Relativity: modern large-scale spacetime structure of the cosmos
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (p. 421-502) and index |
Beschreibung: | XXV, 524 S. graph. Darst. |
ISBN: | 9789812813756 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035763776 | ||
003 | DE-604 | ||
005 | 20120419 | ||
007 | t | ||
008 | 091012s2008 d||| |||| 00||| eng d | ||
020 | |a 9789812813756 |9 978-981-281375-6 | ||
035 | |a (OCoLC)236335996 | ||
035 | |a (DE-599)HBZHT016080030 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-11 |a DE-19 | ||
050 | 0 | |a QB981 | |
082 | 0 | |a 523.1 |2 22 | |
084 | |a UH 8000 |0 (DE-625)145779: |2 rvk | ||
084 | |a UH 8200 |0 (DE-625)145780: |2 rvk | ||
084 | |a UH 8300 |0 (DE-625)145781: |2 rvk | ||
245 | 1 | 0 | |a Relativity |b modern large-scale spacetime structure of the cosmos |c ed. Moshe Carmeli |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 2008 | |
300 | |a XXV, 524 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 421-502) and index | ||
650 | 4 | |a Cosmologie | |
650 | 4 | |a Espace et temps | |
650 | 4 | |a Relativité restreinte (Physique) | |
650 | 4 | |a Cosmology | |
650 | 4 | |a Space and time | |
650 | 4 | |a Special relativity (Physics) | |
650 | 0 | 7 | |a Kosmologie |0 (DE-588)4114294-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spezielle Relativitätstheorie |0 (DE-588)4182215-8 |2 gnd |9 rswk-swf |
653 | |a Cosmology. | ||
653 | |a Special relativity (Physics) | ||
653 | |a Space and time. | ||
689 | 0 | 0 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Spezielle Relativitätstheorie |0 (DE-588)4182215-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Kosmologie |0 (DE-588)4114294-9 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Carmeli, Moshe |d 1933-2007 |e Sonstige |0 (DE-588)128455624 |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018623605&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018623605 |
Datensatz im Suchindex
_version_ | 1804140689247698944 |
---|---|
adam_text | Contents
Acknowledgements
vii
Foreword
ix
Preface
xiii
1.
Special Relativity Theory, by
Moshe Carmeli 1
1.1
Spacetime in Four Dimensions
.............. 2
1.1.1
Postulates of special relativity
.......... 2
1.1.2
The principle of relativity: Constancy of the
speed of light
................... 2
1.1.3
Coordinates and the line element
........ 5
1.1.4
Inerţial
coordinate system
............ 5
1.1.5
Simultaneity
.................... 5
1.1.6
The Galilean transformation
........... 6
1.1.7
Difficulties with light
............... 6
1.1.8
Role of velocity in classical physics
....... 8
1.1.9
The Galilean group
................ 8
1.2
The
Lorentz
Transformation
................ 9
1.2.1
Measuring rods and clocks
............ 9
1.2.2
Spatial coordinates and time
........... 9
1.2.3
Einstein s paradox
................ 9
1.2.4
Apparent incompatibility of the special
relativity postulates
................ 10
1.2.5
Derivation of the
Lorentz
transformation
.... 11
1.3
The Light Cone
....................... 17
1.3.1
Events and coordinate systems
......... 17
vi
Relativity: Modern Large-Scale
Spaceüme
Structure of the Cosmos
1.3.2
Future and past
.................. 19
1.3.3
Problems
...................... 19
1.4
The
Lorentz
Group
..................... 20
1.4.1
Problems
...................... 21
1.5
Consequences of the
Lorentz
Transformation
...... 25
1.5.1
Nonrelativistic limit
................ 26
1.5.2
The
Lorentz
contraction of lengths
....... 26
1.5.3
The dilation of time
............... 26
1.5.4
The addition of velocities law
.......... 27
1.5.5
Problems
...................... 28
1.6
The Structure of Spacetime
................ 30
1.6.1
Special relativity as a valuable guide
...... 32
l.C.
