Scanning probe microscopy in nanoscience and nanotechnology:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2010
|
Schriftenreihe: | Nanoscience and technology
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXX, 956 S. Ill., graph. Darst. |
ISBN: | 9783642035340 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035804596 | ||
003 | DE-604 | ||
005 | 20110503 | ||
007 | t | ||
008 | 091103s2010 gw ad|| |||| 00||| eng d | ||
015 | |a 09,N31,0826 |2 dnb | ||
016 | 7 | |a 995338353 |2 DE-101 | |
020 | |a 9783642035340 |c Gb. : EUR 181.85 (freier Pr.) |9 978-3-642-03534-0 | ||
024 | 3 | |a 9783642035340 | |
028 | 5 | 2 | |a 12463206 |
035 | |a (OCoLC)618950621 | ||
035 | |a (DE-599)DNB995338353 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-83 |a DE-1050 | ||
082 | 0 | |a 620.11299 |2 22 | |
084 | |a UH 6310 |0 (DE-625)159500: |2 rvk | ||
084 | |a UH 6320 |0 (DE-625)145762: |2 rvk | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a ZM 3850 |0 (DE-625)157030: |2 rvk | ||
084 | |a 670 |2 sdnb | ||
245 | 1 | 0 | |a Scanning probe microscopy in nanoscience and nanotechnology |c Bharat Bhushan, ed. |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2010 | |
300 | |a XXX, 956 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Nanoscience and technology | |
650 | 4 | |a Nanostructured materials |x Microscopy | |
650 | 4 | |a Scanning probe microscopy | |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rastersondenmikroskopie |0 (DE-588)4330328-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rastersondenmikroskopie |0 (DE-588)4330328-6 |D s |
689 | 0 | 1 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bhushan, Bharat |d 1949- |0 (DE-588)122258762 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-642-03535-7 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018663666&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018663666 |
Datensatz im Suchindex
_version_ | 1804140752088858624 |
---|---|
adam_text | 2.3.3 OPTICAL TRAPPING OF LINEAR NANOSTRUCTURES 33 CONTENTS PART I
SCANNING PROBE MICROSCOPY TECHNIQUES 1 DYNAMIC FORCE MICROSCOPY AND
SPECTROSCOPY USING THE FREQUENCY-MODULATION TECHNIQUE IN AIR AND LIQUIDS
HENDRIK HOELSCHER, DANIEL EBELING, JAN-ERIK SCHMUTZ, MARCUS M. SCHAEFER,
AND BORIS ANCZYKOWSKI 3 1.1 INTRODUCTION 3 1.2 BASIC PRINCIPLES OF THE
FM TECHNIQUE 4 1.2.1 THE EQUATION OF MOTION 4 1.2.2 OSCILLATION BEHAVIOR
OF A SELF-DRIVEN CANTILEVER 6 1.2.3 THEORY OF FM MODE INCLUDING
TIP-SAMPLE FORCES 7 1.2.4 MEASURING THE TIP-SAMPLE INTERACTION FORCE 9
1.2.5 EXPERIMENTAL COMPARISON OF THE FM MODE WITH THE CONVENTIONAL
AMPLITUDE-MODULATION-MODE IN AIR 11 1.3 MAPPING OF THE TIP-SAMPLE
INTERACTIONS ON DPPC MONOLAYERS IN AMBIENT CONDITIONS 12 1.4 FORCE
SPECTROSCOPY OF SINGLE DEXTRAN MONOMERS IN LIQUID 15 1.5 SUMMARY 18
REFERENCES 19 2 PHOTONIC FORCE MICROSCOPY: FROM FEMTONEWTON FORCE
SENSING TO ULTRA-SENSITIVE SPECTROSCOPY O.M. MARAGO, P. G. GUCCIARDI,
AND P.H. JONES 23 2.1 INTRODUCTION 24 2.2 PRINCIPLES OF OPTICAL TRAPPING
