Introduction to geometric probability:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2006
|
Ausgabe: | Digital printing |
Schriftenreihe: | Lezioni Lincee
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 178 S. graph. Darst. |
ISBN: | 0521596548 9780521596541 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035790733 | ||
003 | DE-604 | ||
005 | 20091029 | ||
007 | t | ||
008 | 091026s2006 d||| |||| 00||| eng d | ||
020 | |a 0521596548 |9 0-521-59654-8 | ||
020 | |a 9780521596541 |9 978-0-521-59654-1 | ||
035 | |a (OCoLC)634638468 | ||
035 | |a (DE-599)HBZHT015518971 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-20 | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
100 | 1 | |a Klain, Daniel A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to geometric probability |c Daniel A. Klain ; Gian-Carlo Rota |
250 | |a Digital printing | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2006 | |
300 | |a XIV, 178 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Lezioni Lincee | |
650 | 0 | 7 | |a Geometrische Wahrscheinlichkeit |0 (DE-588)4156727-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Geometrische Wahrscheinlichkeit |0 (DE-588)4156727-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rota, Gian-Carlo |d 1932-1999 |e Verfasser |0 (DE-588)119286416 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018650075&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018650075 |
Datensatz im Suchindex
_version_ | 1804140731254702080 |
---|---|
adam_text | Contents
Preface
page
xi
Using this book
xiv
1
The Buffon needle problem
1
1.1
The classical problem
1
1.2
The space of lines
3
1.3
Notes
5
2
Valuation and integral
6
2.1
Valuations
6
2.2
Groemer s integral theorem
8
2.3
Notes
11
3
A discrete lattice
13
3.1
Subsets of a finite set
13
3.2
Valuations on a simplicial complex
21
3.3
A discrete analogue of Helly s theorem
28
3.4
Notes
29
4
The intrinsic volumes for parallelotopes
30
4.1
The lattice of parallelotopes
30
4.2
Invariant valuations on parallelotopes
35
4.3
Notes
41
5
The lattice of polyconvex sets
42
5.1
Polyconvex sets
42
5.2
The
Euler
characteristic
46
5.3
Helly s theorem
50
5.4
Lutwak s containment theorem
54
5.5
Cauchy s surface area formula
55
5.6
Notes
58
vu
viii Contents
6 Invariant
measures on Grassmannians
60
6.1
The lattice of subspaces
60
6.2
Computing the flag coefficients
63
6.3
Properties of the flag coefficients
70
6.4
A continuous analogue of Sperner s theorem
73
6.5
A continuous analogue of Meshalkin s theorem
77
6.6
Helly s theorem for subspaces
81
6.7
Notes
83
7
The intrinsic volumes for polyconvex sets
86
7.1
The
affine
Grassmannian
86
7.2
The intrinsic volumes and Hadwiger s formula
87
7.3
An
Euler
relation for the intrinsic volumes
93
7.4
The mean projection formula
94
7.5
Notes
95
8
A characterization theorem for volume
98
8.1
Simple valuations on polyconvex sets
98
8.2
Even and odd valuations
106
8.3
The volume theorem
109
8.4
The normalization of the intrinsic volumes 111
8.5
Lattice points and volume
112
8.6
Remarks on Hubert s third problem
115
8.7
Notes
117
9
Hadwiger s characterization theorem
118
9.1
A proof of Hadwiger s characterization theorem
118
9.2
The intrinsic volumes of the unit ball
120
9.3
Crofton s formula
123
9.4
The mean projection formula revisited
125
9.5
Mean cross-sectional volume
128
9.6
The Buffon needle problem revisited
129
9.7
Intrinsic volumes on products
130
9.8
Computing the intrinsic volumes
135
9.9
Notes
140
10
Kinematic formulas for polyconvex sets
146
10.1
The principal kinematic formula
146
10.2
Hadwiger s containment theorem
150
10.3
Higher kinematic formulas
152
10.4
Notes
153
Contents ix
11 Polyconvex
sets in the sphere
154
11.1
Convexity in the sphere
154
11.2
A characterization for spherical area
156
11.3
Invariant valuations on spherical polytopes
159
11.4
Spherical kinematic formulas
162
11.5
Remarks on higher dimensional spheres
164
11.6
Notes
166
Bibliography
168
Index of symbols
174
Index
176
|
any_adam_object | 1 |
author | Klain, Daniel A. Rota, Gian-Carlo 1932-1999 |
author_GND | (DE-588)119286416 |
author_facet | Klain, Daniel A. Rota, Gian-Carlo 1932-1999 |
author_role | aut aut |
author_sort | Klain, Daniel A. |
author_variant | d a k da dak g c r gcr |
building | Verbundindex |
bvnumber | BV035790733 |
classification_rvk | SK 800 |
ctrlnum | (OCoLC)634638468 (DE-599)HBZHT015518971 |
discipline | Mathematik |
edition | Digital printing |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01470nam a2200373 c 4500</leader><controlfield tag="001">BV035790733</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091029 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091026s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521596548</subfield><subfield code="9">0-521-59654-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521596541</subfield><subfield code="9">978-0-521-59654-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634638468</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015518971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klain, Daniel A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to geometric probability</subfield><subfield code="c">Daniel A. Klain ; Gian-Carlo Rota</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Digital printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 178 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lezioni Lincee</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4156727-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4156727-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rota, Gian-Carlo</subfield><subfield code="d">1932-1999</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119286416</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018650075&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018650075</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV035790733 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:04:38Z |
institution | BVB |
isbn | 0521596548 9780521596541 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018650075 |
oclc_num | 634638468 |
open_access_boolean | |
owner | DE-703 DE-20 |
owner_facet | DE-703 DE-20 |
physical | XIV, 178 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Press |
record_format | marc |
series2 | Lezioni Lincee |
spelling | Klain, Daniel A. Verfasser aut Introduction to geometric probability Daniel A. Klain ; Gian-Carlo Rota Digital printing Cambridge Cambridge Univ. Press 2006 XIV, 178 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lezioni Lincee Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Geometrische Wahrscheinlichkeit (DE-588)4156727-4 s DE-604 Rota, Gian-Carlo 1932-1999 Verfasser (DE-588)119286416 aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018650075&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Klain, Daniel A. Rota, Gian-Carlo 1932-1999 Introduction to geometric probability Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd |
subject_GND | (DE-588)4156727-4 (DE-588)4151278-9 |
title | Introduction to geometric probability |
title_auth | Introduction to geometric probability |
title_exact_search | Introduction to geometric probability |
title_full | Introduction to geometric probability Daniel A. Klain ; Gian-Carlo Rota |
title_fullStr | Introduction to geometric probability Daniel A. Klain ; Gian-Carlo Rota |
title_full_unstemmed | Introduction to geometric probability Daniel A. Klain ; Gian-Carlo Rota |
title_short | Introduction to geometric probability |
title_sort | introduction to geometric probability |
topic | Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd |
topic_facet | Geometrische Wahrscheinlichkeit Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018650075&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT klaindaniela introductiontogeometricprobability AT rotagiancarlo introductiontogeometricprobability |