Multivariate statistics: high-dimensional and large-sample approximations
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2010
|
Schriftenreihe: | Wiley series in probability and statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XVIII, 533 S. |
ISBN: | 9780470411698 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035768765 | ||
003 | DE-604 | ||
005 | 20100430 | ||
007 | t | ||
008 | 091014s2010 xxu |||| 00||| eng d | ||
010 | |a 2009017248 | ||
020 | |a 9780470411698 |c cloth |9 978-0-470-41169-8 | ||
035 | |a (OCoLC)535500802 | ||
035 | |a (DE-599)BVBBV035768765 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-634 |a DE-824 |a DE-898 |a DE-91G |a DE-521 |a DE-578 |a DE-11 |a DE-83 | ||
050 | 0 | |a QA278 | |
082 | 0 | |a 519.535 |2 22 | |
082 | 0 | |a 519.5/35 | |
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a MAT 627f |2 stub | ||
084 | |a 62Hxx |2 msc | ||
100 | 1 | |a Fujikoshi, Yasunori |d 1942- |e Verfasser |0 (DE-588)140791671 |4 aut | |
245 | 1 | 0 | |a Multivariate statistics |b high-dimensional and large-sample approximations |c Yasunori Fujikoshi ; Vladimir V. Ulyanov ; Ryoichi Shimizu |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2010 | |
300 | |a XVIII, 533 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Wiley series in probability and statistics | |
650 | 4 | |a Multivariate analysis | |
650 | 4 | |a Approximation theory | |
650 | 0 | 7 | |a Multivariate Analyse |0 (DE-588)4040708-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Multivariate Analyse |0 (DE-588)4040708-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ulʹjanov, Vladimir Vladimirovič |d 1953- |e Verfasser |0 (DE-588)140792015 |4 aut | |
700 | 1 | |a Shimizu, Ryoichi |d 1931- |e Verfasser |0 (DE-588)140792392 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018628506&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018628506&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-018628506 |
Datensatz im Suchindex
_version_ | 1804140697245188097 |
---|---|
adam_text | Contents
Preface
.................................................................xiii
Glossary of Notation and Abbreviations
...........................xvii
1
Multivariate Normal and Related Distributions
......................1
1.1
Random Vectors
.......................................................1
1.1.1
Mean Vector and Covariance Matrix
............................1
1.1.2
Characteristic Function and Distribution
.......................5
1.2
Multivariate Normal Distribution
......................................6
1.2.1
Bivariate Normal Distribution
..................................6
1.2.2
Definition
......................................................8
1.2.3
Some Properties
..............................................10
1.3
Spherical and Elliptical Distributions
.................................15
1.4
Multivariate
Cumulants
..............................................19
Problems
............................................................24
2
Wishart
Distribution
..................................................29
2.1
Definition
............................................................29
2.2
Some Basic Properties
................................................32
2.3
Functions of
Wishart
Matrices
........................................36
2.4
Cochran s Theorem
..................................................39
2.5
Asymptotic Distributions
.............................................40
Problems
............................................................43
3
Hotelling s T2 and Lambda Statistics
................................47
3.1
Hotelling s T2 and Lambda Statistics
.................................47
3.1.1
Distribution of the T2 Statistic
................................47
3.1.2
Decomposition of T2 and D2
..................................49
3.2
Lambda Statistic
.....................................................53
3.2.1
Motivation of the Lambda Statistic
...........................53
3.2.2
Distribution of the Lambda Statistic
..........................55
3.3
Test for Additional Information
......................................58
vi
Contents
3.3.1
Decomposition of the Lambda Statistic
........................61
Problems
............................................................64
4
Correlation Coefficients
................................................69
4.1
Ordinary Correlation Coefficients
.....................................69
4.1.1
Population Correlation
........................................69
4.1.2
Sample Correlation
...........................................71
4.2
Multiple Correlation Coefficient
......................................75
4.2.1
Population Multiple Correlation
...............................75
4.2.2
Sample Multiple Correlation
..................................77
4.3
Partial Correlation
...................................................80
4.3.1
Population Partial Correlation
................................80
4.3.2
Sample Partial Correlation
....................................82
4.3.3
Covariance Selection Model
...................................83
Problems
............................................................87
5
Asymptotic Expansions for Multivariate Basic Statistics
...........91
5.1
Edgeworth Expansion and its Validity
................................91
5.2
Sample Mean Vector and Covariance Matrix
..........................98
5.3
T2 Statistic
.........................................................104
5.3.1
Outlines of Two Methods
....................................104
5.3.2
Multivariate t-Statistic
.......................................107
5.3.3
Asymptotic Expansions
......................................109
5.4
Statistics with a Class of Moments
..................................