24 2.2.1 THEORETICAL BACKGROUND 24 2.3 EXPERIMENTAL IMPLEMENTATION 29
2.3.1 OPTICAL TWEEZERS SET-UP 29 2.3.2 BROWNIAN MOTION AND FORCE SENSING
31 BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/995338353
DIGITALISIERT DURCH X CONTENTS 2.4 PHOTONIC FORCE MICROSCOPY 39 2.4.1
BIO-NANO-IMAGING 39 2.4.2 BIO-FORCE SENSING AT THE NANOSCALE 42 2.5
RAMAN TWEEZERS 45 2.5.1 THE RAMAN EFFECT 45 2.5.2 EXPERIMENTAL
CONFIGURATION 46 2.5.3 APPLICATIONS 48 2.6 CONCLUSIONS 53 REFERENCES 53
3 POLARIZATION-SENSITIVE TIP-ENHANCED RAMAN SCATTERING PIETRO GIUSEPPE
GUCCIARDI, MARC LAMY DE LA CHAPELLE, JEAN-CHRISTOPHE VALMALETTE, GENNARO
PICARDI, AND RAZVIGOR OSSIKOVSKI 57 3.1 INTRODUCTION 57 3.2 TIP-ENHANCED
RAMAN SPECTROSCOPY 58 3.2.1 CONCEPT AND ADVANTAGES 58 3.2.2 EXPERIMENTAL
IMPLEMENTATIONS OF TERS WITH SIDE ILLUMINATION OPTICS 60 3.2.3 PROBES
FOR TIP-ENHANCED RAMAN SPECTROSCOPY 61 3.3 POLARIZED RAMAN SCATTERING
FROM CUBIC CRYSTALS 64 3.3.1 MODEL FOR BACKSCATTERING RAMAN EMISSION IN
C-SILICON ... 64 3.3.2 SELECTION RULES 67 3.4 TIP-ENHANCED FIELD
MODELING 67 3.4.1 PHENOMENOLOGICAL MODEL 67 3.4.2 NUMERICAL MODELS AND
RESULTS 70 3.5 DEPOLARIZATION OF LIGHT SCATTERED BY METALLIC TIPS 73 3.6
POLARIZED TIP-ENHANCED RAMAN SPECTROSCOPY OF SILICON CRYSTALS . 75 3.6.1
BACKGROUND SUPPRESSION 75 3.6.2 SELECTIVE ENHANCEMENT OF THE RAMAN MODES
INDUCED BY DEPOLARIZATION 80 3.6.3 EVALUATION OF THE FIELD ENHANCEMENT
FACTOR 84 3.7 CONCLUSIONS 85 REFERENCES 86 4 ELECTROSTATIC FORCE
MICROSCOPY AND KELVIN FORCE MICROSCOP CONTENTS XI 4.3 ELECTROSTATIC
IMAGING OF CARBON NANOTUBES 97 4.3.1 CAPACITIVE IMAGING OF CARBON
NANOTUBES IN INSULATING LAYERS 98 4.3.2 EFM IMAGING OF CARBON NANOTUBES
AND DNA 100 4.3.3 IMAGING OF NATIVE CHARGES IN CARBON NANOTUBE LOOPS ..
. 102 4.4 CHARGE INJECTION EXPERIMENTS IN CARBON NANOTUBES 103 4.4.1
CHARGE INJECTION AND DETECTION TECHNIQUES 103 4.4.2 EXPERIMENTAL
ILLUSTRATION OF EFM SIGNALS 104 .4.4.3 INNER-SHELL CHARGING OF CNTS 112
4.4.4 ELECTROSTATIC INTERACTIONS IN SWCNTS 115 4.5 PROBING THE BAND
STRUCTURE OF NANOTUBES ON INSULATORS 116 4.5.1 IMAGING THE
SEMICONDUCTOR/METAL CHARACTER OF CARBON NANOTUBES 116 4.5.2 IMAGING THE
DENSITY OF STATES OF CARBON NANOTUBES 118 4.6 KFM STUDIES OF NANOTUBE
DEVICES 119 4.6.1 CHARGE TRANSFERS AT NANOTUBE-METAL INTERFACES 119
4.6.2 DIFFUSIVE AND BALLISTIC TRANSPORT IN CARBON NANOTUBES ... 121
4.6.3 KELVIN FORCE MICROSCOPY OF CNTFETS 121 4.7 CONCLUSION 125
REFERENCES 126 5 CARBON NANOTUBE ATOMIC FORCE MICROSCOPY WITH
APPLICATIONS TO BIOLOGY AND ELECTRONICS EDWARD D. DE ASIS, JR., YOU LI,
ALEX J. AUSTIN, JOSEPH LEUNG, AND CATTIEN V. NGUYEN 129 5.1 CARBON
NANOTUBE INTRODUCTION 129 5.2 CARBON NANOTUBE SYNTHESIS 134 5.3
FABRICATION OF CARBON NANOTUBE ATOMIC FORCE MICROSCOPY PROBES 135 5.3.1
FABRICATION OF CARBON NANOTUBE ATOMIC FORCE MICROSCOPY PROBES BY GLUING
135 5.3. XII CONTENTS 5.5.3 CARBON NANOTUBE ELECTRIC FORCE MICROSCOPY
152 5.5.4 CARBON NANOTUBE SCANNING TUNNELING MICROSCOPY 154 5.5.5 CARBON
