Measure and integration: a concise introduction to real analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 237 S. graph. Darst. |
ISBN: | 9780470259542 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035765501 | ||
003 | DE-604 | ||
005 | 20091203 | ||
007 | t | ||
008 | 091012s2009 xxud||| |||| 00||| eng d | ||
010 | |a 2009009714 | ||
020 | |a 9780470259542 |c cloth |9 978-0-470-25954-2 | ||
035 | |a (OCoLC)298775867 | ||
035 | |a (DE-599)HBZHT015947287 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-634 |a DE-29T |a DE-11 |a DE-20 | ||
050 | 0 | |a QA312 | |
082 | 0 | |a 515/.42 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
100 | 1 | |a Richardson, Leonard F. |d 1944- |e Verfasser |0 (DE-588)136033164 |4 aut | |
245 | 1 | 0 | |a Measure and integration |b a concise introduction to real analysis |c Leonard F. Richardson |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2009 | |
300 | |a XVI, 237 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Lebesgue integral | |
650 | 4 | |a Measure theory | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Integrationstheorie |0 (DE-588)4138369-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | 1 | |a Integrationstheorie |0 (DE-588)4138369-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018625303&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018625303 |
Datensatz im Suchindex
_version_ | 1804140692063125504 |
---|---|
adam_text | CONTENTS
Preface
xi
Acknowledgments
xiii
Introduction
xv
1
History of the Subject
1
1.1
History of the Idea
1
1.2
Deficiencies of the Riemann Integral
3
1.3
Motivation for the Lebesgue Integral
6
2
Fields,
Borei
Fields, and Measures
11
2.1
Fields, Monotone Classes, and
Borei
Fields
11
2.2
Additive Measures
18
2.3
Carathéodory
Outer Measure
20
2.4
E.
Hopfs
Extension Theorem
24
2.4.1
Fields,
σ
-Fields,
and Measures Inherited by a Subset
29
3
Lebesgue Measure
31
vii
VIU
CONTENTS
3.1
The Finite Interval [-N, N)
31
3.2
Measurable Sets,
Borei
Sets, and the Real Line
34
3.2.1
Lebesgue Measure on
R
36
3.3
Measure Spaces and Completions
38
3.3.1
Minimal Completion of a Measure Space
41
3.3.2
A Nonmeasurable Set
41
3.4
Semimetric Space of Measurable Sets
43
3.5
Lebesgue Measure in Rn
50
3.6
Jordan Measure in R
52
Measurable Functions
55
4.1
Measurable Functions
55
4.1.1
Baire Functions of Measurable Functions
56
4.2
Limits of Measurable Functions
58
4.3
Simple Functions and Egoroff s Theorem
61
4.3.1
Double Sequences
63
4.3.2
Convergence in Measure
65
4.4
Lusin s Theorem
66
The Integral
69
5.1
Special Simple Functions
69
5.2
Extending the Domain of the Integral
72
5.2.1
The Class C+ of
Nonnegative
Measurable Functions
74
5.2.2
The Class
С
of Lebesgue
Integrable
Functions
78
5.2.3
Convex Functions and Jensen s Inequality
81
5.3
Lebesgue Dominated Convergence Theorem
83
5.4
Monotone Convergence and Fatou s Theorem
89
5.5
Completeness of LX(X,
21,
μ)
and the Pointwise Convergence
Lemma
92
5.6
Complex-Valued Functions
100
Product Measures and Fubini s Theorem
103
6.1
Product Measures
103
6.2
Fubini s Theorem
108
6.3
Comparison of Lebesgue and Riemann Integrals
117
Functions of a Real Variable
123
CONTENTS
ІХ
7.1
Functions of Bounded Variation
123
7.2
A Fundamental Theorem for the Lebesgue Integral
128
7.3
Lebesgue s Theorem and Vitali s Covering Theorem
131
7.4
Absolutely Continuous and Singular Functions
139
8
General Countably Additive Set Functions
151
8.1 Hahn
Decomposition Theorem
152
8.2
Radon-Nikodym Theorem
156
8.3
Lebesgue Decomposition Theorem
161
9
Examples of Dual Spaces from Measure Theory
165
9.1
TheBanachSpaceLp(X,2l,/i)
165
9.2
The Dual of a Banach Space
170
9.3
The Dual Space of LP(X, SI,
μ)
174
9.4
Hubert Space, Its Dual, and L2{X,
Я,
μ)
178
9.5 Riesz-Markov-Saks-Kakutani
Theorem
185
10
Translation
Invariance
in Real Analysis
195
10.1
An
Orthonormal
Basis for L2(T)
196
10.2
Closed, Invariant Subspaces of
L
2 (T)
203
10.2.1
Integration of Hilbert Space Valued Functions
204
10.2.2
Spectrum of a Subset of
L
2(T)
206
10.3
Schwartz Functions: Fourier Transform and Inversion
208
10.4
Closed, Invariant Subspaces of
L2(R)
213
10.4.1
The Fourier Transform in
2,
2(R)
213
10.4.2
Translation-Invariant Subspaces of
L
2 (R)
216
10.4.3
The Fourier Transform and Direct Integrals
218
10.5
Irreducibility of £2(R) Under Translations and Rotations
219
10.5.1
Position and Momentum Operators
221
10.5.2
The
Heisenberg
Group
222
Appendix: The Banach-Tarski Theorem
225
