Mathematical methods: for students of physics and related fields
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2009
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 829 S. Ill., graph. Darst. |
ISBN: | 9780387095035 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035763946 | ||
003 | DE-604 | ||
005 | 20091106 | ||
007 | t | ||
008 | 091012s2009 gw ad|| |||| 00||| eng d | ||
020 | |a 9780387095035 |9 978-0-387-09503-5 | ||
035 | |a (OCoLC)276295332 | ||
035 | |a (DE-599)BVBBV035763946 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 | ||
050 | 0 | |a QC20 | |
082 | 0 | |a 530.1'5 22 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Hassani, Sadri |e Verfasser |0 (DE-588)114976838X |4 aut | |
245 | 1 | 0 | |a Mathematical methods |b for students of physics and related fields |c Sadri Hassani |
250 | |a 2. ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2009 | |
300 | |a XXIII, 829 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Mathematical physics |v Problems, exercises, etc | |
650 | 4 | |a Mathematical physics |x Study and teaching | |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kategorie |g Mathematik |0 (DE-588)4129930-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1978 |z Berlin West |2 gnd-content | |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kategorie |g Mathematik |0 (DE-588)4129930-9 |D s |
689 | 1 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018623775&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018623775 |
Datensatz im Suchindex
_version_ | 1804140689518231552 |
---|---|
adam_text | Contents
Preface
to Second Edition
vii
Preface
ix
Note to the Reader
xiii
I Coordinates and Calculus
1
1
Coordinate Systems and Vectors
3
1.1
Vectors in a Plane and in Space
.................. 3
1.1.1
Dot Product
........................ 5
1.1.2
Vector or Cross Product
.................. 7
1.2
Coordinate Systems
........................ 11
1.3
Vectors in Different Coordinate Systems
............. 16
1.3.1
Fields and Potentials
.................... 21
1.3.2
Cross Product
....................... 28
1.4
Relations Among Unit Vectors
.................. 31
1.5
Problems
.............................. 37
2
Differentiation
43
2.1
The Derivative
........................... 44
2.2
Partial Derivatives
......................... 47
2.2.1
Definition, Notation, and Basic Properties
........ 47
2.2.2
Differentials
......................... 53
2.2.3
Chain Rule
......................... 55
2.2.4
Homogeneous Functions
.................. 57
2.3
Elements of Length, Area, and Volume
.............. 59
2.3.1
Elements in a Cartesian Coordinate System
....... 60
2.3.2
Elements in a Spherical Coordinate System
....... 62
2.3.3
Elements in a Cylindrical Coordinate System
...... 65
2.4
Problems
.............................. 68
XVI
CONTENTS
Integration:
Formalism
77
3.1 ƒ
Means
/um ......................... 77
3.2
Properties of Integral
........................ 81
3.2.1
Change of Dummy Variable
................ 82
3.2.2
Linearity
.......................... 82
3.2.3
Interchange of Limits
................... 82
3.2.4
Partition of Range of Integration
............. 82
3.2.5
Transformation of Integration Variable
.......... 83
3.2.6
Small Region of Integration
................ 83
3.2.7
Integral and Absolute Value
................ 84
3.2.8
Symmetric Range of Integration
............. 84
3.2.9
Differentiating an Integral
................. 85
3.2.10
Fundamental Theorem of Calculus
............ 87
3.3
Guidelines for Calculating Integrals
................ 91
3.3.1
Reduction to Single Integrals
............... 92
3.3.2
Components of Integrals of Vector Functions
...... 95
3.4
Problems
.............................. 98
Integration: Applications
101
4.1
Single Integrals
........................... 101
4.1.1
An Example from Mechanics
............... 101
4.1.2
Examples from Electrostatics and Gravity
........ 104
4.1.3
Examples from Magnetostatics
.............. 109
4.2
Applications: Double Integrals
.................. 115
4.2.1
Cartesian Coordinates
................... 115
4.2.2
Cylindrical Coordinates
.................. 118
4.2.3
Spherical Coordinates
................... 120
4.3
Applications: Triple Integrals
................... 122
4.4
Problems
.............................. 128
Dirac Delta Function
139
5.1
One-Variable Case
......................... 139
5.1.1
Linear Densities of Points
................. 143
5.1.2
Properties of the Delta Function
............. 145
5.1.3
The Step Function
..................... 152
5.2
Two-Variable Case
......................... 154
5.3
Three-Variable Case
........................ 159
5.4
Problems
.............................. 166
II Algebra of Vectors
171
6
Planar and Spatial Vectors
173
6.1
Vectors in a Plane Revisited
....................174
6.1.1
Transformation of Components
..............176
6.1.2
Inner Product
........................182
CONTENTS____________________________________________________________xvii
6.1.3 Orthogonal Transformation................190
6.2
Vectors
in Space..........................192
6.2.1 Transformation
of Vectors.................
