Asymptotic analysis of random walks: heavy-tailed distributions
Gespeichert in:
Hauptverfasser: | , |
---|---|
Weitere Verfasser: | |
Format: | Buch |
Sprache: | English Russian |
Veröffentlicht: |
Cambridge ; New York ; Melbourne ; Madrid ; Cape Town ; Singapore ; Sao Paulo ; Delhi
Cambridge University Press
2008
|
Ausgabe: | first published |
Schriftenreihe: | Encyclopedia of mathematics and its applications
118 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 611 - 623 |
Beschreibung: | xxix, 625 Seiten Diagramme 24 cm |
ISBN: | 052188117X 9780521881173 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035736110 | ||
003 | DE-604 | ||
005 | 20230609 | ||
007 | t | ||
008 | 090922s2008 |||| |||| 00||| eng d | ||
010 | |a 2008298018 | ||
020 | |a 052188117X |c hbk. : £95.00 |9 0-521-88117-X | ||
020 | |a 9780521881173 |c hbk. : £95.00 |9 978-0-521-88117-3 | ||
035 | |a (OCoLC)174130608 | ||
035 | |a (DE-599)GBV553733753 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 1 | |a eng |h rus | |
049 | |a DE-91G |a DE-188 |a DE-83 |a DE-824 | ||
050 | 0 | |a QA274.73 | |
082 | 0 | |a 519.282 |2 22 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 60G50 |2 msc | ||
084 | |a MAT 605f |2 stub | ||
100 | 1 | |a Borovkov, A. A. |d 1931- |0 (DE-588)1089930224 |4 aut | |
245 | 1 | 0 | |a Asymptotic analysis of random walks |b heavy-tailed distributions |c A. A. Borovkov ; K. A. Borovkov ; translated by O.B. Borovkova |
250 | |a first published | ||
264 | 1 | |a Cambridge ; New York ; Melbourne ; Madrid ; Cape Town ; Singapore ; Sao Paulo ; Delhi |b Cambridge University Press |c 2008 | |
300 | |a xxix, 625 Seiten |b Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v 118 | |
500 | |a Literaturverz. S. 611 - 623 | ||
650 | 0 | |a Random walks (Mathematics) | |
650 | 0 | |a Asymptotic expansions | |
650 | 4 | |a Asymptotic expansions | |
650 | 4 | |a Random walks (Mathematics) | |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Irrfahrtsproblem |0 (DE-588)4162442-7 |D s |
689 | 0 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Borovkov, Konstantin A. |0 (DE-588)1055786600 |4 aut | |
700 | 1 | |a Borovkova, O. B. |0 (DE-588)1292531061 |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-511-72139-7 |
830 | 0 | |a Encyclopedia of mathematics and its applications |v 118 |w (DE-604)BV000903719 |9 118 | |
856 | 4 | |m DE-601 |q pdf/application |u http://www.gbv.de/dms/bowker/toc/9780521881173.pdf |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018012608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018012608 |
Datensatz im Suchindex
_version_ | 1804140019206586368 |
---|---|
adam_text | Titel: Asymptotic analysis of random walks
Autor: Borovkov, Aleksandr A.
