Denumerable Markov chains: generating functions, boundary theory, random walks on trees
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English Italian |
Veröffentlicht: |
Zürich
Europ. Math. Soc.
2009
|
Schriftenreihe: | EMS textbooks in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 351 S. graph. Darst. |
ISBN: | 9783037190715 303719071X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035736257 | ||
003 | DE-604 | ||
005 | 20170817 | ||
007 | t | ||
008 | 090922s2009 d||| |||| 00||| eng d | ||
020 | |a 9783037190715 |9 978-3-03719-071-5 | ||
020 | |a 303719071X |9 3-03719-071-X | ||
035 | |a (OCoLC)699256152 | ||
035 | |a (DE-599)BVBBV035736257 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 1 | |a eng |h ita | |
049 | |a DE-91G |a DE-29T |a DE-188 |a DE-824 |a DE-19 |a DE-11 |a DE-384 |a DE-83 |a DE-739 | ||
050 | 0 | |a QA274.7 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 60J80 |2 msc | ||
084 | |a 60J10 |2 msc | ||
084 | |a 60J50 |2 msc | ||
084 | |a MAT 056f |2 stub | ||
084 | |a MAT 607f |2 stub | ||
100 | 1 | |a Woess, Wolfgang |d 1954- |e Verfasser |0 (DE-588)124183077 |4 aut | |
245 | 1 | 0 | |a Denumerable Markov chains |b generating functions, boundary theory, random walks on trees |c Wolfgang Woess |
264 | 1 | |a Zürich |b Europ. Math. Soc. |c 2009 | |
300 | |a XVII, 351 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a EMS textbooks in mathematics | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Generating functions | |
650 | 4 | |a Markov processes | |
650 | 4 | |a Measure theory | |
650 | 4 | |a Random walks (Mathematics) | |
650 | 0 | 7 | |a Markov-Kette |0 (DE-588)4037612-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzialtheorie |0 (DE-588)4046939-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martin-Rand |0 (DE-588)4451181-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Baum |g Mathematik |0 (DE-588)4004849-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Kette |0 (DE-588)4037612-6 |D s |
689 | 0 | 1 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 0 | 2 | |a Martin-Rand |0 (DE-588)4451181-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |D s |
689 | 1 | 1 | |a Baum |g Mathematik |0 (DE-588)4004849-4 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |a Woess, Wolfgang |t Denumerable Markov chains |n Online-Ausgabe |z 978-3-03719-571-0 |w (DE-604)BV036713275 |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018012749&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018012749 |
Datensatz im Suchindex
_version_ | 1804140019447758848 |
---|---|
adam_text | Contents
Preface
v
Introduction ix
Summary .... ...... . . . . . . . .... . . . .... ... ix
Raison d’etre .................................... xiii
1 Preliminaries and basic facts 1
A Preliminaries, examples ............. . . . .... . ... 1
B Axiomatic definition of a Markov chain ........................ 5
C Transition probabilities in n steps......................... 12
D Generating functions of transition probabilities.......... 17
2 Irreducible classes 28
A Irreducible and essential classes . . . .. . . . . ........ . 28
B The period of an irreducible class......... 35
C The spectral radius of an irreducible class .............. 39
3 Recurrence and transience, convergence, and the ergodic theorem 43
A Recurrent classes ......................................... . 43
B Return times, positive recurrence, and stationary probability measures 47
C The convergence theorem for finite Markov chains ......... 52
D The Perron-Frobenius theorem .................................... 57
E The convergence theorem for positive recurrent Markov chains ... 63
F The ergodic theorem for positive recurrent Markov chains ...... 68
G p-recurrence . . .... ... .... ..... . ..... ...... 74
4 Reversible Markov chains 78
A The network model....................................... ... 78
B Speed of convergence of finite reversible Markov chains ...... 83
C The Poincare inequality........................................... 93
D Recurrence of infinite networks........... 102
E Random walks on integer lattices............................... . 109
5 Models of population evolution 116
A Birth-and-death Markov chains........... . ..................116
B The Galton-Watson process ................................ 131
C Branching Markov chains ....................... 140
viii Contents
6 Elements of the potential theory of transient Markov chains 153
A Motivation. The finite case .................................. 153
B Harmonic and superharmonic functions. Invariant and excessive
measures .................................................... 158
C Induced Markov chains.......................................... 164
D Potentials, Riesz decomposition, approximation ................ 169
E “Balayage” and domination principle.......... . ...............173
7 The Martin boundary of transient Markov chains 179
A Minimal harmonic functions ......................................179
B The Martin compactification..................................... 184
C Supermartingales, superharmonic functions, and excessive measures 191
D The Poisson-Martin integral representation theorem . ............200
E Poisson boundary. Alternative approach to the integral representation 209
8 Minimal harmonic functions on Euclidean lattices 219
9 Nearest neighbour random walks on trees 226
A Basic facts and computations................................... 226
B The geometric boundary of an infinite tree . ... . . ... ..... 232
C Convergence to ends and identification of the Martin boundary ... 237
D The integral representation of all harmonic functions . ... . . . . 246
E Limits of harmonic functions at the boundary . . . ........... . 251
F The boundary process, and the deviation from the limit geodesic . . 263
G Some recurrence / transience criteria ......................... 267
H Rate of escape and spectral radius .................. 279
Solutions of all exercises 297
Bibliography 339
A Textbooks and other general references.......................... 339
B Research-specific references................................... 341
List of symbols and notation 345
Index 349
|
any_adam_object | 1 |
author | Woess, Wolfgang 1954- |
author_GND | (DE-588)124183077 |
author_facet | Woess, Wolfgang 1954- |
author_role | aut |
author_sort | Woess, Wolfgang 1954- |
author_variant | w w ww |
building | Verbundindex |
