On solar hydrogen & nanotechnology:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
Wiley
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXI, 680 S. Ill., graph. Darst. |
ISBN: | 9780470823972 0470823976 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035780866 | ||
003 | DE-604 | ||
005 | 20130507 | ||
007 | t | ||
008 | 091020s2009 ad|| |||| 00||| eng d | ||
015 | |a GBA986579 |2 dnb | ||
020 | |a 9780470823972 |9 978-0-470-82397-2 | ||
020 | |a 0470823976 |9 0-470-82397-6 | ||
035 | |a (OCoLC)729965181 | ||
035 | |a (DE-599)BVBBV035780866 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-91G |a DE-83 |a DE-703 |a DE-384 | ||
050 | 0 | |a TJ810 | |
082 | 0 | |a 621.31244 |2 22 | |
084 | |a VN 6050 |0 (DE-625)147593:253 |2 rvk | ||
084 | |a ZP 4150 |0 (DE-625)157979: |2 rvk | ||
084 | |a ERG 720f |2 stub | ||
084 | |a ERG 770f |2 stub | ||
245 | 1 | 0 | |a On solar hydrogen & nanotechnology |c ed. Lionel Vayssieres |
264 | 1 | |a Singapore |b Wiley |c 2009 | |
300 | |a XXI, 680 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Solar energy | |
650 | 4 | |a Hydrogen as fuel | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Hydrogen as fuel | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Solar energy | |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wasserstoffenergietechnik |0 (DE-588)4121905-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sonnenenergie |0 (DE-588)4055572-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sonnenenergie |0 (DE-588)4055572-0 |D s |
689 | 0 | 1 | |a Wasserstoffenergietechnik |0 (DE-588)4121905-3 |D s |
689 | 0 | 2 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Vayssieres, Lionel |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018640386&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018640386&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-018640386 |
Datensatz im Suchindex
_version_ | 1804140716120604672 |
---|---|
adam_text | Contents
List of Contributors
xvii
Preface
xix
Editor Biography
xxiii
PART ONE—FUNDAMENTALS, MODELING, AND EXPERIMENTAL
INVESTIGATION OF PHOTOCATALYTIC REACTIONS FOR DIRECT
SOLAR HYDROGEN GENERATION
1
Solar Hydrogen Production by Photoelectrochemical
Water Splitting: The Promise and Challenge
3
Eric L. Miller
1.1
Introduction
3
1.2
Hydrogen or Hype?
4
1.3
Solar Pathways to Hydrogen
5
1.3.1
The Solar Resource
5
1.3.2
Converting Sunlight
6
1.3.3
Solar-Thermal Conversion
7
1.3.4
Solar-Potential Conversion
8
1.3.5
Pathways to Hydrogen
9
1.4
Photoelectrochemical Water-Splitting
10
1.4.1
Photoelectrochemistry
10
1.4.2
PEC Water-Splitting Reactions
10
1.4.3
Solar-to-Hydrogen Conversion Efficiency
13
1.4.4
Fundamental Process Steps
14
1.5
The Semiconductor/Electrolyte Interface
14
1.5.1
Rectifying Junctions
14
1.5.2
A Solid-State Analogy: The np+ Junction
15
1.5.3
PEC Junction Formation
17
1.5.4
Illuminated Characteristics
19
1.5.5
Fundamental Process Steps
20
Contents
1.6 Photoelectrode
Implementations
23
1.6.1
Single-Junction
Performance Limits 23
1.6.2
Multifunction
Performance Limits 24
1.6.3
A Shining Example
27
1.7
The PEC Challenge
28
1.7.1
What s Needed, Really?