194
6.2.2 Inner
Product........................
198
6.3
Determinant
.............................202
6.4
The Jacobian
............................207
6.5
Problems
..............................211
7
Finite-Dimensional Vector Spaces
215
7.1
Linear Transformations
......................216
7.2
Inner Product
............................218
7.3
The Determinant
..........................222
7.4
Eigenvectors and Eigenvalues
...................224
7.5
Orthogonal Polynomials
......................227
7.6
Systems of Linear Equations
....................230
7.7
Problems
..............................234
8
Vectors in Relativity
237
8.1
Proper and Coordinate Time
................... 239
8.2
Spacetime Distance
......................... 240
8.3
Lorentz
Transformation
...................... 243
8.4
Four-Velocity and Four-Momentum
................ 247
8.4.1
Relativistic Collisions
................... 250
8.4.2
Second Law of Motion
................... 253
8.5
Problems
.............................. 254
III Infinite Series
257
9
Infinite Series
259
9.1
Infinite Sequences
..........................259
9.2
Summations
.............................262
9.2.1
Mathematical Induction
..................265
9.3
Infinite Series
............................266
9.3.1
Tests for Convergence
...................267
9.3.2
Operations on Series
....................273
9.4
Sequences and Series of Functions
................274
9.4.1
Properties of Uniformly Convergent Series
........277
9.5
Problems
..............................279
10
Application of Common Series
283
10.1
Power Series
.............................283
10.1.1
Taylor Series
........................286
10.2
Series for Some Familiar Functions
................287
10.3
Helmholtz Coil
...........................291
10.4
Indeterminate Forms and
L Hôpitaľs
Rule
............294
xviii________________________________________________________ CONTENTS
10.5 Multipole Expansion........................ 297
10.6
Fourier
Series............................
299
10.7 Multivariable Taylor
Series
.................... 305
10.8 Application
to
Differential
Equations
............... 307
10.9 Problems .............................. 311
11 Integrals
and Series as Functions
317
11.1 Integrals
as Functions
.......................317
11.1.1
Gamma Function
......................318
11.1.2
The Beta Function
.....................320
11.1.3
The Error Function
....................322
11.1.4
Elliptic Functions
......................322
11.2
Power Series as Functions
.....................327
11.2.1
Hypergeometric Functions
.................328
11.2.2
Confluent Hypergeometric Functions
...........332
11.2.3
Bessel Functions
......................333
11.3
Problems
..............................336
IV Analysis of Vectors
341
12
Vectors and Derivatives
343
12.1
Solid Angle
.............................344
12.1.1
Ordinary Angle Revisited
.................344
12.1.2
Solid Angle
.........................347
12.2
Time Derivative of Vectors
....................350
12.2.1
Equations of Motion in a Central Force Field
......352
12.3
The Gradient
............................355
12.3.1
Gradient and
Extrémům
Problems
............359
12.4
Problems
..............................362
13
Flux and Divergence
365
13.1
Flux of a Vector Field
.......................365
13.1.1
Flux Through an Arbitrary Surface
...........370
13.2
Flux Density
=
Divergence
....................371
13.2.1
Flux Density
........................371
13.2.2
Divergence Theorem
....................374
13.2.3
Continuity Equation
....................378
13.3
Problems
..............................383
14
Line Integral and Curl
387
14.1
The Line Integral
..........................387
14.2
Curl of a Vector Field and Stokes Theorem
...........391
14.3
Conservative Vector Fields
.....................398
14.4
Problems
..............................404
CONTENTS_____________________________________________________________xix
15 Applied
Vector
Analysis
407
15.1 Double
Del Operations
....................... 407
15.2
Magnetic Multipoles
........................ 409
15.3
Laplacian
.............................. 411
15.3.1
A Primer of Fluid Dynamics
............... 413
15.4
Maxwell s Equations
........................ 415
15.4.1
Maxwell s Contribution
.................. 416
15.4.2
Electromagnetic Waves in Empty Space
......... 417
15.5
Problems
.............................. 420
16
Curvilinear Vector Analysis
423
16.1
Elements of Length
.........................423
16.2
The Gradient
............................425
16.3
The Divergence