2
Four dimensions in classical mechanics
..... 33
1.6.3
The Minkowskian spacetime
........... 33
1.6.4
The proper time
.................. 36
1.6.5
Velocity and acceleration four-vectors
...... 38
1.6.6
Problems
...................... 40
1.7
Mass, Energy and Momentum
............... 40
1.7.1
Preliminaries
................... 40
1.7.2
Relationship between mass, energy
and momentum
.................. 41
1.7.3
Angular-momentum representation
....... 44
1.7.4
Energy-momentum four-vector
.......... 46
1.7.5
Problems
...................... 47
1.8
Suggested References
.................... 48
2.
Cosmological Special Relativity, by
Moshe Carmeli 51
2.1
Spacevelocity in Four Dimensions
............. 52
2.1.1
Present-day cosmology
.............. 53
2.1.2
Postulates
..................... 53
2.1.3
The cosmic frames
................ 53
2.1.4
Spacevelocity in cosmology
............ 54
2.1.5
Pre-special relativity
............... 55
2.1.6
The relative cosmic time
............. 55
2.1.7
Inadequacy of the classical transformation
... 56
2.1.8
Nonrelativistic cosmological transformation
. . 56
2.1.9
Difficulties at the Big Bang
........... 57
2.1.10
Universe expansion versus light propagation
. . 58
2.2
The Cosmological Transformation
............ 59
Contents xvii
2.2.1 Problems...................... 60
2.3
The Galaxy Cone......................
61
2.4
Consequences of the Cosmological Transformation
... 63
2.4.1
The classical limit
................. 63
2.4.2
The length contraction
.............. 63
2.4.3
The velocity contraction
............. 64
2.4.4
The law of addition of cosmic times
....... 65
2.4.5
The inflation of the Universe
........... 66
2.4.6
Minimal acceleration in the expansion
of the Universe
.................. 67
2.4.7
The cosmological redshift
............ 67
2.4.8
The temperature of the Universe
........ 67
2.4.9
The relationship between redshift and
cosmic time
.................... 69
2.4.10
Problems
...................... 71
2.5
Velocity, Acceleration and Cosmic Distances
....... 73
2.5.1
Preliminaries
................... 73
2.5.2
Velocity and acceleration four-vectors
...... 73
2.5.3
Acceleration and distances
............ 75
2.5.4
Energy in ESR versus cosmic distance
in CSR
....................... 76
2.5.5
Distance-velocity four-vector
........... 77
2.5.6
Conclusions
.................... 78
2.6
Suggested References
.................... 79
3.
General Relativity Theory, by
Moshe Carmeli 83
3.1
Riemannian Geometry
................... 84
3.1.1
Transformation of coordinates
.......... 84
3.1.2
Contravariant
vectors
............... 85
3.1.3
Invariants. Covariant vectors
.......... 85
3.1.4
Tensors
....................... 86
3.1.5
The metric tensor
................. 86
3.1.6
The Christoffel symbols
............. 87
3.1.7
Covariant differentiation
............. 90
3.1.8
The Riemann,
Ricci
and Einstein tensors
.... 91
3.1.9
Geodesies
..................... 95
3.1.10
The
Bianchi
identities
.............. 97
3.1.11
Tensor densities
.................. 97
3.1.12
Problems
...................... 101
Relativity: Modern Large-Scale
Spaceüme
Structure of the Cosmos
3.2
The Principle of Equivalence
............... 116
3.2.1
Null experiments:
Eötvös
experiment
...... 116
3.3
The Principle of General Covariance
........... 118
3.4
Gravitational Field Equations
............... 119
3.4.1
The Einstein field equations
........... 119
3.4.2
Problems
...................... 120
3.4.3
The Newtonian limit in general relativity
.... 125
3.4.4
Derivation of the Einstein equations from
variational principle
................ 130
3.4.5
The electromagnetic energy-momentum
tensor
....................... 131
3.5
The
Schwarzschild
Solution
................ 131
3.6
Experimental Tests of General Relativity
........ 139
3.6.1
The gravitational redshift
............ 139
3.6.2
Effects on planetary motion
........... 140
3.6.3
The deflection of light
.............. 143
3.6.4
Gravitational radiation experiments
....... 145
3.6.5
Radar experiment
................. 146
3.6.6
Low-temperature experiments
.......... 147