NANOTUBE MAGNETIC FORCE MICROSCOPY 155 5.5.6 CARBON NANOTUBE SCANNING
NEAR-FIELD OPTICAL MICROSCOPY 158 5.5.7 BIOLOGICAL APPLICATIONS OF
CARBON NANOTUBE ATOMIC FORCE MICROSCOPY 159 REFERENCES 165 6 NOVEL
STRATEGIES TO PROBE THE FLUID PROPERTIES AND REVEALING ITS HIDDEN
ELASTICITY LAURENCE NOIREZ 169 6.1 INTRODUCTION 170 6.2 BASIC
THEORETICAL CONSIDERATIONS: CONCILIATING SIMPLE LIQUID APPROACH TO THE
VISCOELASTICITY THEORY? 172 6.2.1 SIMPLE LIQUID DESCRIPTION 172 6.2.2
THE VISCOELASTIC APPROACH 173 6.3 CONVENTIONAL PROCEDURE TO DETERMINE
THE DYNAMIC PROPERTIES OF FLUIDS 174 6.3.1 LINEAR RHEOLOGY 174 6.3.2
NON-LINEAR RHEOLOGY 176 6.4 UNPREDICTED PHENOMENA AND UNSOLVED
QUESTIONS: FLOW INSTABILITIES, NON-LINEARITIES, SHEAR INDUCED
TRANSITIONS, EXTRA-LONG RELAXATION TIMES, ELASTICITY IN THE LIQUID STATE
177 6.5 FROM MACRO TO MICRO AND NANOFLUIDICS 181 6.6 ANALYSIS OF THE
VISCOELASTICITY SCANNING METHOD 183 6.7 THE QUESTION OF THE BOUNDARY
CONDITIONS: SURFACE EFFECTS, WETTING, AND SLIPPAGE 186 6.8 NOVEL
DESCRIPTION OF CONVENTIONAL FLUIDS: FROM VISCOUS LIQUIDS, GLASS FORMERS
TO ENTANGLED POLYMERS. EXPERIMENTS IN NARROW GAP GEOMETRY: EXTRACTING
THE SHEAR ELASTICITY IN VISCOUS FLUIDS 187 6. CONTENTS XIII 7.3
DETERMINING ELASTIC MODULUS OF COMPLIANT MATERIALS FROM NANOINDENTATIONS
206 7.4 MODULUS ESTIMATE OF A CHALLENGING SET OF SAMPLES 211 REFERENCES
220 8 STATIC AND DYNAMIC STRUCTURAL MODELING ANALYSIS OF ATOMIC FORCE
MICROSCOPE YIN ZHANG AND KEVIN D MURPHY 225 8.1 INTRODUCTION 226 8.2
WORKING PRINCIPLE AND MODES 227 8.3 STATICS OF ATOMIC FORCE MICROSCOPE
CANTILEVER: EFFECTIVE STIFFNESS APPROACH 230 8.4 ELECTROSTATIC, SURFACE
AND RESIDUAL STRESS INFLUENCE ON THE ATOMIC FORCE MICROSCOPE INITIAL
DEFLECTION 234 8.5 MODELING TIP-SAMPLE CONTACT 237 8.6 NON-CONTACT
ATOMIC FORCE MICROSCOPE DYNAMICS: DAMPING AND INFLUENCE OF TIP-SURFACE
INTERACTION 242 8.7 DYNAMICS OF INTERMITTENT CONTACT 248 8.8 SUMMARY 252
REFERENCES 253 9 EXPERIMENTAL METHODS FOR THE CALIBRATION OF LATERAL
FORCES IN ATOMIC FORCE MICROSCOPY MARTIN MUNZ 259 9.1 INTRODUCTION 260
9.2 BASIC DEFINITIONS AND RELATIONSHIPS 264 9.2.1 THE CALIBRATION
CONSTANTS INVOLVED IN A LATERAL FORCE MEASUREMENT 264 9.2.2 BASIC
RELATIONSHIPS INVOLVING THE CALIBRATION CONSTANTS . . 266 9.2.3 THE
LATERAL AND THE NORMAL SPRING CONSTANT OF A RECTANGULAR CL 268 9.2.4 THE
CASE OF IN-PLANE DEFORMATIONS 270 9.3 CALIBRATION OF THE LATERAL
SENSITIVITY OF THE PSD 271 9.3.1 AVAILABLE METHODS 271 9.3. XIV CONTENTS
9.6 METHODS RELYING ON A FORCE BALANCE UPON CONTACT WITH A COMPLIANT
STRUCTURE 294 9.6.1 THE CASE OF A VERTICAL REFERENCE BEAM 294 9.6.2 THE
CASE OF A HORIZONTAL REFERENCE BEAM 298 9.6.3 THE CASE OF A MECHANICALLY
SUSPENDED PLATFORM 299 9.6.4 THE CASE OF A MAGNETICALLY SUSPENDED
PLATFORM 302 9.7 METHODS RELYING ON TORSIONAL RESONANCES OF THE CL 304
9.8 DISCUSSION 306 9.9 CONCLUDING REMARKS 318 REFERENCES 319 PART II
CHARACTERIZATION 10 SIMULTANEOUS TOPOGRAPHY AND RECOGNITION IMAGING A.