28
1.7.2
Tradeoffs and Compromises
29
1.7.3
The Race with PV-Electrolysis
29
1.8
Facing the Challenge: Current PEC Materials Research
29
Acknowledgments
32
References
32
2
Modeling and Simulation of Photocatalytic Reactions at TiO2 Surfaces
37
Hideyuki Kamisaka and Koichi Yamashita
2.1
Importance of Theoretical Studies on TiO2 Systems
37
2.2
Doped TiO2 Systems: Carbon and Niobium Doping
39
2.2.1
First-Principle Calculations on TiO2
39
2.2.2
С
-Doped TiO2
41
2.2.3
Nb-Doped TiO2
45
2.3
Surface Hydroxyl Groups and the Photoinduced Hydrophilicity of TiO2
51
2.3.1
Speculated Active Species on TiO2
- Superoxide
Anion
(O2
)
and the Hydroxyl Radical (OH*)
51
2.3.2
Theoretical Calculations of TiO2 Surfaces and Adsorbents
51
2.3.3
Surface Hydroxyl Groups and Photoinduced Hydrophilic
Conversion
53
2.4
Dye-Sensitized Solar Cells
58
2.4.1
Conventional Sensitizers: Ruthenium Compounds and Organic Dyes
58
2.4.2
Multiexciton Generation in Quantum Dots: A Novel Sensitizer
for a DSSC
59
2.4.3
Theoretical Estimation of the Decoherence Time between
the Electronic States in PbSe QDs
60
2.5
Future Directions:
Ab Initio
Simulations and the Local
Excited States on TiO2
63
2.5.1
Improvement of the DFT Functional
64
2.5.2
Molecular Mechanics and
Ab
Initio Molecular Dynamics
65
2.5.3
Description of Local Excited States
66
2.5.4
Nonadiabatic Behavior of a System and
Interfacial
Electron Transfer
67
Acknowledgments
68
References
68
3
Photocatalytic Reactions on Model Single Crystal TiO2 Surfaces
77
G.I.N. Waterhouse and H. Idriss
3.1
TiO2 Single-Crystal Surfaces
78
3.2
Photoreactions Over Semiconductor Surfaces
80
Contents
3.3
Ethanol
Reactions Over TiO2(l
10)
Surface
81
3.4
Photocatalysis and Structure Sensitivity
83
3.5
Hydrogen Production from
Ethanol
Over Au/TiO2 Catalysts
84
3.6
Conclusions
87
References
87
Fundamental Reactions on
Rutile
TiO2(l
10)
Model
Photocatalysts Studied by High-Resolution Scanning
Tunneling Microscopy
91
Stefan
Wendt,
Ronnie T. Vang, and Flemming
Besenbacher
4.1
Introduction
91
4.2
Geometric Structure and Defects of the
Rutile
TiO2
(110)
Surface
93
4.3
Reactions of Water with Oxygen Vacancies
96
4.4
Splitting of Paired
H
Adatoms
and Other Reactions Observed on Partly
Water Covered TiO2(
110) 98
4.5
O2 Dissociation and the Role of
Ti
Interstitials
101
4.6
Intermediate Steps of the Reaction Between O2 and
H
Adatoms
and the Role of
Coadsorbed
Water
106
4.7
Bonding of Gold Nanoparticles on TiO2(
110)
in Different Oxidation States
112
4.8
Summary and Outlook
115
References
117
PART TWO—ELECTRONIC STRUCTURE, ENERGETICS,
AND TRANSPORT DYNAMICS OF PHOTOCATALYST
NANOSTRUCTURES
5
Electronic Structure Study of Nanostructured Transition
Metal Oxides Using Soft
Х
-Ray Spectroscopy
125
Jinghua Guo,
Per-Anders Glans, Yi-Sheng
Liu,
and Chinglin Chang
5.1
Introduction
125
5.2
Soft
Х
-Ray Spectroscopy
126
5.2.1
Soft
Х
-Ray Absorption and Emission Spectroscopy
126
5.2.2
Resonantly Excited Soft
Х
-Ray Emission
Spectroscopy
127
5.3
Experiment Set-Up
127
5.3.1
Beamline
128
5.3.2
Spectrometer and
Endstation 129
5.3.3