Ill
5.4.1
Large-Sample Expansions
....................................
Ill
5.4.2
High-Dimensional Expansions
................................117
5.5
Perturbation Method
................................................120
5.6
Cornish-Fisher Expansions
..........................................125
5.6.1
Expansion Formulas
.........................................125
5.6.2
Validity of Cornish-Fisher Expansions
.......................129
5.7
Transformations for Improved Approximations
......................132
5.8
Bootstrap Approximations
..........................................135
5.9
High-Dimensional Approximations
..................................138
5.9.1
Limiting Spectral Distribution
...............................138
5.9.2
Central Limit Theorem
......................................140
5.9.3
Martingale Limit Theorem
...................................143
5.9.4
Geometric Representation
....................................144
Problems
...........................................................145
6
MÁNOVA
Models
.....................................................149
6.1
Multivariate One-Way Analysis of Variance
..........................149
6.2
Multivariate Two-Way Analysis of Variance
..........................152
6.3
MÁNOVA
Tests
....................................................157
Contents
vii
6.3.1
Test Criteria
.................................................157
6.3.2
Large-Sample Approximations
...............................158
6.3.3
Comparison of Powers
.......................................159
6.3.4
High-Dimensional Approximations
...........................161
6.4
Approximations Under Nonnormality
................................163
6.4.1
Asymptotic Expansions
......................................163
6.4.2
Bootstrap Tests
..............................................167
6.5
Distributions of Characteristic Roots
................................170
6.5.1
Exact Distributions
..........................................170
6.5.2
Large-Sample Case
...........................................172
6.5.3
High-Dimensional Case
......................................174
6.6
Tests for Dimensionality
............................................176
6.6.1
Three Test Criteria
..........................................176
6.6.2
Large-Sample and High-Dimensional Asymptotics
............178
6.7
High-Dimensional Tests
.............................................181
Problems
...........................................................183
7
Multivariate Regression
..............................................187
7.1
Multivariate Linear Regression Model
...............................187
7.2
Statistical Inference
.................................................189
7.3
Selection of Variables
...............................................194
7.3.1
Stepwise Procedure
..........................................194
7.3.2
Cp Criterion
.................................................196
7.3.3
AIC Criterion
................................................200
7.3.4
Numerical Example
..........................................202
7.4
Principal Component Regression
....................................203
7.5
Selection of Response Variables
.....................................206
7.6
General Linear Hypotheses and Confidence Intervals
................209
7.7
Penalized Regression Models
........................................213
Problems
...........................................................213
8
Classical and High-Dimensional Tests for Covariance
Matrices
..............................................................219
8.1
Specified Covariance Matrix
.........................................219
8.1.1
Likelihood Ratio Test and Moments
..........................219
8.1.2
Asymptotic Expansions
......................................221
8.1.3
High-Dimensional Tests
......................................225
8.2
Sphericity
...........................................................227
8.2.1
Likelihood Ratio Tests and Moments
.........................227
8.2.2
Asymptotic Expansions
......................................228
8.2.3
High-Dimensional Tests
......................................230
8.3
Intraclass Covariance Structure
.....................................231
viii Contents
8.3.1
Likelihood Ratio Tests and Moments
.........................231
8.3.2
Asymptotic Expansions
......................................233
8.3.3
Numerical Accuracy
.........................................235
8.4
Test for Independence
...............................................236
8.4.1
Likelihood Ratio Tests and Moments
.........................236
8.4.2
Asymptotic Expansions
......................................238
8.4.3
High-Dimensional Tests
......................................239
8.5
Tests for Equality of Covariance Matrices
...........................241
8.5.1
Likelihood Ratio Test and Moments
..........................241
8.5.2
Asymptotic Expansions
......................................243
8.5.3
High-Dimensional Tests
......................................244
Problems
...........................................................245
9
Discriminant Analysis
................................................249
9.1
Classification Rules for Known Distributions
........................249
9.2
Sample Classification Rules for Normal Populations
.................256
9.2.1
Two Normal Populations with
Σι = Σ2 ......................