EBNER, L.A. CHTCHEGLOVA, J. PREINER, J. TANG, L. WILDLING, H.J. GRUBER,
AND P. HINTERDORFER 325 10.1 INTRODUCTION 326 10.2 AFM TIP CHEMISTRY 328
10.3 OPERATING PRINCIPLES OF TREC 331 10.3.1 HALF-AMPLITUDE VERSUS
FULL-AMPLITUDE FEEDBACK 334 10.3.2 ADJUSTING THE AMPLITUDE 337 10.3.3
ADJUSTING THE DRIVING FREQUENCY 340 10.3.4 PROOFING THE SPECIFICITY OF
THE DETECTED INTERACTIONS 342 10.4 APPLICATIONS OF TREC: SINGLE
PROTEINS, MEMBRANES, AND CELLS 344 10.4.1 ANTIBIOTIN ANTIBODIES ADSORBED
TO AN ORGANIC SEMICONDUCTOR 344 10.4.2 BACTERIAL S-LAYER LATTICES 346
10.4.3 RBC MEMBRANES 349 10.4.4 CELLS 351 10.5 CONCLUSION 357 REFERENCES
357 11 STRUCTURAL AND MECHANICAL MECHANISMS OF OCULAR TISSUES PROBED BY
AFM NOEL M. ZIEBARTH, FELIX RICO, AND VINCENT T. MOY 36 CONTENTS XV
11.3.3 LENS 376 11.3.4 RETINAL TISSUE 381 11.4 SUMMARY AND CONCLUSIONS
383 REFERENCES 383 12 FORCE-EXTENSION AND FORCE-CLAMP AFM SPECTROSCOPIES
IN INVESTIGATING MECHANOCHEMICAL REACTIONS AND MECHANICAL PROPERTIES OF
SINGLE BIOMOLECULES ROBERT SZOSZKIEWICZ 395 12.1 INTRODUCTION 396 12.2
EXPERIMENTAL TECHNIQUES FOR MEASURING DISPLACEMENTS AND FORCES AT THE
SINGLE MOLECULE LEVEL 397 12.2.1 CENTROID TRACKING 397 12.2.2
FLUORESCENCE RESONANCE ENERGY TRANSFER 398 12.2.3 MAGNETIC TWEEZERS 399
12.2.4 OPTICAL TRAPS 399 12.2.5 SINGLE MOLECULE AFM FORCE SPECTROSCOPY
401 12.3 DISPLACEMENT AND FORCE AS CONTROL PARAMETERS IN SMALL SYSTEMS.
402 12.3.1 DISPLACEMENT SENSITIVITY AND RESOLUTION 402 12.3.2 FORCE
SENSITIVITY AND RESOLUTION 404 12.4 AFM FORCE SPECTROSCOPY WITH A FEW
PICONEWTON SENSITIVITY AND AT A SINGLE MOLECULE LEVEL 404 12.4.1
FINGERPRINTING THE BIOMOLECULES 405 12.4.2 OPTIMIZING THE AFM SYSTEM 405
12.5 FX-AFM PROBES MECHANICAL STABILITY OF PROTEINS AND POLYSACCHARIDES
406 12.5.1 DETAILS OF THE FX TRACE 406 12.5.2 WHAT CAN BE INFERRED FROM
THE FX TRACE? 407 12.5.3 APPLICATIONS OF FX FORCE SPECTROSCOPY 408 12.6
FC-AFM PROBES THE DETAILS OF PROTEIN (UN)FOLDING AND FORCE-INDUCED
DISULFIDE REDUCTIONS IN PROTEINS 409 12.6.1 DETAILS OF THE FC TRACE 409
12.6.2 WHAT CAN BE INFERRED FROM THE FC TRACE? 410 12.6. XVI CONTENTS
13.2.2 CATE: FROM COMPUTER-AIDED ANATOMIC 3D RECONSTRUCTION TO SCAFFOLDS
MODELLING AND DESIGN 432 13.2.3 CATE: FEM AND CFD-BASED SCAFFOLDS
MODELLING AND DESIGN METHODS 448 13.3 UNDERSTANDING THE CELL AND TISSUE