Sample Arrangements
131
5.4
Results and Discussion
132
Acknowledgments
139
References
139
viii Contents
6
X-ray and Electron Spectroscopy Studies of Oxide Semiconductors
for Photoelectrochemical Hydrogen Production
143
Clemens
Heske, Lothar
Weinhardt, and Marcus
Bär
6.1
Introduction
143
6.2
Soft
Х
-Ray and Electron Spectroscopies
145
6.3
Electronic Surface-Level Positions of WO3 Thin Films
147
6.3.1
Introduction
147
6.3.2
Sample Handling and the Influence of
Х
-Rays, UV-Light
and Low-Energy Electrons on the Properties of the WO3 Surface
147
6.3.3
Surface Band Edge Positions in Vacuum
-
Determination
with
1ЈРЅЛРЕЅ
149
6.3.4
Estimated Surface Band-Edge Positions in Electrolyte
151
6.3.5
Conclusions
153
6.4
Soft
Х
-Ray Spectroscopy of ZnO:Zn3N2 Thin Films
154
6.4.1
Introduction
154
6.4.2
The
О К
XES Spectrum of ZnO:N Thin Films
-
Determination
of the Valence Band Maximum
154
6.4.3
The Impact of Air Exposure on the Chemical Structure
of ZnO:N Thin Films
155
6.4.4
Conclusions
157
6.5
In Situ Soft
Х
-Ray Spectroscopy: A Brief Outlook
158
6.6
Summary
158
Acknowledgments
159
References
159
7
Applications of
Х
-Ray Transient Absorption Spectroscopy
in Photocatalysis for Hydrogen Generation
163
Lin X. Chen
7.1
Introduction
163
7.2
Х
-Ray Transient Absorption Spectroscopy (XTA)
165
7.3
Tracking Electronic and Nuclear Configurations in Photoexcited
Metalloporphyrins
171
7.4
Tracking Metal-Center Oxidation States in the MLCT State
of Metal Complexes
176
7.5
Tracking Transient Metal Oxidation States During Hydrogen Generation
178
7.6
Prospects and Challenges in Future Studies
180
Acknowledgments
181
References
181
8
Fourier-Transform Infrared and Raman Spectroscopy of Pure
and Doped TiO2 Photocatalysts
189
Lars
Österlund
8.1
Introduction
189
8.2
Vibrational Spectroscopy on T1O2 Photocatalysts: Experimental
Considerations
191
Contents ix
8.3
Raman Spectroscopy of Pure and Doped TiO2 Nanoparticles
195
8.4
Gas-Solid Photocatalytic Reactions Probed by FTIR Spectroscopy
199
8.5
Model Gas-Solid Reactions on Pure and Doped TiO2
Nanoparticles Studied by FTIR Spectroscopy
205
8.5.1
Reactions with Formic Acid
205
8.5.2
Reactions with Acetone
221
8.6
Summary and Concluding Remarks
229
Acknowledgments
230
References
230
9
Interfacial
Electron Transfer Reactions in CdS Quantum
Dot Sensitized TiO2 Nanocrystalline Electrodes
239
Yasuhiro Tachibana
9.1
Introduction
239
9.2
Nanomaterials
240
9.2.1
Semiconductor Quantum Dots
240
9.2.2
Metal Oxide Nanocrystalline Semiconductor Films
241
9.2.3
QD Sensitized Metal Oxide Semiconductor Films
242
9.3
Transient Absorption Spectroscopy
245
9.3.1
Principle
245
9.3.2
Calculation of Absorption Difference
245
9.3.3
System Arrangement
246
9.4
Controlling
Interfacial
Electron Transfer Reactions
by Nanomaterial Design
247
9.4.1
QD/Metal-Oxide Interface
248
9.4.2
QD/Electrolyte Interface
250
9.4.3
Conducting Glass/Electrolyte Interface
252
9.5
Application of QD-Sensitized Metal-Oxide Semiconductors to Solar
Hydrogen Production
258
9.6
Conclusion
260
Acknowledgments
260
References
260