Jahr: 2008
Contents
Notation page xi
Introduction xv
1 Preliminaries 1
1.1 Regularly varying functions and their main properties 1
1.2 Subexponential distributions 13
1.3 Locally subexponential distributions 44
1.4 Asymptotic properties of functions of distributions 51
1.5 The convergence of distributions of sums of random variables
with regularly varying tails to stable laws 57
1.6 Functional limit theorems 75
2 Random walks with jumps having no finite first moment 80
2.1 Introduction. The main approach to bounding from above
the distribution tails of the maxima of sums of random variables 80
2.2 Upper bounds for the distribution of the maximum of sums
when a ^ 1 and the left tail is arbitrary 84
2.3 Upper bounds for the distribution of the sum of random
variables when the left tail dominates the right tail 91
2.4 Upper bounds for the distribution of the maximum of sums
when the left tail is substantially heavier than the right tail 97
2.5 Lower bounds for the distributions of the sums. Finiteness
criteria for the maximum of the sums 103
2.6 The asymptotic behaviour of the probabilities P(5n ^ x) 110
2.7 The asymptotic behaviour of the probabilities P (Sn x) 120
3 Random walks with jumps having finite mean and infinite variance 127
3.1 Upper bounds for the distribution of Sn 127
3.2 Upper bounds for the distribution of Sn(o), a 0 137
3.3 Lower bounds for the distribution of Sn 141
3.4 Asymptotics of P(Sn ^ x) and its refinements 142
3.5 Asymptotics of P(5n x) and its refinements 149
vi Contents
3.6 The asymptotics of P(5(a) x) with refinements and the
general boundary problem 154
3.7 Integro-local theorems on large deviations of Sn for index
-a, a G (0,2) 166
3.8 Uniform relative convergence to a stable law 173
3.9 Analogues of the law of the iterated logarithm in the case of
infinite variance 176
4 Random walks with jumps having finite variance 182
4.1 Upper bounds for the distribution of ~Sn 182
4.2 Upper bounds for the distribution of Sn(a), a 0 191
4.3 Lower bounds for the distributions of Sn and Sn(a) 194
4.4 Asymptotics of P(5„ ^ x) and its refinements 197
4.5 Asymptotics of P(5n ^ x) and its refinements 204
4.6 Asymptotics of P(S(a) ^ a;) and its refinements. The
general boundary problem 208
4.7 Integro-local theorems for the sums Sn 217
4.8 Extension of results on the asymptotics of P(5„ ^ x) and
P(5„ x) to wider classes of jump distributions 224
4.9 The distribution of the trajectory {5fc} given that Sn ^ x
^x 228
Random walks with semiexponential jump distributions 233
5.1 Introduction 233
5.2 Bounds for the distributions of Sn and Sn, and their
consequences 238
5.3 Bounds for the distribution of ¿ „(a) 247
5.4 Large deviations of the sums Sn 250
5.5 Large deviations of the maxima Sn 268
5.6 Large deviations of Sn(a) when a 0 274
5.7 Large deviations of Sn(—a) when a 0 287
5.8 Integro-local and integral theorems on the whole real line 290
5.9 Additivity (subexponentiality) zones for various distribution
classes 296
Large deviations on the boundary of and outside the Cramer zone
for random walks with jump distributions decaying exponentially
fast 300
6.1 Introduction. The main method of studying large deviations
when Cramer s condition holds. Applicability bounds 300
6.2 Integro-local theorems for sums Sn of r.v. s with distributions
from the class £1Z when the function V (i) is of index from
the interval (-1, -3) 308
Contents vii
6.3 Integro-local theorems for the sums Sn when the Cramer
transform for the summands has a finite variance at the right
boundary point 315
6.4 The conditional distribution of the trajectory {Sk} given
SneA[x) 318
6.5 Asymptotics of the probability of the crossing of a remote
boundary by the random walk 319
7 Asymptotic properties of functions of regularly varying and semiex-
ponential distributions. Asymptotics of the distributions of stopped
sums and their maxima. An alternative approach to studying the
asymptotics of P(5n x) 335
7.1 Functions of regularly varying distributions 335
7.2 Functions of semiexponential distributions 341
7.3 Functions of distributions interpreted as the distributions of
stopped sums. Asymptotics for the maxima of stopped sums 344
7.4 Sums stopped at an arbitrary Markov time 347
7.5 An alternative approach to studying the asymptotics
of P(5n ^ x) for sub- and semiexponential distributions of
the summands 354
7.6 A Poissonian representation for the supremum S and the
time when it was attained 367
8 On the asymptotics of the first hitting times 369
8.1 Introduction 369
8.2 A fixed level x 370
8.3 A growing level x 391
9 Integro-local and integral large deviation theorems for sums of
random vectors 398
9.1 Introduction 398
9.2 Integro-local large deviation theorems for sums of indepen-
dent random vectors with regularly varying distributions 402
9.3 Integral theorems 412
10 Large deviations in trajectory space 417