MECHANICS: A MULTI-SCALE APPROACH 464 13.4 EXPERIMENTAL TECHNIQUES FOR
SCAFFOLDS CHARACTERISATIONS 468 REFERENCES 476 14 QUANTIZED MECHANICS OF
NANOTUBES AND BUNDLES NICOLA M. PUGNO 487 14.1 INTRODUCTION 487 14.2
QUANTIZED FRACTURE MECHANICS APPROACHES 488 14.3 FRACTURE STRENGTH 492
14.4 IMPACT STRENGTH 493 14.5 HYPER-ELASTICITY, ELASTIC-PLASTICITY,
FRACTAL CRACKS, AND FINITE DOMAINS 494 14.6 FATIGUE LIFE 494 14.7
ELASTICITY 495 14.8 ATOMISTIC SIMULATIONS 496 14.9 NANOTENSILE TESTS 499
14.10 THERMODYNAMIC LIMIT 502 14.11 HIERARCHICAL SIMULATIONS AND SIZE
EFFECTS: FROM A NANOTUBE TO A MEGACABLE 503 14.12 CONCLUSIONS 505
REFERENCES 505 15 SPIN AND CHARGE PAIRING INSTABILITIES IN NANOCLUSTERS
AND NANOMATERIALS ARMEN N. ROCHARIAN, GAYANATH W. FERNANDO, AND CHI YANG
507 15.1 FROM ATOMS TO SOLIDS 507 15.1.1 DISCRETENESS OF SPECTRUM 509
15.1.2 ELECTRON SPECTROSCOPY 510 15.1.3 ELECTRON CORRELATIONS IN
CLUSTERS 511 15.2 TRANSITION METAL OXIDES 513 15.2.1 SPIN-CHARGE
SEPARATION 513 15.2.2 BCS VERSUS HIGH T C CONTENTS XVII 15.5 HUBBARD
MODEL 529 15.5.1 GSCF DECOUPLING SCHEME 529 15.5.2 CANONICAL
TRANSFORMATION 531 15.5.3 ORDER PARAMETER A^ +) 532 15.5.4
QUASI-PARTICLE SPECTRUM 534 15.5.5 CHEMICAL POTENTIAL 535 15.5.6 GROUND
STATE PHASE DIAGRAM 537 15.5.7 GSCF PHASE DIAGRAM AT T 0 539 15.6
BOTTOM UP APPROACH 540 15.6.1 THE CLUSTER FORMALISM 542 15.7 GENERAL
METHODOLOGY 542 15.7.1 THE CANONICAL CHARGE AND SPIN GAPS 543 15.7.2
QUANTUM CRITICAL POINTS: LEVEL CROSSINGS 545 15.7.3 SYMMETRY BREAKING
546 15.7.4 THE CHARGE AND SPIN INSTABILITIES 548 15.7.5 THE CHARGE AND
SPIN SUSCEPTIBILITY PEAKS 550 15.7.6 CHARGE AND SPIN INHOMOGENEITIES 551
15.7.7 THE COHERENT CHARGE AND SPIN PAIRINGS 553 15.8 GROUND STATE
PROPERTIES 554 15.8.1 BIPARTITE CLUSTERS 554 15.8.2 TETRAHEDRONS 556
15.8.3 SQUARE PYRAMIDS 559 15.9 PHASE T-/I DIAGRAM 560 15.9.1
TETRAHEDRONS AT T = 1 560 15.10 CONCLUSION 563 REFERENCES 565 16
MECHANICAL PROPERTIES OF ONE-DIMENSIONAL NANOSTRUCTURES GHEORGHE STAN
AND ROBERT F. COOK 571 16.1 INTRODUCTION 571 16.2 MECHANICAL PROPERTY
MEASUREMENTS OF ONE-DIMENSIONAL NANOSTRUCTURES 572 16.2.1 ELECTRIC
FIELD-INDUCED MECHANICAL RESONANCE OF ONE-DIMENSIONAL NANOSTRUCTURES 573
16.2. XVIII CONTENTS 16.3 CONTACT-RESONANCE ATOMIC FORCE MICROSCOPY 579
16.3.1 CANTILEVER DYNAMICS IN CR-AFM 580 16.3.2 CONTACT MECHANICS IN