PART THREE—DEVELOPMENT OF ADVANCED NANOSTRUCTURES
FOR EFFICIENT SOLAR HYDROGEN PRODUCTION FROM CLASSICAL
LARGE
BANDGAP
SEMICONDUCTORS
10
Ordered Titanium Dioxide Nanotubular Arrays as
Photoanodes
for Hydrogen Generation
267
M. Misra and K.S. Raja
10.1
Introduction
267
10.2
Crystal Structure of TiO2
268
10.2.1
Electronic and Defect Structure of TiO2
269
10.2.2
Preparation of TiO2 Nanotubes
272
10.2.3
Energetics of Photodecomposition of Water on TiO2
279
References
288
Contents
11 Electrodeposition
of
Nanostructured ZnO Films
and Their
Photoelectrochemical
Properties
291
Torsten Oekermann
11.1
Introduction
291
11.2
Fundamentals of Electrochemical Deposition
292
11.3 Electrodeposition
of
Metal Oxides
and Other Compounds
294
11.4
Electrodeposition
of
Zinc Oxide
295
11.4.1
Electrodeposition
of Pure ZnO
295
11.4.2
Electrodeposition
of Doped ZnO
297
11.4.3
P-n-Junctions
Based on
Electrodeposited ZnO
298
11.5
Electrodeposition
of One-
and Two-Dimensional ZnO Nanostructures
298
11.5.1
ZnONanorods
298
11.5.2
ZnONanotubes
301
11.5.3
Two-Dimensional ZnO Nanostructures
302
11.6
Use of Additives in ZnO
Electrodeposition
303
11.6.1
Dye Molecules as Structure-Directing Additives
303
11.6.2
ZnO Electrodeposition with Surfactants
307
11.6.3
Other Additives
311
11.7
Photoelectrochemical and Photovoltaic Properties
312
11.7.1
Dye-Sensitized Solar Cells (DSSCs)
312
11.7.2
Photoelectrochemical Investigation of the Electron Transport
in Porous ZnO Films
316
11.7.3
Performance of Nanoporous Electrodeposited
ZnO Films in DSSCs
320
11.7.4
Use of ZnO Nanorods in Photovoltaics
321
11.8
Photocatalytic Properties
322
11.9
Outlook
323
References
323
12
Nanostructured Thin-Film WO3
Photoanodes
for Solar Water
and Sea-Water Splitting
333
Bruce D. Alexander and Jan Augustymki
12.1
Historical Context
333
12.2
Macrocrystalline WO3 Films
334
12.3
Limitations of Macroscopic WO3
336
12.4
Nanostructured Films
336
12.5
Tailoring WO3 Films Through a Modified
Chimie
Douce Synthetic Route
339
12.6
Surface Reactions at Nanocrystalline WO3 Electrodes
342
12.7
Conclusions and Outlook
345
References
346
13
Nanostructured a-Fe2O3 in PEC Generation of Hydrogen
349
Vibha R. Satsangi, Sahab
Dass,
and Rohit Shrivastav
13.1
Introduction
349
13.2
a-FezOs
350
Contents
13.2.1
Structural
and Electrical/Electronic Properties
350
13.2.2
а-РегОз
in PEC Splitting of Water
351
13.3
Nanostructured
а-РегОз
Photoelectrodes
352
13.3.1
Preparation Techniques and Photoelectrochemical Response
353
13.3.2
Flatband
Potential and Donor Density
365
13.4
Strategies to Enhance Photoresponse
368
13.4.1
Doping
368
13.4.2
Choice of Electrolytes
373
13.4.3
Dye Sensitizers
374
13.4.4
Porosity
375
13.4.5
Forward/Backward Illumination
375
13.4.6
Loading of Metal/Metal Oxide
377
13.4.7
Layered Structures
377
13.4.8
Deposition of Zn Islands
380
13.4.9
Swift Heavy Ion (SHI) Irradiation
382
13.4.10
p/n Assemblies
385
13.5
Efficiency and Hydrogen Production
386
13.6
Concluding Remarks
388
Acknowledgments
393
References
393
PART FOUR—NEW DESIGN AND APPROACHES TO
BANDGAP