...........................427
16.4
The Curl
..............................431
16.4.1
The Laplacian
.......................435
16.5
Problems
..............................436
17
Tensor Analysis
439
17.1
Vectors and Indices
.........................439
17.1.1
Transformation Properties of Vectors
...........441
17.1.2
Covariant and
Contravariant
Vectors
...........445
17.2
From Vectors to Tensors
......................447
17.2.1
Algebraic Properties of Tensors
..............450
17.2.2
Numerical Tensors
.....................452
17.3
Metric Tensor
............................454
17.3.1
Index Raising and Lowering
................457
17.3.2
Tensors and Electrodynamics
...............459
17.4
Differentiation of Tensors
.....................462
17.4.1
Covariant Differential and
Affine
Connection
......462
17.4.2
Covariant Derivative
....................464
17.4.3
Metric Connection
.....................465
17.5
Riemann Curvature Tensor
....................468
17.6
Problems
..............................471
V Complex Analysis
475
18
Complex Arithmetic
477
18.1
Cartesian Form of Complex Numbers
...............477
18.2
Polar Form of Complex Numbers
.................482
18.3
Fourier Series Revisited
......................488
18.4
A Representation of Delta Function
...............491
18.5
Problems
..............................493
xx______________________________________________________________
CONTENTS
19
Complex Derivative and Integral
497
19.1
Complex Functions
......................... 497
19.1.1
Derivatives of Complex Functions
............. 499
19.1.2
Integration of Complex Functions
............. 503
19.1.3
Cauchy Integral Formula
................. 508
19.1.4
Derivatives as Integrals
.................. 509
19.2
Problems
.............................. 511
20
Complex Series
515
20.1
Power Series
.............................516
20.2
Taylor and Laurent Series
.....................518
20.3
Problems
..............................522
21
Calculus of Residues
525
21.1
The Residue
.............................525
21.2
Integrals of Rational Functions
..................529
21.3
Products of Rational and Trigonometric Functions
.......532
21.4
Functions of Trigonometric Functions
..............534
21.5
Problems
..............................536
VI Differential Equations
539
22
From PDEs to ODEs
541
22.1
Separation of Variables
.......................542
22.2
Separation in Cartesian Coordinates
...............544
22.3
Separation in Cylindrical Coordinates
..............547
22.4
Separation in Spherical Coordinates
...............548
22.5
Problems
..............................550
23
First-Order Differential Equations
551
23.1
Normal Form of a FODE
.....................551
23.2
Integrating Factors
.........................553
23.3
First-Order Linear Differential Equations
............556
23.4
Problems
..............................561
24
Second-Order Linear Differential Equations
563
24.1
Linearity, Superposition, and Uniqueness
.............564
24.2
TheWronskian
...........................566
24.3
A Second Solution to the HSOLDE
................567
24.4
The General Solution to an ISOLDE
...............569
24.5
Sturm-Liouville Theory
......................570
24.5.1
Adjoint Differential Operators
..............571
24.5.2
Sturm-Liouville System
..................574
24.6
SOLDEs with Constant Coefficients
...............575
24.6.1
The Homogeneous Case
..................576
24.6.2
Central Force Problem
...................579
CONTENTS
24.6.3
The Inhomogeneous Case
.................583
24.7 Problems..............................587
25
Laplace s Equation: Cartesian Coordinates
591
25.1
Uniqueness of Solutions
......................592
25.2
Cartesian Coordinates
.......................594
25.3
Problems
..............................603
26
Laplace s Equation: Spherical Coordinates
607
26.1
Erobenius Method
.........................608
26.2
Legendre Polynomials
.......................610
26.3
Second Solution of the Legendre
DE...............617
26.4
Complete Solution
.........................619
26.5
Properties of Legendre Polynomials
................622
26.5.1
Parity
............................622
26.5.2
Recurrence Relation
....................622
26.5.3
Orthogonality
........................624
26.5.4
Rodrigues
Formula
.....................626
26.6
Expansions in Legendre Polynomials
...............628
26.7
Physical Examples
.........................631
26.8
Problems
..............................635
27
Laplace s Equation: Cylindrical Coordinates
639
27.1
The ODEs
.............................. 639
27.2