3.7
Equations of Motion
.................... 147
3.7.1
The geodesic postulate
.............. 147
3.7.2
Equations of motion as a consequence of
field equations
................... 148
3.7.3
Self-action terms
................. 149
3.7.4
The Einstein-Infeld-Hoffmann method
..... 152
3.7.5
The Newtonian equation of motion
....... 154
3.7.6
The Einstein-Infeld-Hoffmann equation
..... 154
3.8
Decomposition of the Riemann Tensor
.......... 156
3.9
Problems
.......................... 156
3.10
Suggested References
.................... 159
Cosmological General Relativity, by
Moshe Carmeli 161
4.1
Cosmology in Spacevelocity
................ 162
4.1.1
The foundations of
CGR
............. 162
4.1.2
The null condition ds
= 0............ 163
4.1.3
Gravitational field equations
........... 163
4.1.4
The energy-momentum tensor
.......... 163
4.1.5
The Newtonian limit in cosmological
general relativity
................. 164
Contents xix
4.1.6 Spherically-symmetric
vacuum
solution
of the
Einstein field equations in
CGR
......... 170
4.2
Spherically-Symmetric Metric
............... 175
4.2.1
Energy-momentum tensor with pressure
.... 175
4.2.2
The metric
..................... 176
4.2.3
The field equations
................ 176
4.2.4
Solutions
...................... 177
4.2.5
The Universe expansion
............. 179
4.2.6
Problem (a)
.................... 180
4.2.7
Integration of equation of motion
........ 180
4.2.8
Physical meaning
................. 182
4.2.9
Expansion at present epoch of time
....... 183
4.2.10
Problem (b)
.................... 185
4.2.11
The value of the constant
r
........... 185
4.3
Tolman
Metric as an Expanding Universe
........ 186
4.3.1
The
Tolman
metric
................ 186
4.3.2
Field equations
.................. 188
4.3.3
Solutions
...................... 189
4.3.4
The Universe expansion
............. 190
4.3.5
Tolman s Universe with pressure
........ 191
4.3.6
Problem
...................... 193
4.4
Kantowski-Sachs Metrics as Expanding Universes
.... 194
4.4.1
Introduction
.................... 194
4.4.2
Coordinate system
................ 194
4.4.3
The group generators
............... 194
4.4.4
The field equations
................ 195
4.4.5
Solutions of the field equations
......... 196
4.4.6
Kantowski-Sachs metrics in space-velocity
manifold of cosmological general relativity
... 198
4.4.7
Problems
...................... 199
4.5
Gravitational Lensing in an Expanding Universe
.... 202
4.5.1
Introduction
.................... 202
4.5.2
Equation of motion of light in the
Tolman
expanding Universe
................ 203
4.5.3
Light propagation in the lowest approximation
. 206
4.5.4
The second approximation
............ 206
4.5.5
The contribution due to the expansion
..... 208
4.6
Suggested References
.................... 208
кх
Relativity:
Modern
Large-Scale
Spacetime
Structure of the Cosmos
5.
Properties of the Gravitational Field, by
Moshe Carmeli 211
5.1
The Newtonian Equation of Motion
........... 211
5.1.1
The Newtonian limit of the Einstein field
equations
..................... 212
5.1.2
The Newtonian potential
............. 212
5.1.3
The lowest approximation
............ 213
5.1.4
The function
ф(х)
................. 214
5.2
The Geodesic Equation in Cosmology
.......... 215
5.2.1
Problem
...................... 217
5.3
The Dynamics of the Universe Expansion: Analogy with
Newtonian Mechanics
................... 219
5.3.1
Acceleration in cosmology
........... 220
5.3.2
The acceleration term explicitly: Determining
the type of the Universe
............. 221
5.4
Hook s Law of the Universe
................ 222
5.5
Suggested References
.................... 223
6.
Cosmological Special Relativity in Five Dimensions,
by
Moshe
Carmeli
225
6.1
Introduction
......................... 225
6.2
Some Consequences of the Extension to Five
Dimensions
......................... 226
6.3
Generalized Maxwell s Equations
............. 228
6.3.1
The mix-up
.................... 229
6.4
Concluding Remarks
.................... 230
6.5
Suggested References
.................... 231
7.