PROFILING AND VISIBLE-LIGHT-ACTIVE NANOSTRUCTURES
14
Photoelectrocatalyst Discovery Using High-Throughput Methods
and Combinatorial Chemistry
401
Alan Kleiman-Shwarsctein, Peng Zhang, Yongsheng
Ни,
and Eric W. McFarland
14.1
Introduction
401
14.2
The Use of High-Throughput and Combinatorial Methods for the
Discovery and Optimization of Photoelectrocatalyst Material Systems
402
14.2.1
The Use of High-Throughput and Combinatorial Methods
in Materials Science
402
14.2.2
HTE Applications to PEC Discovery
405
14.2.3
Absorbers
408
14.2.4
Bulk Carrier Transport
411
14.2.5
Electrocatalysts
412
14.2.6
Morphology and Material System
412
14.2.7
Library Format, Data Management and Analysis
414
14.3
Practical Methods of High-Throughput Synthesis of Photoelectrocatalysts
415
14.3.1
Vapor Deposition
416
14.3.2
Liquid Phase Synthesis
417
14.3.3
Electrochemical Synthesis
419
14.3.4
Spray Pyrolysis
422
xii Contents
14.4 Photocatalyst
Screening and Characterization
423
14.4.1
High-Throughput Screening
424
14.4.2
Secondary Screening and Quantitative Characterization
432
14.5
Specific Examples of High-Throughput Methodology
Applied to Photoelectrocatalysts
437
14.5.1
Solar Absorbers
437
14.5.2
Improving Charge-Transfer Efficiency
443
14.5.3
Improved PEC Electrocatalysts
448
14.5.4
Design and Assembly of a Complete Nanostractured
Photocatalytic Unit
451
14.6
Summary and Outlook
453
References
454
15
Multidimensional Nanostructures for Solar Water Splitting:
Synthesis, Properties, and Applications
459
Abraham Wolcott and Jin Z. Zhang
15.1
Motivation for Developing Metal-Oxide Nanostructures
459
15.1.1
Introduction
459
15.1.2
PEC Water Splitting for Hydrogen Production
460
15.1.3
Metal-Oxide PEC Cells
460
15.1.4
Dye and QD Sensitization
462
15.1.5
Deposition Techniques for Metal Oxides
462
15.2
Colloidal Methods for
OD
Metal-Oxide Nanoparticle Synthesis
463
15.2.1
Colloidal Nanoparticles
463
15.2.2
TiO2 Sol-Gel Synthesis
464
15.2.3
TiO2
Hydrothermal
Synthesis
465
15.2.4
TiO2 Solvothermal and Sonochemical Synthesis
466
15.2.5
TiO2 Template-Driven Synthesis
468
15.2.6
Sol-Gel WO3 Colloidal Synthesis
470
15.2.7
WO3
Hydrothermal
Synthesis
470
15.2.8
WO3 Solvothermal and Sonochemical Synthesis
470
15.2.9
WO3 Template Driven Synthesis
471
15.2.10
ZnO Sol-Gel Nanoparticle Synthesis
473
15.2.11
ZnO
Hydrothermal
Synthesis
474
15.2.12
ZnO Solvothermal and Sonochemical Synthesis
475
15.2.13
ZnO Template-Driven Synthesis
479
15.3
ID Metal-Oxide Nanostructures
481
15.3.1
Colloidal Synthesis and Fabrication
481
15.3.2
Synthesis and Fabrication of ID TiO2 Nanostructures
481
15.3.3
Colloidal Synthesis and Fabrication of ID WO3 Nanostructures
486
15.3.4
Colloidal Synthesis and Fabrication of ID ZnO Nanostructures
487
15.4
2D Metal-Oxide Nanostructures
488
15.4.1
Colloidal Synthesis of 2D T1O2 Nanostructures
488
15.4.2
Colloidal Synthesis of 2D WO3 Nanostructures
490
15.4.3
Colloidal Synthesis of 2D ZnO Nanostructures
491
Contents
15.5
Conclusion
492
Acknowledgments
493
References
493
16
Nanoparticle-Assembled Catalysts for Photochemical
Water Splitting