256
9.2.2
Case of Several Normal Populations
..........................258
9.3
Probability of Misclassifications
.....................................258
9.3.1
W-Rule
......................................................259
9.3.2
Z-Rule
.......................................................261
9.3.3
High-Dimensional Asymptotic Results
........................263
9.4
Canonical Discriminant Analysis
....................................265
9.4.1
Canonical discriminant Method
..............................265
9.4.2
Test for Additional Information
..............................267
9.4.3
Selection of Variables
........................................270
9.4.4
Estimation of Dimensionality
................................273
9.5
Regression Approach
................................................276
9.6
High-Dimensional Approach
.........................................278
9.6.1
Penalized Discriminant Analysis
.............................278
9.6.2
Other Approaches
...........................................278
Problems
...........................................................280
10
Principal Component Analysis
......................................283
10.1
Definition of Principal Components
.................................283
10.2
Optimality of Principal Components
................................286
10.3
Sample Principal Components
......................................288
10.4
MLEs of the Characteristic Roots and Vectors
......................291
10.5
Distributions of the Characteristic Roots
............................292
10.5.1
Exact Distribution
..........................................293
10.5.2
Large-sample Case
..........................................294
10.5.3
High-dimensional Case
......................................301
Contents ix
10.6 Model
Selection Approach for Covariance Structures
................302
10.6.1
General Approach
..........................................302
10.6.2
Models for Equality of the Smaller Roots
...................305
10.6.3
Selecting a Subset of Original Variables
.....................306
10.7
Methods Related to Principal Components
..........................308
10.7.1
Fixed-Effect Principal Component Model
...................308
10.7.2
Random-Effect Principal Components Model
................310
Problems
..........................................................311
11
Canonical Correlation Analysis
......................................317
11.1
Definition of Population Canonical Correlations and
Variables
.........................................................317
11.2
Sample Canonical Correlations
.....................................322
11.3
Distributions of Canonical Correlations
.............................324
11.3.1
Distributional Reduction
...................................324
11.3.2
Large-Sample Asymptotic Distribuitons
....................326
11.3.3
High-Dimensional Asymptotic Distributions
................327
11.3.4
Fisher s z-Transformation
..................................333
11.4
Inference for Dimensionality
........................................335
11.4.1
Test of Dimensionality
.....................................335
11.4.2
Estimation of Dimensionality
..............................337
11.5
Selection of Variables
...............................................338
11.5.1
Test for Redundancy
.......................................338
11.5.2
Selection of Variables
......................................342
Problems
..........................................................345
12
Growth Curve Analysis
...............................................349
12.1
Growth Curve Model
...............................................349
12.2
Statistical Inference: One Group
....................................352
12.2.1
Test for Adequacy
.........................................352
12.2.2
Estimation and Test
.......................................354
12.2.3
Confidence Intervals
.......................................357
12.3
Statistical Methods: Several Groups
................................359
12.4
Derivation of Statistical Inference
...................................365
12.4.1
General Multivariate Linear Model
.........................365
12.4.2
Estimation
.................................................366
12.4.3
LR Tests for General Linear Hypotheses
...................368
12.4.4
Confidence Intervals
.......................................369
12.5
Model Selection
....................................................370
12.5.1
AIC and
CAIC
............................................370
12.5.2
Derivation of
CAIC
........................................371
12.5.3
Extended Growth Curve Model
............................373
x
Contents
Problems..........................................................376
13 Approximation
to the Scale-
Mixted
Distributions
.................379
13.1
Introduction
........................................................379
13.1.1
Simple Example: Student s t-Distribution
..................379
13.1.2
Improving the Approximation
..............................381
13.2
Error Bounds evaluated in sup-Norm
...............................384
13.2.1
General Theory
............................................384
13.2.2
Scale-Mixed Normal
.......................................388
13.2.3
Scale-Mixed Gamma
.......................................390
13.3
Error Bounds evaluated in Li-Norm
................................395
13.3.1
Some Basic Results
........................................395
13.3.2
Scale-Mixed Normal Density
...............................397
13.3.3
Scale-Mixed Gamma Density
...............................399
13.3.4
Scale-Mixed Chi-square Density
............................402
13.4
Multivariate Scale Mixtures
.........................................404
13.4.1
General Theory
............................................404
13.4.2
Normal Case
...............................................410
13.4.3
Gamma Case
..............................................415
Problems
..........................................................418
14
Approximation to Some Related Distributions
....................423
14.1
Location and Scale Mixtures
........................................423
14.2
Maximum of Multivariate Variables
.................................426
14.2.1
Distribution of the Maximum Component of a Multi¬
variate Variable
..............................................426
14.2.2
Multivariate t-Distribution
.................................427
14.2.3
Multivariate F-Distribution
................................429
14.3
Scale Mixtures of the F-Distribution
................................430
14.4
Nonuniform
Error Bounds
..........................................433
14.5
Method of Characteristic Functions
.................................436
Problems
..........................................................439
15
Error Bounds for Approximations of Multivariate Tests
..........441
15.1
Multivariate Scale Mixture and
MÁNOVA
Tests
....................441
15.2
Function of a Multivariate Scale Mixture
...........................443
15.3
Hotelling s To Statistic
.............................................445
15.4
Wilk s Lambda Distribution
........................................448
15.4.1
Univariate Case
............................................448
15.4.2
Multivariate Case
..........................................456
Problems
..........................................................465
16
Error Bounds for Approximations to Some Other Statistics
.....467
Contents xi
16.1
Lineai
Discriminant
Function
.......................................467
16.1.1
Representation as a Location and Scale Mixture
............467
16.1.2
Large-Sample Approximations
.............................472
16.1.3
High-Dimensional Approximations
.........................474
16.1.4
Some Related Topics
.......................................476
16.2
Profile Analysis
....................................................479
16.2.1
Parallelism Model and MLE
...............................479
16.2.2
Distributions of
7 ..........................................481
16.2.3
Confidence Interval for
7...................................486
16.3
Estimators in the Growth Curve Model
.............................487
16.3.1
Error Bounds
..............................................487
16.3.2
Distribution of the Bilinear Form
..........................488
16.4
Generalized Least Squares Estimators
..............................490
Problems
..........................................................492
Appendix
..............................................................495
A.I Some Results on Matrices
..........................................495
A.