Cosmological General Relativity in Five Dimensions:
Brane
World Theory, by
Moshe
Carmeli
233
7.1
Introduction
......................... 233
7.1.1
Five-dimensional manifold of space, time
and velocity
.................... 234
7.2
Universe with Gravitation
................. 234
7.2.1
The
Bianchi
identities
.............. 235
7.2.2
The gravitational field equations
........ 235
7.2.3
The velocity as an independent coordinate
. . . 236
7.2.4
Effective mass density in cosmology
....... 236
7.3
The Accelerating Universe
................. 237
Contents xxi
7.3.1
Preliminaries
................... 237
7.3.2
Expanding Universe
............... 238
7.3.3
Decelerating, constant and accelerating
expansions
..................... 240
7.3.4
The accelerating Universe
............ 241
7.4
The Tully-Fisher Formula: Nonexistence of Halo Dark
Matter
............................ 242
7.4.1
The geodesic equation
.............. 243
7.4.2
The equations of motion
............. 244
7.4.3
The Tully-Fisher law
............... 246
7.5
Cosmological Redshift Analysis
.............. 247
7.5.1
The redshift formula
............... 247
7.5.2
Particular cases
.................. 248
7.5.3
Conclusions
.................... 249
7.6
Verification of the classical general relativity tests in the
Five-Dimensional Cosmology
............... 250
7.6.1
Comparison with general relativity
....... 250
7.6.2
Problem
...................... 252
7.6.3
The gravitational redshift in five dimensions
. . 253
7.6.4
Motion in a centrally symmetric gravitational
field in cosmological five dimensions
....... 254
7.6.5
The deflection of light in a gravitational field
within the five-dimensional theory
........ 259
7.7
Suggested References
.................... 262
8.
Particle Production in Five-Dimensional Cosmological
Relativity, by Gianluca
Gemelli
265
8.1
Introduction
......................... 265
8.2
Relativistic Hydrodynamics
................ 266
8.3
Five-Dimensional Relativity
................ 268
8.4
Particle Production
..................... 270
8.5
5D Hydrodynamics
..................... 272
8.6
The Isentropic Case
.................... 274
8.7
Simulation of
Friedmann
Cosmology in Flat Spacetime
. 275
8.8
Suggested References
.................... 280
9.
Properties of Gravitational Waves in an Expanding Universe,
by John
Hartnett &
Michael
Tobar
283
xxii
Relativity: Modem
Large-Scale
Spacetime
Structure of the Cosmos
9.1
Introduction
......................... 283
9.1.1
Cosmological general relativity
—
A brief
review
....................... 284
9.1.2
Linearized gravitational field equations
..... 284
9.2
Wave Equation in Curved Spacevelocity
......... 286
9.2.1
Plane wave solution
................ 287
9.2.2
Solutions of the field equations
......... 288
9.2.3
Phase and group velocities
............ 289
9.3
Density Scales in the Universe
............... 291
9.3.1
The case of binary pulsar
............ 292
9.4
Conclusion
......................... 292
9.5
Problems
.......................... 293
9.6
Suggested References
.................... 294
10.
Spiral Galaxy Rotation Curves in the
Brane
World
Theory in Five Dimensions, by John
Hartnett 297
10.1
Introduction
......................... 297
10.2
Gravitational Potential
................... 299
10.3
Equations of Motion
.................... 300
10.3.1
Newtonian
..................... 300
10.3.2
Carmelian
..................... 301
10.3.3
Rotation curves
.................. 303
10.4
Accelerations
........................ 305
10.5
Sample of Galaxy Rotation Curves
............ 307
10.5.1
Extragalactic spirals
............... 308
10.5.2
The galaxy
..................... 313
10.6
Conclusion
......................... 315
10.7
Suggested References
.................... 315
11.
The
Friedmann
Universe: FRW Metric, by
Moshe Carmeli 319
11.1
Introduction
......................... 319
11.1.1
Some preliminary concepts
............ 322
11.2
The Geometry of the Three-Dimensional
Homogeneous and
Isotropie
Space
............ 323
11.2.1
Choice of coordinate system
........... 324
11.2.2
Space with constant positive curvature
..... 325
11.2.3
Space with constant negative curvature
..... 326
11.2.4
Space with zero curvature
............ 326
Contents xxiii
11.2.5 Problems...................... 326
11.3 The Friedmann Model................... 327
11.3.1 Space
with
positive
curvature
.......... 328
11.3.2
Remark I
..................... 330
11.3.3 Space
with
negative
curvature..........