bvnumber | BV035736257 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.7 |
callnumber-search | QA274.7 |
callnumber-sort | QA 3274.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 620 SK 820 |
classification_tum | MAT 056f MAT 607f |
ctrlnum | (OCoLC)699256152 (DE-599)BVBBV035736257 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02442nam a2200601 c 4500</leader><controlfield tag="001">BV035736257</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170817 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090922s2009 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037190715</subfield><subfield code="9">978-3-03719-071-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">303719071X</subfield><subfield code="9">3-03719-071-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699256152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035736257</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ita</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J80</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 056f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 607f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Woess, Wolfgang</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124183077</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Denumerable Markov chains</subfield><subfield code="b">generating functions, boundary theory, random walks on trees</subfield><subfield code="c">Wolfgang Woess</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Zürich</subfield><subfield code="b">Europ. Math. Soc.</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 351 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">EMS textbooks in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generating functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martin-Rand</subfield><subfield code="0">(DE-588)4451181-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Baum</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4004849-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Martin-Rand</subfield><subfield code="0">(DE-588)4451181-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Baum</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4004849-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Woess, Wolfgang</subfield><subfield code="t">Denumerable Markov chains</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-03719-571-0</subfield><subfield code="w">(DE-604)BV036713275</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018012749&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018012749</subfield></datafield></record></collection> |
id | DE-604.BV035736257 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:53:19Z |
institution | BVB |
isbn | 9783037190715 303719071X |
language | English Italian |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018012749 |
oclc_num | 699256152 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-29T DE-188 DE-824 DE-19 DE-BY-UBM DE-11 DE-384 DE-83 DE-739 |
owner_facet | DE-91G DE-BY-TUM DE-29T DE-188 DE-824 DE-19 DE-BY-UBM DE-11 DE-384 DE-83 DE-739 |
physical | XVII, 351 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Europ. Math. Soc. |
record_format | marc |
series2 | EMS textbooks in mathematics |
spelling | Woess, Wolfgang 1954- Verfasser (DE-588)124183077 aut Denumerable Markov chains generating functions, boundary theory, random walks on trees Wolfgang Woess Zürich Europ. Math. Soc. 2009 XVII, 351 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier EMS textbooks in mathematics Boundary value problems Generating functions Markov processes Measure theory Random walks (Mathematics) Markov-Kette (DE-588)4037612-6 gnd rswk-swf Potenzialtheorie (DE-588)4046939-6 gnd rswk-swf Martin-Rand (DE-588)4451181-4 gnd rswk-swf Baum Mathematik (DE-588)4004849-4 gnd rswk-swf Irrfahrtsproblem (DE-588)4162442-7 gnd rswk-swf Markov-Kette (DE-588)4037612-6 s Potenzialtheorie (DE-588)4046939-6 s Martin-Rand (DE-588)4451181-4 s DE-604 Irrfahrtsproblem (DE-588)4162442-7 s Baum Mathematik (DE-588)4004849-4 s Erscheint auch als Woess, Wolfgang Denumerable Markov chains Online-Ausgabe 978-3-03719-571-0 (DE-604)BV036713275 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018012749&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Woess, Wolfgang 1954- Denumerable Markov chains generating functions, boundary theory, random walks on trees Boundary value problems Generating functions Markov processes Measure theory Random walks (Mathematics) Markov-Kette (DE-588)4037612-6 gnd Potenzialtheorie (DE-588)4046939-6 gnd Martin-Rand (DE-588)4451181-4 gnd Baum Mathematik (DE-588)4004849-4 gnd Irrfahrtsproblem (DE-588)4162442-7 gnd |
subject_GND | (DE-588)4037612-6 (DE-588)4046939-6 (DE-588)4451181-4 (DE-588)4004849-4 (DE-588)4162442-7 |
title | Denumerable Markov chains generating functions, boundary theory, random walks on trees |
title_auth | Denumerable Markov chains generating functions, boundary theory, random walks on trees |
title_exact_search | Denumerable Markov chains generating functions, boundary theory, random walks on trees |
title_full | Denumerable Markov chains generating functions, boundary theory, random walks on trees Wolfgang Woess |
title_fullStr | Denumerable Markov chains generating functions, boundary theory, random walks on trees Wolfgang Woess |
title_full_unstemmed | Denumerable Markov chains generating functions, boundary theory, random walks on trees Wolfgang Woess |
title_short | Denumerable Markov chains |
title_sort | denumerable markov chains generating functions boundary theory random walks on trees |
title_sub | generating functions, boundary theory, random walks on trees |
topic | Boundary value problems Generating functions Markov processes Measure theory Random walks (Mathematics) Markov-Kette (DE-588)4037612-6 gnd Potenzialtheorie (DE-588)4046939-6 gnd Martin-Rand (DE-588)4451181-4 gnd Baum Mathematik (DE-588)4004849-4 gnd Irrfahrtsproblem (DE-588)4162442-7 gnd |
topic_facet | Boundary value problems Generating functions Markov processes Measure theory Random walks (Mathematics) Markov-Kette Potenzialtheorie Martin-Rand Baum Mathematik Irrfahrtsproblem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018012749&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT woesswolfgang denumerablemarkovchainsgeneratingfunctionsboundarytheoryrandomwalksontrees |