CR-AFM 583 16.3.3 PRECISION AND ACCURACY IN CR-AFM MEASUREMENTS
(DUAL-REFERENCE CALIBRATION METHOD FOR CR-AFM) 585 16.4
CONTACT-RESONANCE ATOMIC FORCE MICROSCOPY APPLIED TO ELASTIC MODULUS
MEASUREMENTS OF ID NANOSTRUCTURES 587 16.4.1 NORMAL CONTACT STIFFNESS OF
THE TIP-NANOWIRE CONTACT... 588 16.4.2 LATERAL CONTACT STIFFNESS OF THE
TIP-NANOWIRE CONTACT ... 589 16.5 ELASTIC MODULI OF ZNO AND TE NANOWIRES
MEASURED BY CR-AFM . 590 16.5.1 CR-AFM MEASUREMENTS ON ZNO NANOWIRES 590
16.5.2 CR-AFM MEASUREMENTS ON TE NANOWIRES 596 16.6 SURFACE EFFECTS ON
THE MECHANICAL PROPERTIES OF ID NANOSTRUCTURES 601 16.7 HOW IMPORTANT
ARE THE MECHANICAL PROPERTIES OF ID NANOSTRUCTURES IN APPLICATIONS? 604
REFERENCES 605 17 COLOSSAL PERMITTIVITY IN ADVANCED FUNCTIONAL
HETEROGENEOUS MATERIALS: THE RELEVANCE OF THE LOCAL MEASUREMENTS AT
SUBMICRON SCALE PATRICK FIORENZA, RAFFAELLA LO NIGRO, AND VITO RAINERI
613 17.1 INTRODUCTION 614 17.2 PHYSICAL PROPERTIES OF HETEROGENEOUS
MATERIALS 616 17.2.1 THEORY OF THE DIELECTRIC RELAXATION: BASIC
PRINCIPLES 616 17.2.2 SEPARATION OF CHARGES: MAXWELL/WAGNER/SILLARS
POLARIZATION 619 17.2.3 ULTIMATE THEORIES ON THE DIELECTRIC RELAXATION
621 17.3 CONVENTIONAL MACROSCOPIC TECHNIQUES 627 17.3. CONTENTS XIX 18.3
MODELLING WEAR AS AN ACTIVATED PROCESS 669 18.3.1 SELF-ASSEMBLED
MONOLAYERS AS A FRAME FOR MODELLING WEAR IN VISCOELASTIC MATERIALS 675
18.4 CONCLUSIONS 683 REFERENCES 684 19 CONTACT POTENTIAL DIFFERENCE
TECHNIQUES AS PROBING TOOLS IN TRIBOLOGY AND SURFACE MAPPING ANATOLY
ZHARIN 687 19.1 INTRODUCTION 687 19.2 ELECTRON WORK FUNCTION AS A
PARAMETER FOR SURFACES CHARACTERIZATION 688 19.3 MEASUREMENTS OF CONTACT
POTENTIAL DIFFERENCE 690 19.3.1 KELVIN-ZISMAN PROBE 691 19.3.2
NONVIBRATING PROBE 692 19.3.3 IONIZATION PROBE 693 19.3.4 ATOMIC FORCE
MICROSCOPE IN KELVIN MODE 694 19.4 TYPICAL ELECTRON WORK FUNCTION
RESPONSES 696 19.4.1 SURFACE DEFORMATION 696 19.4.2 FRICTION 698 19.4.3
EXPERIMENTAL EXAMPLES OF KELVIN TECHNIQUE APPLICATION . 701 19.5
PERIODIC ELECTRON WORK FUNCTION CHANGES DURING FRICTION 704 19.5.1
PHENOMENOLOGY 704 19.6 SURFACE MAPPING EXAMPLES 713 19.7 CLOSURE 716
REFERENCES 717 PART III INDUSTRIAL APPLICATIONS 20 MODERN ATOMIC FORCE
MICROSCOPY AND ITS APPLICATION TO THE STUDY OF GENOME ARCHITECTURE KUNIO
TAKEYASU, HUGO MARUYAMA, YUKI SUZUKI, KOHJI HIZUME, AND SHIGE H.
