOPICS IN TYPE-II PHOTODETECTORS .................... 533
A.8. PHYSICAL PROPERTIES AND SAFETY INFORMATION OF
METALORGANICS...................................................................
543
|
any_adam_object | 1 |
author | Razeghi, Manijeh |
author_facet | Razeghi, Manijeh |
author_role | aut |
author_sort | Razeghi, Manijeh |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV035807928 |
classification_rvk | UH 5600 |
ctrlnum | (OCoLC)634791914 (DE-599)DNB994589530 |
discipline | Maschinenbau / Maschinenwesen Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01486nam a2200397 c 4500</leader><controlfield tag="001">BV035807928</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091104s2010 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N26,0902</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">994589530</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441910554</subfield><subfield code="c">GB. : ca. EUR 138.03 (freier Pr.), ca. sfr 165.00 (freier Pr.)</subfield><subfield code="9">978-1-4419-1055-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781441910554</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12564897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634791914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB994589530</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5600</subfield><subfield code="0">(DE-625)145666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Razeghi, Manijeh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Technology of quantum devices</subfield><subfield code="c">Manijeh Razeghi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 560 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenelektronik</subfield><subfield code="0">(DE-588)4137298-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenelektronik</subfield><subfield code="0">(DE-588)4137298-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4419-1056-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018666904&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018666904</subfield></datafield></record></collection> |
id | DE-604.BV035807928 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:05:03Z |
institution | BVB |
isbn | 9781441910554 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018666904 |
oclc_num | 634791914 |
open_access_boolean | |
owner | DE-703 DE-11 DE-83 DE-20 |
owner_facet | DE-703 DE-11 DE-83 DE-20 |
physical | XXV, 560 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Springer |
record_format | marc |
spelling | Razeghi, Manijeh Verfasser aut Technology of quantum devices Manijeh Razeghi New York [u.a.] Springer 2010 XXV, 560 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Quantenelektronik (DE-588)4137298-0 gnd rswk-swf Quantenelektronik (DE-588)4137298-0 s DE-604 Erscheint auch als Online-Ausgabe 978-1-4419-1056-1 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018666904&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Razeghi, Manijeh Technology of quantum devices Quantenelektronik (DE-588)4137298-0 gnd |
subject_GND | (DE-588)4137298-0 |
title | Technology of quantum devices |
title_auth | Technology of quantum devices |
title_exact_search | Technology of quantum devices |
title_full | Technology of quantum devices Manijeh Razeghi |
title_fullStr | Technology of quantum devices Manijeh Razeghi |
title_full_unstemmed | Technology of quantum devices Manijeh Razeghi |
title_short | Technology of quantum devices |
title_sort | technology of quantum devices |
topic | Quantenelektronik (DE-588)4137298-0 gnd |
topic_facet | Quantenelektronik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018666904&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT razeghimanijeh technologyofquantumdevices |