507
Frank E. Osterloh
16.1
Introduction
507
16.2
Two-Component Catalysts
509
16.2.1
Synthetic and Structural Aspects
509
16.2.2
Photocatalytic Hydrogen Evolution
511
16.2.3
Peroxide Formation
513
16.2.4
Water Electrolysis
515
16.3
CdSe Nanoribbons as a Quantum-Confined
Water-Splitting Catalyst
516
16.4
Conclusion and Outlook
518
Acknowledgment
519
References
519
17
Quantum-Confined Visible-Light-Active Metal-Oxide
Nanostructures for Direct Solar-to-Hydrogen
Generation
523
Lionel Vayssieres
17.1
Introduction
523
17.2
Design of Advanced Semiconductor Nanostructures
by Cost-Effective Technique
524
17.2.1
Concepts and Experimental Set-Up of Aqueous
Chemical Growth
524
17.2.2
Achievements in Aqueous Design of Highly Oriented
Metal-Oxide Arrays
528
17.3
Quantum Confinement Effects for Photovoltaics
and Solar Hydrogen Generation
529
17.3.1
Multiple Exciton Generation
530
17.3.2
Quantum-Well Structures
531
17.3.3
Intermediate Band Materials
531
17.4
Novel Cost-Effective Visible-Light-Active (Hetero)Nanostructures
for Solar Hydrogen Generation
533
17.4.1
Iron-Oxide Quantum-Rod Arrays
533
17.4.2
Doped Iron-Oxide Quantum-Rod Arrays
541
17.4.3
Quantum-Dot-Quantum-Rod Iron-Oxide
Heteronanostructure Arrays
545
17.4.4
Iron Oxide Oriented Porous Nanostructures
546
17.5
Conclusion and Perspectives
548
References
548
xjv Contents
18
Effects of Metal-Ion Doping, Removal and Exchange on Photocatalytic
Activity of Metal Oxides and Nitrides for Overall Water Splitting
559
Yasunobu Inoue
18.1
Introduction
559
18.2
Experimental Procedures
561
18.3
Effects of Metal Ion Doping
561
18.3.1
Sr2+ Ion-Doped CeO2
561
18.3.2
Metal-Ion Doped GaN
564
18.4
Effects of Metal-Ion Removal
569
18.5
Effects of Metal-Ion Exchange on Photocatalysis
573
18.5.1
YxIn2 XO3
573
18.5.2
ScxIn2_xO3
580
18.5.3
YxIn2_xGe207
582
18.6
Effects of Zn Addition to
Indate
and
Stannate
583
18.6.1
Li,.6Zn,.6Sn2.8O8
584
18.6.2
Ba3Zn5In2On
584
18.7
Conclusions
585
Acknowledgments
586
References
586
19
Supramolecular Complexes as Photoinitiated Electron Collectors:
Applications in Solar Hydrogen Production
589
Shamindri M. Arachchige and Karen J. Brewer
19.1
Introduction
589
19.1.1
Solar Water Splitting
589
19.1.2
Supramolecular Complexes and Photochemical
Molecular Devices
590
19.1.3
Polyazine Light Absorbers
591
19.1.4
Polyazine Bridging Ligands to Construct Photochemical
Molecular Devices
594
19.1.5
Multi-Component System for Visible Light Reduction of Water
595
19.1.6
Photoinitiated Charge Separation
596
19.2
Supramolecular Complexes for Photoinitiated
Electron Collection
598
19.2.1
Photoinitiated Electron Collection on a Bridging Ligand
598
19.2.2
Ruthenium Polyazine Light Absorbers Coupled Through
an Aromatic Bridging Ligand
600
19.2.3
Photoinitiated Electron Collection on a Platinum Metal
602
19.2.4
Two-Electron Mixed-Valence Complexes for Multielectron
Photochemistry
604
19.2.5
Rhodium-Centered Electron Collectors
605
19.2.6
Mixed-Metal Systems for Solar Hydrogen Production
613
19.3
Conclusions
614
List of Abbreviations
616
Acknowledgments
616