YOSHIMURA 723 20.1 INTRODUCTION: HISTORY OF AFM APPLICATIONS TO
BIOLOGICAL MACROMOLECULES 724 20.1.1 NANOMETER SCALE IMAGING OF
DNA-PROTEIN COMPLEXES ... 724 20.1. XX CONTENTS 20.2.3 CANTILEVER
MODIFICATION AND APPLICATION TO FORCE MEASUREMENTS 730 20.2.4
RECOGNITION IMAGING: INTEGRATION OF FORCE MEASUREMENTS AND IMAGING 731
20.3 EUKARYOTIC GENOME ARCHITECTURE 731 20.3.1 BIOPHYSICAL PROPERTIES OF
DNA AND DNA-BINDING PROTEINS 733 20.3.2 FUNDAMENTAL STRUCTURES OF
EUKARYOTIC GENOMES 735 20.3.3 CHROMOSOME STRUCTURE IN THE MITOTIC PHASE
738 20.3.4 CHROMATIN STRUCTURE INSIDE NUCLEI 738 20.4 PROKARYOTIC GENOME
ARCHITECTURE 739 20.4.1 BACTERIAL DNA-BINDING PROTEINS 739 20.4.2
BACTERIAL GENOME STRUCTURE AND DYNAMICS 741 20.4.3 ARCHAEAL DNA-BINDING
PROTEINS, GENOME STRUCTURE, AND DYNAMICS 742 20.5
CONCLUSION/PERSPECTIVES 746 REFERENCES 746 21 NEAR-FIELD OPTICAL
LITOGRAPHY EUGENIO CEFALI, SALVATORE PATANE, AND MARIA ALLEGRINI 757
21.1 INTRODUCTION 758 21.2 LITHOGRAPHY: PRINCIPLES AND MATERIALS 758
21.2.1 PHOTOLITOGRAPHY 760 21.2.2 ELECTRON BEAM LITHOGRAPHY 762 21.2.3
ION BEAM LITHOGRAPHY 763 21.2.4 MATERIALS 764 21.3 SCANNING NEAR-FIELD
OPTICAL MICROSCOPY AND LITHOGRAPHY 767 21.3.1 APERTURE AND APERTURELESS
SNOM LITHOGRAPHY 771 21.3.2 NEAR-FIELD OPTICAL LITHOGRAPHY ACHIEVEMENTS
ON AZO - POLYMERS 781 21.4 CONCLUSIONS 788 REFERENCES 788 22 A NEW
AFM-BASED LITHOGRAPHY METHOD: THERMOCHEMICAL NANOLITHOGRAPHY DEBIN WANG,
ROBERT SZOSZKIEWICZ, VAMSI KODALI, JENNIFER CURTIS, SEIH CONTENTS XXI 23
SCANNING PROBE ALLOYING NANOLITHOGRAPHY LUOHAN PENG, HYUNGOO LEE, AND
HONG LIANG 813 23.1 BRIEF REVIEW OF NANOLITHOGRAPHY 813 23.1.1
INTRODUCTION 813 23.1.2 PROBE-BASED LITHOGRAPHY 815 23.1.3 PROBE
MATERIALS AND PROPERTIES 816 23.1.4 PROBE WEAR 817 23.2 NANOALLOYING AND
NANOCRYSTALLIZATION 819 23.2.1 BACKGROUND 819 23.2.2 SYNTHESIS OF
NANOALLOYS 819 23.3 PROBE-BASED NANOALLOYING AND NANOCRYSTALIZATIONS 820
23.3.1 BACKGROUND 820 23.3.2 SCANNING PROBE-BASED ALLOYING
NANOLITHOGRAPHY 821 REFERENCES 827 24 STRUCTURING THE SURFACE OF
CRYSTALLIZABLE POLYMERS WITH AN AFM TIP CVETLIN VASILEV, GUENTER REITER,
KHALIL JRADI, SOPHIE BISTAC, AND MARJORIE SCHMITT 833 24.1 INTRODUCTION
833 24.2 EXPERIMENTAL PART 836 24.2.1 CHARACTERISTICS OF THE POLYMERS
USED 836 24.2.2 SAMPLE PREPARATION 837 24.2.3 THE EMPLOYED AFM WORKING
MODE 837 24.3 MELTING OF CONFINED, NANOMETER-SIZED POLYMER CRYSTALS 841
24.3.1 SELF-ASSEMBLY AND NON-PERIODIC PATTERNS 841 24.3.2 THE AFM SET-UP
EMPLOYED FOR LOCAL HEATING 843 24.3.3 LOCAL MELTING OF CONFINED POLYMER
CRYSTALS 843 24.4 LOWERING THE CRYSTAL NUCLEATION BARRIER BY DEFORMING
POLYMER CHAINS 856 24.4.1 STRETCHED CHAINS RESULTING FROM FRICTION
TRANSFER 856 24.4.2 STRETCHED CHAINS RESULTING FROM RUBBING WIT XXII
CONTENTS 25.3 APPLICATIONS TO METAL FORMING 886 25.3.1 EVALUATION OF
LUBRICANTS 886 25.3.2 BULK AND SHEET FORMING 887 25.3.3 POWDER
PROCESSING 894 25.4 ABRASIVE MACHINING PROCESSES 896 25.4.1 GRINDING AND
POLISHING 896 25.4.2 CHEMICAL MECHANICAL POLISHING 897 25.4.3
MISCELLANEOUS APPLICATIONS 901 25.5 POLYMER PROCESSING 902 25.6
CONCLUSIONS 904 REFERENCES 905 26 SCANNING PROBE MICROSCOPY AS A TOOL
APPLIED TO AGRICULTURE FABIO LIMA LEITE, ALEXANDRA MANZOLI, PAULO SERGIO
DE PAULA HER- RMANN JR, OSVALDO NOVAIS OLIVEIRA JR, AND LUIZ HENRIQUE
CAPPARELLI MATTOSO .... 915 26.1 APPLICATIONS OF NANOTECHNOLOGY IN
AGRICULTURE 915 26.2 APPLICATIONS OF AFM IN AGRICULTURE 916 26.2.1
INTRODUCTION 916 26.2.2 SOME EXAMPLES AND RESULTS OF AGRICULTURAL
RESEARCH .... 916 26.3 CONCLUSIONS AND PERSPECTIVES 940 REFERENCES 940
INDEX 945
|
any_adam_object | 1 |
author2 | Bhushan, Bharat 1949- |
author2_role | edt |
author2_variant | b b bb |
author_GND | (DE-588)122258762 |
author_facet | Bhushan, Bharat 1949- |
building | Verbundindex |
bvnumber | BV035804596 |
classification_rvk | UH 6310 UH 6320 VE 9850 ZM 3850 |
ctrlnum | (OCoLC)618950621 (DE-599)DNB995338353 |
dewey-full | 620.11299 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.11299 |
dewey-search | 620.11299 |