1.1
Determinants and Inverse Matrices
.........................495
A.I.
2
Characteristic Roots and Vectors
...........................496
A.
1.3
Matrix Factorizations
.......................................497
A.
1.4
Idempotent Matrices
.......................................500
A.2 Inequalities and
Max-Min
Problems
................................502
A.3 Jacobians of Transformations
.......................................508
Bibliography
..........................................................513
Index
..................................................................527
A comprehensive examination of
high-dimensional analysis of multivariate
methods and their real-world applications
ultivciriate Statistics: High-Dimensional and Large-Sample Approximations is the
first book of its kind to explore how classical multivariate methods can be revised and
used in place of conventional statistical tools. Written by prominent researchers in the field,
the book focuses on high-dimensional and large-scale approximations and details the many
basic multivariate methods used to achieve high levels of accuracy.
The authors begin with a fundamental presentation of the basic tools and exact distribu¬
tional results of multivariate statistics, and, in addition, the derivations of most distributional
results are provided. Statistical methods for high-dimensional data, such as curve data,
spectra, images, and
DNA
microarrays, are discussed. Bootstrap approximations from a
methodological point of view, theoretical accuracies in
MÁNOVA
tests, and model selection
criteria are also presented. Subsequent chapters feature additional topical coverage including:
High-dimensional approximations of various statistics
High-dimensional statistical methods
Approximations with computable error bound
•
Selection of variables based on model selection approach
1
Statistics with error bounds and their appearance in discriminant analysis, growth
curve models, generalized linear models, profile analysis, and multiple comparison
Each chapter provides real-world applications and thorough analyses of the real data. In
addition, approximation formulas found throughout the book are a useful tool for both
practical and theoretical statisticians, and basic results on exact distributions in multivariate
analysis are included in a comprehensive, yet accessible, format.
Wultivariate Statistics is an excellent book for courses on probability theory in statistics
at the graduate level. It is also an essential reference for both practical and theoretical
statisticians who are interested in multivariate analysis and who would benefit from learning
the applications of analytical probabilistic methods in statistics.
is Professor Emeritus at Hiroshima University (Japan) and
Visiting Professor in the Department of Mathematics at Chuo University (Japan). He has
authored over
150
journal articles in the area of multivariate analysis.
is Professor in the Department of Mathematical Statistics
at Moscow State University (Russia) and is the author of nearly fifty journal articles in
his areas of research interest, which include weak limit theorems, probability measures on
topological spaces, and Gaussian processes.
is Professor Emeritus at the Institute of Statistical Mathe¬
matics (Japan) and is the author of numerous journal articles on probability distributions.