References
617
Contents
PART FIVE—NEW DEVICES FOR SOLAR THERMAL
HYDROGEN GENERATION
20
Novel Monolithic Reactors for Solar Thermochemical Water Splitting
623
Athanasios G. Konstandopoulos and Souzana Lorentzou
20.1
Introduction
623
20.1.1
Energy Production and Nanotechnology
623
20.1.2
Application of Solar Technologies
624
20.2
Solar Hydrogen Production
624
20.2.1
Solar Hydrogen Production: Thermochemical Processes
625
20.2.2
Solar Chemical Reactors
626
20.3
HYDROSOL Reactor
627
20.3.1
The Idea
627
20.3.2
Redox
Materials
627
20.3.3
Water Splitting: Laboratory Tests
629
20.3.4
HYDROSOL Reactors
630
20.3.5
Solar Testing
631
20.3.6
Simulation
633
20.3.7
Future Developments
636
20.4
HYDROSOL Process
636
20.5
Conclusions
637
Acknowledgments
638
References
638
21
Solar Thermal and Efficient Solar Thermal/Electrochemical
Photo Hydrogen Generation
641
Stuart
Licht
21.1
Comparison of Solar Hydrogen Processes
641
21.2
STEP (Solar Thermal Electrochemical Photo) Generation of H2
646
21.3
STEP Theory
648
21.4
STEP Experiment: Efficient Solar Water Splitting
653
21.5
NonHybrid Solar Thermal Processes
657
21.5.1
Direct Solar Thermal Hydrogen Generation
657
21.5.2
Indirect (Multistep) Solar Thermal H2 Generation
659
21.6
Conclusions
660
References
661
Index
665
4-ώ
On Solar Hydrogen
&
Nanotechnology
Lionel VayS
Neáamà
institute for
Malcriáis
Science,
japan
Efficiently harnessing
solai
power for sustainable generation of hydrogen requires low-cost, purpose-
built, functional materials combined with inexpensive large-scale manufacturing methods. These
issues are comprehensively addressed in (hi Solnr Hydrogen c- Ntinotcclinology
-
an authoritative,
interdisciplinary source of
fondamental
and applied knowledge in all areas related to solar hydrogen.
Written by leading experts, the book emphasizes state-of-the-art materials and characterization
techniques as well .is the impact of nanotechnology on this cutting edge field.
Addresses the current status and prospects of solar hydrogen, including major achievements,
performance benchmarks, technological limitations, and crucial remaining challenges
Covers the latest advances in fundamental understanding and development in photocatalytic
reactions, semiconductor nanostructures and heterostructures, quantum confinement effects,
device fabrication, modeling, simulation, and characterization techniques as they pertain to
solar generation of hydrogen
Assesses and establishes the present and future role of solar hydrogen in the hydrogen economy
Contains numerous graphics to illustrate concepts, techniques, and research results
Oí
Solar Hydrogen
ď
Nanotechnology is an essential reference for materials scientists, physical and
inorganic chemists, electrochemists, physicists, and engineers carrying out research on solar energy,
photocatalysis, or semiconducting nanomaterials, both in
academia
and industry. It is also an
invaluable resource for graduate students and postdoctoral researchers as well .is business
professionals and consultants with an interest in renewable energy.