dewey-sort | 3620.11299 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01951nam a2200505 c 4500</leader><controlfield tag="001">BV035804596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110503 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091103s2010 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N31,0826</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">995338353</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642035340</subfield><subfield code="c">Gb. : EUR 181.85 (freier Pr.)</subfield><subfield code="9">978-3-642-03534-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642035340</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12463206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)618950621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB995338353</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11299</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6310</subfield><subfield code="0">(DE-625)159500:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6320</subfield><subfield code="0">(DE-625)145762:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 3850</subfield><subfield code="0">(DE-625)157030:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">670</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanning probe microscopy in nanoscience and nanotechnology</subfield><subfield code="c">Bharat Bhushan, ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXX, 956 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nanoscience and technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield><subfield code="x">Microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scanning probe microscopy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rastersondenmikroskopie</subfield><subfield code="0">(DE-588)4330328-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rastersondenmikroskopie</subfield><subfield code="0">(DE-588)4330328-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhushan, Bharat</subfield><subfield code="d">1949-</subfield><subfield code="0">(DE-588)122258762</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-03535-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018663666&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018663666</subfield></datafield></record></collection> |
id | DE-604.BV035804596 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:04:58Z |
institution | BVB |
isbn | 9783642035340 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018663666 |
oclc_num | 618950621 |
open_access_boolean | |
owner | DE-83 DE-1050 |
owner_facet | DE-83 DE-1050 |
physical | XXX, 956 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Springer |
record_format | marc |
series2 | Nanoscience and technology |
spelling | Scanning probe microscopy in nanoscience and nanotechnology Bharat Bhushan, ed. Berlin [u.a.] Springer 2010 XXX, 956 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanoscience and technology Nanostructured materials Microscopy Scanning probe microscopy Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Rastersondenmikroskopie (DE-588)4330328-6 gnd rswk-swf Rastersondenmikroskopie (DE-588)4330328-6 s Nanostrukturiertes Material (DE-588)4342626-8 s DE-604 Bhushan, Bharat 1949- (DE-588)122258762 edt Erscheint auch als Online-Ausgabe 978-3-642-03535-7 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018663666&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Scanning probe microscopy in nanoscience and nanotechnology Nanostructured materials Microscopy Scanning probe microscopy Nanostrukturiertes Material (DE-588)4342626-8 gnd Rastersondenmikroskopie (DE-588)4330328-6 gnd |
subject_GND | (DE-588)4342626-8 (DE-588)4330328-6 |
title | Scanning probe microscopy in nanoscience and nanotechnology |
title_auth | Scanning probe microscopy in nanoscience and nanotechnology |
title_exact_search | Scanning probe microscopy in nanoscience and nanotechnology |
title_full | Scanning probe microscopy in nanoscience and nanotechnology Bharat Bhushan, ed. |
title_fullStr | Scanning probe microscopy in nanoscience and nanotechnology Bharat Bhushan, ed. |
title_full_unstemmed | Scanning probe microscopy in nanoscience and nanotechnology Bharat Bhushan, ed. |
title_short | Scanning probe microscopy in nanoscience and nanotechnology |
title_sort | scanning probe microscopy in nanoscience and nanotechnology |
topic | Nanostructured materials Microscopy Scanning probe microscopy Nanostrukturiertes Material (DE-588)4342626-8 gnd Rastersondenmikroskopie (DE-588)4330328-6 gnd |
topic_facet | Nanostructured materials Microscopy Scanning probe microscopy Nanostrukturiertes Material Rastersondenmikroskopie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018663666&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bhushanbharat scanningprobemicroscopyinnanoscienceandnanotechnology |