10.1 Introduction 417
10.2 One-sided large deviations in trajectory space 418
10.3 The general case 422
11 Large deviations of sums of random variables of two types 427
11.1 The formulation of the problem for sums of random variables
of two types 427
11.2 Asymptotics of P(m, n, x) related to the class of regularly
varying distributions 429
viii Contents
11.3 Asymptotics of P(m,n,x) related to semiexponential
distributions 432
12 Random walks with non-identically distributed jumps in the tri-
angular array scheme in the case of infinite second moment. Tran-
sient phenomena 439
12.1 Upper and lower bounds for the distributions of Sn and Sn 439
12.2 Asymptotics of the crossing of an arbitrary remote boundary 454
12.3 Asymptotics of the probability of the crossing of an arbitrary
remote boundary on an unbounded time interval. Bounds for
the first crossing time 457
12.4 Convergence in the triangular array scheme of random walks
with non-identically distributed jumps to stable processes 464
12.5 Transient phenomena 471
13 Random walks with non-identically distributed jumps in the tri-
angular array scheme in the case of finite variances 482
13.1 Upper and lower bounds for the distributions of Sn and Sn 482
13.2 Asymptotics of the probability of the crossing of an arbitrary
remote boundary 495
13.3 The invariance principle. Transient phenomena 502
14 Random walks with dependent jumps 506
14.1 The classes of random walks with dependent jumps that
admit asymptotic analysis 506
14.2 Martingales on countable Markov chains. The main results
of the asymptotic analysis when the jump variances can be
infinite 509
14.3 Martingales on countable Markov chains. The main results
of the asymptotic analysis in the case of finite variances 514
14.4 Arbitrary random walks on countable Markov chains 516
15 Extension of the results of Chapters 2-5 to continuous-time ran-
dom processes with independent increments 522
15.1 Introduction 522
15.2 The first approach, based on using the closeness of the
trajectories of processes in discrete and continuous time 525
15.3 The construction of a full analogue of the asymptotic analysis
from Chapters 2-5 for random processes with independent
increments 532
16 Extension of the results of Chapters 3 and 4 to generalized renewal
processes 543
16.1 Introduction 543
16.2 Large deviation probabilities for S(T) and S(T) 551
16.3 Asymptotic expansions 574
Contents ix
16.4 The crossing of arbitrary boundaries 585
16.5 The case of linear boundaries 592
Bibliographic notes 602
References 611
Index 624
|
any_adam_object | 1 |
author | Borovkov, A. A. 1931- Borovkov, Konstantin A. |
author2 | Borovkova, O. B. |
author2_role | trl |
author2_variant | o b b ob obb |
author_GND | (DE-588)1089930224 (DE-588)1055786600 (DE-588)1292531061 |
author_facet | Borovkov, A. A. 1931- Borovkov, Konstantin A. Borovkova, O. B. |
author_role | aut aut |
author_sort | Borovkov, A. A. 1931- |
author_variant | a a b aa aab k a b ka kab |
building | Verbundindex |
bvnumber | BV035736110 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.73 |
callnumber-search | QA274.73 |
callnumber-sort | QA 3274.73 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 |
classification_tum | MAT 605f |
ctrlnum | (OCoLC)174130608 (DE-599)GBV553733753 |
dewey-full | 519.282 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.282 |
dewey-search | 519.282 |
dewey-sort | 3519.282 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | first published |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02393nam a2200553 cb4500</leader><controlfield tag="001">BV035736110</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230609 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090922s2008 |||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008298018</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052188117X</subfield><subfield code="c">hbk. : £95.00</subfield><subfield code="9">0-521-88117-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521881173</subfield><subfield code="c">hbk. : £95.00</subfield><subfield code="9">978-0-521-88117-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)174130608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV553733753</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.73</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.282</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60G50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borovkov, A. A.