nstics eNewsletter at
®WILEY
wilev.com
ISBN cl7ä-a-47D-411bc1-a
90000
9
780470Ч
11698
|
any_adam_object | 1 |
author | Fujikoshi, Yasunori 1942- Ulʹjanov, Vladimir Vladimirovič 1953- Shimizu, Ryoichi 1931- |
author_GND | (DE-588)140791671 (DE-588)140792015 (DE-588)140792392 |
author_facet | Fujikoshi, Yasunori 1942- Ulʹjanov, Vladimir Vladimirovič 1953- Shimizu, Ryoichi 1931- |
author_role | aut aut aut |
author_sort | Fujikoshi, Yasunori 1942- |
author_variant | y f yf v v u vv vvu r s rs |
building | Verbundindex |
bvnumber | BV035768765 |
callnumber-first | Q - Science |
callnumber-label | QA278 |
callnumber-raw | QA278 |
callnumber-search | QA278 |
callnumber-sort | QA 3278 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 234 SK 830 |
classification_tum | MAT 627f |
ctrlnum | (OCoLC)535500802 (DE-599)BVBBV035768765 |
dewey-full | 519.535 519.5/35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.535 519.5/35 |
dewey-search | 519.535 519.5/35 |
dewey-sort | 3519.535 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02161nam a2200493zc 4500</leader><controlfield tag="001">BV035768765</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100430 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091014s2010 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009017248</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470411698</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-41169-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)535500802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035768765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-578</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA278</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.535</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/35</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 627f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62Hxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fujikoshi, Yasunori</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140791671</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariate statistics</subfield><subfield code="b">high-dimensional and large-sample approximations</subfield><subfield code="c">Yasunori Fujikoshi ; Vladimir V. Ulyanov ; Ryoichi Shimizu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 533 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in probability and statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ulʹjanov, Vladimir Vladimirovič</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140792015</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shimizu, Ryoichi</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140792392</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018628506&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018628506&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018628506</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV035768765 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:04:06Z |
institution | BVB |
isbn | 9780470411698 |
language | English |
lccn | 2009017248 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018628506 |
oclc_num | 535500802 |
open_access_boolean | |
owner | DE-703 DE-634 DE-824 DE-898 DE-BY-UBR DE-91G DE-BY-TUM DE-521 DE-578 DE-11 DE-83 |
owner_facet | DE-703 DE-634 DE-824 DE-898 DE-BY-UBR DE-91G DE-BY-TUM DE-521 DE-578 DE-11 DE-83 |
physical | XVIII, 533 S. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Wiley |
record_format | marc |
series2 | Wiley series in probability and statistics |
spelling | Fujikoshi, Yasunori 1942- Verfasser (DE-588)140791671 aut Multivariate statistics high-dimensional and large-sample approximations Yasunori Fujikoshi ; Vladimir V. Ulyanov ; Ryoichi Shimizu Hoboken, NJ Wiley 2010 XVIII, 533 S. txt rdacontent n rdamedia nc rdacarrier Wiley series in probability and statistics Multivariate analysis Approximation theory Multivariate Analyse (DE-588)4040708-1 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Multivariate Analyse (DE-588)4040708-1 s DE-604 Ulʹjanov, Vladimir Vladimirovič 1953- Verfasser (DE-588)140792015 aut Shimizu, Ryoichi 1931- Verfasser (DE-588)140792392 aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018628506&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018628506&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Fujikoshi, Yasunori 1942- Ulʹjanov, Vladimir Vladimirovič 1953- Shimizu, Ryoichi 1931- Multivariate statistics high-dimensional and large-sample approximations Multivariate analysis Approximation theory Multivariate Analyse (DE-588)4040708-1 gnd |
subject_GND | (DE-588)4040708-1 (DE-588)4123623-3 |
title | Multivariate statistics high-dimensional and large-sample approximations |
title_auth | Multivariate statistics high-dimensional and large-sample approximations |
title_exact_search | Multivariate statistics high-dimensional and large-sample approximations |
title_full | Multivariate statistics high-dimensional and large-sample approximations Yasunori Fujikoshi ; Vladimir V. Ulyanov ; Ryoichi Shimizu |
title_fullStr | Multivariate statistics high-dimensional and large-sample approximations Yasunori Fujikoshi ; Vladimir V. Ulyanov ; Ryoichi Shimizu |
title_full_unstemmed | Multivariate statistics high-dimensional and large-sample approximations Yasunori Fujikoshi ; Vladimir V. Ulyanov ; Ryoichi Shimizu |
title_short | Multivariate statistics |
title_sort | multivariate statistics high dimensional and large sample approximations |
title_sub | high-dimensional and large-sample approximations |
topic | Multivariate analysis Approximation theory Multivariate Analyse (DE-588)4040708-1 gnd |
topic_facet | Multivariate analysis Approximation theory Multivariate Analyse Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018628506&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018628506&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fujikoshiyasunori multivariatestatisticshighdimensionalandlargesampleapproximations AT ulʹjanovvladimirvladimirovic multivariatestatisticshighdimensionalandlargesampleapproximations AT shimizuryoichi multivariatestatisticshighdimensionalandlargesampleapproximations |