Solutions of the Bessel
DE..................... 642
27.3
Second Solution of the Bessel
DE................. 645
27.4
Properties of the Bessel Functions
................ 646
27.4.1
Negative Integer Order
................... 646
27.4.2
Recurrence Relations
.................... 646
27.4.3
Orthogonality
........................ 647
27.4.4
Generating Function
.................... 649
27.5
Expansions in Bessel Functions
.................. 653
27.6
Physical Examples
......................... 654
27.7
Problems
.............................. 657
28
Other PDEs of Mathematical Physics
661
28.1
The Heat Equation
.........................661
28.1.1
Heat-Conducting Rod
...................662
28.1.2
Heat Conduction in a Rectangular Plate
.........663
28.1.3
Heat Conduction in a Circular Plate
...........664
28.2
The
Schrödinger
Equation
.....................666
28.2.1
Quantum Harmonic Oscillator
..............667
28.2.2
Quantum Particle in a Box
................675
28.2.3
Hydrogen Atom
......................677
28.3
The Wave Equation
........................680
28.3.1
Guided Waves
.......................682
XXII
CONTENTS
28.3.2
Vibrating Membrane
....................686
28.4
Problems
..............................687
VII
Special Topics
691
29
Integral Transforms
693
29.1
The Fourier Transform
.......................693
29.1.1
Properties of Fourier Transform
..............696
29.1.2
Sine and Cosine Transforms
................697
29.1.3
Examples of Fourier Transform
..............698
29.1.4
Application to Differential Equations
...........702
29.2
Fourier Transform and Green s Functions
............705
29.2.1
Green s Function for the Laplacian
............708
29.2.2
Green s Function for the Heat Equation
.........709
29.2.3
Green s Function for the Wave Equation
.........711
29.3
The Laplace Transform
......................712
29.3.1
Properties of Laplace Transform
.............713
29.3.2
Derivative and Integral of the Laplace Transform
.... 717
29.3.3
Laplace Transform and Differential Equations
......718
29.3.4
Inverse of Laplace Transform
...............721
29.4
Problems
..............................723
30
Calculus of Variations
727
30.1
Variational Problem
........................728
30.1.1
Euler-Lagrange Equation
.................729
30.1.2
Beltrami identity
......................731
30.1.3
Several Dependent Variables
...............734
30.1.4
Several Independent Variables
...............734
30.1.5
Second Variation
......................735
30.1.6
Variational Problems with Constraints
..........738
30.2
Lagrangian Dynamics
.......................740
30.2.1
From Newton to
Lagrange.................740
30.2.2
Lagrangian Densities
....................744
30.3
Hamiltonian Dynamics
.......................747
30.4
Problems
..............................750
31
Nonlinear Dynamics and Chaos
753
31.1
Systems Obeying Iterated Maps
..................754
31.1.1
Stable and Unstable Fixed Points
.............755
31.1.2
Bifurcation
.........................757
31.1.3
Onset of Chaos
.......................761
31.2
Systems Obeying DEs
.......................763
31.2.1
The Phase Space
......................764
31.2.2
Autonomous Systems
...................766
31.2.3
Onset of Chaos
.......................770
CONTENTS____________________________________________________________xxiii
31.3
Universality of
Chaos........................773
31.3.1 Feigenbaum
Numbers
...................773
31.3.2
Fractal
Dimension.....................775
31.4
Problems
..............................778
32
Probability Theory
781
32.1
Basic Concepts
...........................781
32.1.1
A Set Theory Primer
....................782
32.1.2
Sample Space and Probability
...............784
32.1.3
Conditional and Marginal Probabilities
.........786
32.1.4
Average and Standard Deviation
.............789
32.1.5
Counting: Permutations and Combinations
.......791
32.2
Binomial Probability Distribution
.................792
32.3
Poisson
Distribution
........................797
32.4
Continuous Random Variable
...................801
32.4.1
Transformation of Variables
................804
32.4.2
Normal Distribution
....................806
32.5
Problems
..............................809
Bibliography
815
Index
817
|
any_adam_object | 1 |
author | Hassani, Sadri |
author_GND | (DE-588)114976838X |
author_facet | Hassani, Sadri |
author_role | aut |
author_sort | Hassani, Sadri |
author_variant | s h sh |
building | Verbundindex |
bvnumber | BV035763946 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20 |
callnumber-search | QC20 |