Cover design by Dan Jubb
WILEY
wiley.com
ISBN
978-0-47082-397-2
780470
82397 2
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV035780866 |
callnumber-first | T - Technology |
callnumber-label | TJ810 |
callnumber-raw | TJ810 |
callnumber-search | TJ810 |
callnumber-sort | TJ 3810 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | VN 6050 ZP 4150 |
classification_tum | ERG 720f ERG 770f |
ctrlnum | (OCoLC)729965181 (DE-599)BVBBV035780866 |
dewey-full | 621.31244 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.31244 |
dewey-search | 621.31244 |
dewey-sort | 3621.31244 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Energietechnik, Energiewirtschaft Elektrotechnik / Elektronik / Nachrichtentechnik Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02119nam a2200529 c 4500</leader><controlfield tag="001">BV035780866</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130507 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091020s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA986579</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470823972</subfield><subfield code="9">978-0-470-82397-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470823976</subfield><subfield code="9">0-470-82397-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)729965181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035780866</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ810</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.31244</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 6050</subfield><subfield code="0">(DE-625)147593:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 4150</subfield><subfield code="0">(DE-625)157979:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 720f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 770f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On solar hydrogen & nanotechnology</subfield><subfield code="c">ed. Lionel Vayssieres</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Wiley</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 680 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen as fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen as fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar energy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserstoffenergietechnik</subfield><subfield code="0">(DE-588)4121905-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sonnenenergie</subfield><subfield code="0">(DE-588)4055572-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sonnenenergie</subfield><subfield code="0">(DE-588)4055572-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wasserstoffenergietechnik</subfield><subfield code="0">(DE-588)4121905-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vayssieres, Lionel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018640386&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018640386&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018640386</subfield></datafield></record></collection> |
id | DE-604.BV035780866 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:04:24Z |
institution | BVB |
isbn | 9780470823972 0470823976 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018640386 |
oclc_num | 729965181 |
open_access_boolean | |
owner | DE-29T DE-91G DE-BY-TUM DE-83 DE-703 DE-384 |
owner_facet | DE-29T DE-91G DE-BY-TUM DE-83 DE-703 DE-384 |
physical | XXI, 680 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley |
record_format | marc |
spelling | On solar hydrogen & nanotechnology ed. Lionel Vayssieres Singapore Wiley 2009 XXI, 680 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Solar energy Hydrogen as fuel Nanotechnology Nanotechnologie (DE-588)4327470-5 gnd rswk-swf Wasserstoffenergietechnik (DE-588)4121905-3 gnd rswk-swf Sonnenenergie (DE-588)4055572-0 gnd rswk-swf Sonnenenergie (DE-588)4055572-0 s Wasserstoffenergietechnik (DE-588)4121905-3 s Nanotechnologie (DE-588)4327470-5 s DE-604 Vayssieres, Lionel Sonstige oth Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018640386&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018640386&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | On solar hydrogen & nanotechnology Solar energy Hydrogen as fuel Nanotechnology Nanotechnologie (DE-588)4327470-5 gnd Wasserstoffenergietechnik (DE-588)4121905-3 gnd Sonnenenergie (DE-588)4055572-0 gnd |
subject_GND | (DE-588)4327470-5 (DE-588)4121905-3 (DE-588)4055572-0 |
title | On solar hydrogen & nanotechnology |
title_auth | On solar hydrogen & nanotechnology |
title_exact_search | On solar hydrogen & nanotechnology |
title_full | On solar hydrogen & nanotechnology ed. Lionel Vayssieres |
title_fullStr | On solar hydrogen & nanotechnology ed. Lionel Vayssieres |
title_full_unstemmed | On solar hydrogen & nanotechnology ed. Lionel Vayssieres |
title_short | On solar hydrogen & nanotechnology |
title_sort | on solar hydrogen nanotechnology |
topic | Solar energy Hydrogen as fuel Nanotechnology Nanotechnologie (DE-588)4327470-5 gnd Wasserstoffenergietechnik (DE-588)4121905-3 gnd Sonnenenergie (DE-588)4055572-0 gnd |
topic_facet | Solar energy Hydrogen as fuel Nanotechnology Nanotechnologie Wasserstoffenergietechnik Sonnenenergie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018640386&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018640386&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT vayssiereslionel onsolarhydrogennanotechnology |