330
11.3.4
Remark
2..................... 331
11.3.5 Space
with zero curvature
............ 331
11.3.6
Problems
...................... 331
11.4
Propagation of Light in the
Friedmann
Model
...... 332
11.4.1
Problems
...................... 333
11.5
FRW Metric
........................ 334
11.5.1
Remarks on the critical mass density pc
.... 336
116
Suggested References
.................... 336
12.
CGR
versus FRW, by
Moshe Carmeli 337
12.1
The Cosmic Time as a Relative Quantity
........ 337
12.1.1
The line element in empty space
......... 338
12.1.2
The line element with gravity
.......... 340
12.2
Suggested References
.................... 341
13.
Testing
CGR
against High Redshift Observations,
by John
Hartnett & Firmin
Oliveira
343
13.1
Introduction
......................... 343
13.2
Luminosity Distance
.................... 344
13.3
Angular Size
........................ 345
13.4
Surface Brightness
..................... 348
13.5
Matter Density of the Universe
.............. 348
13.6
Expansion Transition Redshift zt
............. 350
13.7
Comparison with High-Z Type la
Supernovae
Data
. . . 350
13.7.1
Quality of curve fits
................ 351
13.8
Values of Some Key Parameters
.............. 356
13.8.1
Hubble constant
.................. 356
13.8.2
Mass of the Universe
............... 356
13.8.3
Time of transition from deceleration to
acceleration
.................... 357
13.9
Conclusion
......................... 359
13.10
Approximation of
Ω
.................... 359
13.11
Suggested References
.................... 360
xxiv
Relativity: Modern Large-Scale Spacetime Structure of the Cosmos
14.
Extending the Hubble Diagram to Higher Redshifts in
CGR,
by John
Hartnett 363
14.1
Introduction
......................... 363
14.1.1
Spacevelocity equations
.............. 364
14.2
Comparison with Observation
............... 365
14.2.1
Extended redshift range
............. 367
14.2.2
Quality of curve fits
................ 370
14.3
Spatially Flat Universe
................... 375
14.4
Conclusion
......................... 378
14.5
Suggested References
.................... 379
15.
Homogeneous Spaces and
Bianchi
Classification,
by
Moshe Carmeli 381
15.1
Lie Derivative
........................ 381
15.1.1
Infinitesimal transformation
........... 383
15.1.2
Problems
...................... 386
15.2
The Killing Equation
.................... 391
15.2.1
Isometric mapping
................ 391
15.2.2
Killing equation. Killing vector
......... 392
15.2.3
Example: The
Poincaré
group
.......... 393
15.2.4
Problems
...................... 398
15.3
Bianchi
Types
....................... 402
15.4
Suggested References
.................... 402
Appendix A Mathematical Conventions
405
A.I Components of the
Ricci
tensor
.............. 406
Appendix
В
Integration of the Equation of the Universe
Expansion
407
Appendix
С
Spheroidal and Elliptical Galaxy Velocity
Dispersion from
CGR
409
C.I Introduction
......................... 409
C.2 Gravitational Potential
................... 410
C.3 Equations of Motion
.................... 411
C.3.1 Newtonian
..................... 411
C.3.2 Carmelian
..................... 412
C.4 Radial Velocity Dispersion
................. 414
Contents xxv
C.4.1
Newtonian.....................
414
C.4.2 Carmelian..................... 415
C.4.3
Discussion
..................... 416
С.
5
Conclusion
......................... 419
С.