A.I The Limits to Countable Additivity
225
References
229
Index
231
|
any_adam_object | 1 |
author | Richardson, Leonard F. 1944- |
author_GND | (DE-588)136033164 |
author_facet | Richardson, Leonard F. 1944- |
author_role | aut |
author_sort | Richardson, Leonard F. 1944- |
author_variant | l f r lf lfr |
building | Verbundindex |
bvnumber | BV035765501 |
callnumber-first | Q - Science |
callnumber-label | QA312 |
callnumber-raw | QA312 |
callnumber-search | QA312 |
callnumber-sort | QA 3312 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 430 |
ctrlnum | (OCoLC)298775867 (DE-599)HBZHT015947287 |
dewey-full | 515/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.42 |
dewey-search | 515/.42 |
dewey-sort | 3515 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01635nam a2200433zc 4500</leader><controlfield tag="001">BV035765501</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091012s2009 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009009714</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470259542</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-25954-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)298775867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015947287</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA312</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Richardson, Leonard F.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136033164</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measure and integration</subfield><subfield code="b">a concise introduction to real analysis</subfield><subfield code="c">Leonard F. Richardson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 237 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lebesgue integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018625303&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018625303</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV035765501 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:04:01Z |
institution | BVB |
isbn | 9780470259542 |
language | English |
lccn | 2009009714 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018625303 |
oclc_num | 298775867 |
open_access_boolean | |
owner | DE-703 DE-634 DE-29T DE-11 DE-20 |
owner_facet | DE-703 DE-634 DE-29T DE-11 DE-20 |
physical | XVI, 237 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley |
record_format | marc |
spelling | Richardson, Leonard F. 1944- Verfasser (DE-588)136033164 aut Measure and integration a concise introduction to real analysis Leonard F. Richardson Hoboken, NJ Wiley 2009 XVI, 237 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lebesgue integral Measure theory Mathematical analysis Integrationstheorie (DE-588)4138369-2 gnd rswk-swf Maßtheorie (DE-588)4074626-4 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Maßtheorie (DE-588)4074626-4 s Integrationstheorie (DE-588)4138369-2 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018625303&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Richardson, Leonard F. 1944- Measure and integration a concise introduction to real analysis Lebesgue integral Measure theory Mathematical analysis Integrationstheorie (DE-588)4138369-2 gnd Maßtheorie (DE-588)4074626-4 gnd |
subject_GND | (DE-588)4138369-2 (DE-588)4074626-4 (DE-588)4151278-9 |
title | Measure and integration a concise introduction to real analysis |
title_auth | Measure and integration a concise introduction to real analysis |
title_exact_search | Measure and integration a concise introduction to real analysis |
title_full | Measure and integration a concise introduction to real analysis Leonard F. Richardson |
title_fullStr | Measure and integration a concise introduction to real analysis Leonard F. Richardson |
title_full_unstemmed | Measure and integration a concise introduction to real analysis Leonard F. Richardson |
title_short | Measure and integration |
title_sort | measure and integration a concise introduction to real analysis |
title_sub | a concise introduction to real analysis |
topic | Lebesgue integral Measure theory Mathematical analysis Integrationstheorie (DE-588)4138369-2 gnd Maßtheorie (DE-588)4074626-4 gnd |
topic_facet | Lebesgue integral Measure theory Mathematical analysis Integrationstheorie Maßtheorie Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018625303&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT richardsonleonardf measureandintegrationaconciseintroductiontorealanalysis |