callnumber-sort | QC 220 |
callnumber-subject | QC - Physics |
classification_rvk | SK 950 |
ctrlnum | (OCoLC)276295332 (DE-599)BVBBV035763946 |
dewey-full | 530.1'522 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1'5 22 |
dewey-search | 530.1'5 22 |
dewey-sort | 3530.1 15 222 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01828nam a2200469 c 4500</leader><controlfield tag="001">BV035763946</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091106 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091012s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387095035</subfield><subfield code="9">978-0-387-09503-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)276295332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035763946</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1'5 22</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hassani, Sadri</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114976838X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical methods</subfield><subfield code="b">for students of physics and related fields</subfield><subfield code="c">Sadri Hassani</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 829 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield><subfield code="v">Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield><subfield code="x">Study and teaching</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1978</subfield><subfield code="z">Berlin West</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018623775&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018623775</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1978 Berlin West gnd-content |
genre_facet | Konferenzschrift 1978 Berlin West |
id | DE-604.BV035763946 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:03:58Z |
institution | BVB |
isbn | 9780387095035 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018623775 |
oclc_num | 276295332 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XXIII, 829 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
spelling | Hassani, Sadri Verfasser (DE-588)114976838X aut Mathematical methods for students of physics and related fields Sadri Hassani 2. ed. New York [u.a.] Springer 2009 XXIII, 829 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mathematische Physik Mathematical physics Problems, exercises, etc Mathematical physics Study and teaching Topologie (DE-588)4060425-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Kategorie Mathematik (DE-588)4129930-9 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1978 Berlin West gnd-content Mathematische Physik (DE-588)4037952-8 s DE-604 Kategorie Mathematik (DE-588)4129930-9 s Topologie (DE-588)4060425-1 s Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018623775&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hassani, Sadri Mathematical methods for students of physics and related fields Mathematische Physik Mathematical physics Problems, exercises, etc Mathematical physics Study and teaching Topologie (DE-588)4060425-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Kategorie Mathematik (DE-588)4129930-9 gnd |
subject_GND | (DE-588)4060425-1 (DE-588)4037952-8 (DE-588)4129930-9 (DE-588)1071861417 |
title | Mathematical methods for students of physics and related fields |
title_auth | Mathematical methods for students of physics and related fields |
title_exact_search | Mathematical methods for students of physics and related fields |
title_full | Mathematical methods for students of physics and related fields Sadri Hassani |
title_fullStr | Mathematical methods for students of physics and related fields Sadri Hassani |
title_full_unstemmed | Mathematical methods for students of physics and related fields Sadri Hassani |
title_short | Mathematical methods |
title_sort | mathematical methods for students of physics and related fields |
title_sub | for students of physics and related fields |
topic | Mathematische Physik Mathematical physics Problems, exercises, etc Mathematical physics Study and teaching Topologie (DE-588)4060425-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Kategorie Mathematik (DE-588)4129930-9 gnd |
topic_facet | Mathematische Physik Mathematical physics Problems, exercises, etc Mathematical physics Study and teaching Topologie Kategorie Mathematik Konferenzschrift 1978 Berlin West |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018623775&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hassanisadri mathematicalmethodsforstudentsofphysicsandrelatedfields |