6
Suggested References
.................... 420
Appendix
D
Bibliography
421
Index
503
|
any_adam_object | 1 |
author_GND | (DE-588)128455624 |
building | Verbundindex |
bvnumber | BV035763776 |
callnumber-first | Q - Science |
callnumber-label | QB981 |
callnumber-raw | QB981 |
callnumber-search | QB981 |
callnumber-sort | QB 3981 |
callnumber-subject | QB - Astronomy |
classification_rvk | UH 8000 UH 8200 UH 8300 |
ctrlnum | (OCoLC)236335996 (DE-599)HBZHT016080030 |
dewey-full | 523.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 523 - Specific celestial bodies and phenomena |
dewey-raw | 523.1 |
dewey-search | 523.1 |
dewey-sort | 3523.1 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02101nam a2200553 c 4500</leader><controlfield tag="001">BV035763776</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120419 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091012s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812813756</subfield><subfield code="9">978-981-281375-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)236335996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT016080030</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB981</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">523.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8000</subfield><subfield code="0">(DE-625)145779:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8200</subfield><subfield code="0">(DE-625)145780:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8300</subfield><subfield code="0">(DE-625)145781:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relativity</subfield><subfield code="b">modern large-scale spacetime structure of the cosmos</subfield><subfield code="c">ed. Moshe Carmeli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 524 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 421-502) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espace et temps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativité restreinte (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space and time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special relativity (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kosmologie</subfield><subfield code="0">(DE-588)4114294-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Relativitätstheorie</subfield><subfield code="0">(DE-588)4182215-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cosmology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Special relativity (Physics)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Space and time.</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spezielle Relativitätstheorie</subfield><subfield code="0">(DE-588)4182215-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kosmologie</subfield><subfield code="0">(DE-588)4114294-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carmeli, Moshe</subfield><subfield code="d">1933-2007</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)128455624</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018623605&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018623605</subfield></datafield></record></collection> |
id | DE-604.BV035763776 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:03:58Z |
institution | BVB |
isbn | 9789812813756 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018623605 |
oclc_num | 236335996 |
open_access_boolean | |
owner | DE-703 DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-11 DE-19 DE-BY-UBM |
physical | XXV, 524 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific |
record_format | marc |
spelling | Relativity modern large-scale spacetime structure of the cosmos ed. Moshe Carmeli Singapore [u.a.] World Scientific 2008 XXV, 524 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references (p. 421-502) and index Cosmologie Espace et temps Relativité restreinte (Physique) Cosmology Space and time Special relativity (Physics) Kosmologie (DE-588)4114294-9 gnd rswk-swf Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd rswk-swf Spezielle Relativitätstheorie (DE-588)4182215-8 gnd rswk-swf Cosmology. Space and time. Allgemeine Relativitätstheorie (DE-588)4112491-1 s DE-604 Spezielle Relativitätstheorie (DE-588)4182215-8 s Kosmologie (DE-588)4114294-9 s Carmeli, Moshe 1933-2007 Sonstige (DE-588)128455624 oth Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018623605&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Relativity modern large-scale spacetime structure of the cosmos Cosmologie Espace et temps Relativité restreinte (Physique) Cosmology Space and time Special relativity (Physics) Kosmologie (DE-588)4114294-9 gnd Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Spezielle Relativitätstheorie (DE-588)4182215-8 gnd |
subject_GND | (DE-588)4114294-9 (DE-588)4112491-1 (DE-588)4182215-8 |
title | Relativity modern large-scale spacetime structure of the cosmos |
title_auth | Relativity modern large-scale spacetime structure of the cosmos |
title_exact_search | Relativity modern large-scale spacetime structure of the cosmos |
title_full | Relativity modern large-scale spacetime structure of the cosmos ed. Moshe Carmeli |
title_fullStr | Relativity modern large-scale spacetime structure of the cosmos ed. Moshe Carmeli |
title_full_unstemmed | Relativity modern large-scale spacetime structure of the cosmos ed. Moshe Carmeli |
title_short | Relativity |
title_sort | relativity modern large scale spacetime structure of the cosmos |
title_sub | modern large-scale spacetime structure of the cosmos |
topic | Cosmologie Espace et temps Relativité restreinte (Physique) Cosmology Space and time Special relativity (Physics) Kosmologie (DE-588)4114294-9 gnd Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Spezielle Relativitätstheorie (DE-588)4182215-8 gnd |
topic_facet | Cosmologie Espace et temps Relativité restreinte (Physique) Cosmology Space and time Special relativity (Physics) Kosmologie Allgemeine Relativitätstheorie Spezielle Relativitätstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018623605&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT carmelimoshe relativitymodernlargescalespacetimestructureofthecosmos |