</subfield><subfield code="d">1931-</subfield><subfield code="0">(DE-588)1089930224</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic analysis of random walks</subfield><subfield code="b">heavy-tailed distributions</subfield><subfield code="c">A. A. Borovkov ; K. A. Borovkov ; translated by O.B. Borovkova</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">first published</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York ; Melbourne ; Madrid ; Cape Town ; Singapore ; Sao Paulo ; Delhi</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxix, 625 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">118</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 611 - 623</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Asymptotic expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random walks (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Irrfahrtsproblem</subfield><subfield code="0">(DE-588)4162442-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borovkov, Konstantin A.</subfield><subfield code="0">(DE-588)1055786600</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borovkova, O. B.</subfield><subfield code="0">(DE-588)1292531061</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-511-72139-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">118</subfield><subfield code="w">(DE-604)BV000903719</subfield><subfield code="9">118</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://www.gbv.de/dms/bowker/toc/9780521881173.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018012608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018012608</subfield></datafield></record></collection> |
id | DE-604.BV035736110 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:53:19Z |
institution | BVB |
isbn | 052188117X 9780521881173 |
language | English Russian |
lccn | 2008298018 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018012608 |
oclc_num | 174130608 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-188 DE-83 DE-824 |
owner_facet | DE-91G DE-BY-TUM DE-188 DE-83 DE-824 |
physical | xxix, 625 Seiten Diagramme 24 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
series | Encyclopedia of mathematics and its applications |
series2 | Encyclopedia of mathematics and its applications |
spelling | Borovkov, A. A. 1931- (DE-588)1089930224 aut Asymptotic analysis of random walks heavy-tailed distributions A. A. Borovkov ; K. A. Borovkov ; translated by O.B. Borovkova first published Cambridge ; New York ; Melbourne ; Madrid ; Cape Town ; Singapore ; Sao Paulo ; Delhi Cambridge University Press 2008 xxix, 625 Seiten Diagramme 24 cm txt rdacontent n rdamedia nc rdacarrier Encyclopedia of mathematics and its applications 118 Literaturverz. S. 611 - 623 Random walks (Mathematics) Asymptotic expansions Asymptotik (DE-588)4126634-1 gnd rswk-swf Irrfahrtsproblem (DE-588)4162442-7 gnd rswk-swf Irrfahrtsproblem (DE-588)4162442-7 s Asymptotik (DE-588)4126634-1 s DE-604 Borovkov, Konstantin A. (DE-588)1055786600 aut Borovkova, O. B. (DE-588)1292531061 trl Erscheint auch als Online-Ausgabe 978-0-511-72139-7 Encyclopedia of mathematics and its applications 118 (DE-604)BV000903719 118 DE-601 pdf/application http://www.gbv.de/dms/bowker/toc/9780521881173.pdf Inhaltsverzeichnis HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018012608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Borovkov, A. A. 1931- Borovkov, Konstantin A. Asymptotic analysis of random walks heavy-tailed distributions Encyclopedia of mathematics and its applications Random walks (Mathematics) Asymptotic expansions Asymptotik (DE-588)4126634-1 gnd Irrfahrtsproblem (DE-588)4162442-7 gnd |
subject_GND | (DE-588)4126634-1 (DE-588)4162442-7 |
title | Asymptotic analysis of random walks heavy-tailed distributions |
title_auth | Asymptotic analysis of random walks heavy-tailed distributions |
title_exact_search | Asymptotic analysis of random walks heavy-tailed distributions |
title_full | Asymptotic analysis of random walks heavy-tailed distributions A. A. Borovkov ; K. A. Borovkov ; translated by O.B. Borovkova |
title_fullStr | Asymptotic analysis of random walks heavy-tailed distributions A. A. Borovkov ; K. A. Borovkov ; translated by O.B. Borovkova |
title_full_unstemmed | Asymptotic analysis of random walks heavy-tailed distributions A. A. Borovkov ; K. A. Borovkov ; translated by O.B. Borovkova |
title_short | Asymptotic analysis of random walks |
title_sort | asymptotic analysis of random walks heavy tailed distributions |
title_sub | heavy-tailed distributions |
topic | Random walks (Mathematics) Asymptotic expansions Asymptotik (DE-588)4126634-1 gnd Irrfahrtsproblem (DE-588)4162442-7 gnd |
topic_facet | Random walks (Mathematics) Asymptotic expansions Asymptotik Irrfahrtsproblem |
url | http://www.gbv.de/dms/bowker/toc/9780521881173.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018012608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000903719 |
work_keys_str_mv | AT borovkovaa asymptoticanalysisofrandomwalksheavytaileddistributions AT borovkovkonstantina asymptoticanalysisofrandomwalksheavytaileddistributions AT borovkovaob asymptoticanalysisofrandomwalksheavytaileddistributions |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis