Science of synthesis: Houben-Weyl methods of molecular transformations 46 = Category 6, Compounds with all-carbon functions 1,3-Dienes
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Stuttgart [u.a.]
Thieme
2009
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 744 S. graph. Darst. 26 cm |
ISBN: | 9783131189912 9781588905376 |
Internformat
MARC
LEADER | 00000nam a22000008cc4500 | ||
---|---|---|---|
001 | BV035726103 | ||
003 | DE-604 | ||
007 | t | ||
008 | 090915s2009 d||| |||| 00||| eng d | ||
020 | |a 9783131189912 |9 978-3-13-118991-2 | ||
020 | |a 9781588905376 |9 978-1-58890-537-6 | ||
035 | |a (OCoLC)633894732 | ||
035 | |a (DE-599)BVBBV035726103 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-355 |a DE-210 |a DE-91G |a DE-188 | ||
084 | |a 540 |2 sdnb | ||
245 | 1 | 0 | |a Science of synthesis |b Houben-Weyl methods of molecular transformations |n 46 = Category 6, Compounds with all-carbon functions |p 1,3-Dienes |c ed. board: D. Bellus ... |
264 | 1 | |a Stuttgart [u.a.] |b Thieme |c 2009 | |
300 | |a XXII, 744 S. |b graph. Darst. |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Bellus, Daniel |e Sonstige |4 oth | |
700 | 1 | |a Houben, Josef |d 1875-1940 |e Sonstige |0 (DE-588)117013870 |4 oth | |
773 | 0 | 8 | |w (DE-604)BV013247070 |g 46 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018002796&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-018002796 |
Datensatz im Suchindex
_version_ | 1807863420426387456 |
---|---|
adam_text |
Titel: Bd. 46. Science of synthesis. 1,3-Dienes
Autor:
Jahr: 2009
Table of Contents
Introduction
V. H. Rawal and S. A. Kozmin
Introduction 1
46.1 Synthesis Using the Wittig and Related Phosphorus-, Silicon-, or
Sulfur-Based Reactions
A. D. Abell and M. K. Edmonds
46.1 Synthesis Using the Wittig and Related Phosphorus-, Silicon-, or
Sulfur-Based Reactions 23
46.1.1 The Wittig Reaction 24
46.1.1.1 Method 1: Synthesis from Phosphorus Ylides and Enones or Enals 24
46.1.1.1.1 Variation 1: From Stabilized Ylides 25
46.1.1.1.2 Variation 2: From Nonstabilized Ylides 27
46.1.1.2 Method 2: Synthesis from Allyl Phosphorus Ylides and Carbonyl
Compounds 30
46.1.1.3 Method 3: Synthesis by Tandem Oxidation-Wittig Reaction 34
46.1.1.3.1 Variation 1: Simultaneous Diene Formation 35
46.1.1.3.2 Variation 2: Sequential Diene Formation 35
46.1.2 The Horner-Wittig Reaction 37
46.1.2.1 Method 1: Synthesis from Phosphine Oxides and Enals 38
46.1.2.2 Method 2: Synthesis from Alkenylphosphine Oxides and Aldehydes or
Ketones 38
46.1.3 The Horner-Wadsworth-Emmons Reaction 39
46.1.3.1 Method 1: Synthesis from Phosphonates and Enones or Enals 40
46.1.3.1.1 Variation 1: The Ando Method 42
46.1.3.1.2 Variation 2: The Still-Gennari Modification 43
46.1.3.2 Method 2: Synthesis from Alkenylphosphonates and Carbonyl
Compounds 44
46.1.3.2.1 Variation 1: The Still-Gennari Modification 46
46.1.4 The Peterson Reaction 46
46.1.4.1 Method 1: Synthesis from a.p-Unsaturated Carbonyl Compounds and
Alkylsilanes 47
46.1.4.2 Method 2: Synthesis from Carbonyl Compounds and Allylsilanes 49
46.1.4.3 Method 3: The Vinylogous Peterson Elimination 53
46.1.5 The Julia Reaction and Its Variations 54
46.1.5.1 Method 1: Synthesis from a,p-Unsaturated Carbonyl Compounds and
Alkyl Sulfones 55
46.1.5.2 Method 2: Synthesis from Carbonyl Compounds and Allyl Sulfones 57
46.1.5.3 Method3: The Keck Variation 59
46.2 Synthesis by Alkylidenation with Metal-Carbene Complexes and Related
Reagents
T. Takeda and A. Tsubouchi
46.2 Synthesis by Alkylidenation with Metal-Carbene Complexes and Related
Reagents 63
46.2.1 Methylenation 63
46.2.1.1 Method 1: Synthesis Using Titanium-Based Reagents 63
46.2.1.1.1 Variation 1: Using the Tebbe Reagent 63
46.2.1.1.2 Variation 2: Using Bis(T)5-cydopentadienyl)(dihalozinc)((j,-methylene)-
titanium 68
46.2.1.1.3 Variation 3: Using Bis(ti5-cyclopentadienyl)dimethyltitanium(IV) (The
Petasis Reagent) 69
46.2.1.1.4 Variations UsingTitanacydobutenes 72
46.2.1.2 Method 2: Synthesis Using Zinc-Based Reagents 73
46.2.1.3 Method 3: Synthesis Using Miscellaneous Reagents 77
46.2.2 Halomethylenation and Related Reactions 79
46.2.2.1 Method 1: Synthesis Using Titanium-Based Reagents 80
46.2.2.2 Method 2: Synthesis Using Zinc-Based Reagents 81
46.2.2.3 Method 3: Synthesis Using Chromium-Based Reagents 82
46.2.3 Other Alkylidenation Reactions 87
46.2.3.1 Method 1: Synthesis Using Titanium-Based Reagents 87
46.2.3.2 Method 2: Synthesis Using Zinc-Based Reagents 90
46.2.3.3 Method 3: Synthesis Using Chromium-Based Reagents 91
46.2.3.4 Method 4: Synthesis Using Miscellaneous Reagents 92
46.3 Synthesis by Alkene Metathesis
S. T. Diver
46.3 Synthesis by Alkene Metathesis 97
46.3.1 Method 1: Ring-Closing Metathesis of Enynes 102
46.3.1.1 Variation 1: Using Grubbs'Catalysts 102
46.3.1.2 Variation 2: Polycyclization Using Grubbs' Catalysts 107
46.3.1.3 Variation 3: Using the Hoveyda-Blechert Catalyst 112
46.3.1.4 Variation 4: Polycyclization Using the Hoveyda-Blechert Catalyst 114
46.3.1.5 Variation 5: Using the Schrock Catalyst 115
46.3.2 Method 2: Ring-Closing Metathesis of Alkenes with Conjugated Dienes • 118
46.3.3 Method3: Cross Metathesis of Alkynes with Alkenes 121
46.3.3.1 Variation 1: Metathesisof Alkynes with Ethene 121
46.3.3.2 Variation 2: Metathesis of Terminal Alkynes with Other Acyclic Alkenes •¦ 125
46.3.3.3 Variation 3: Metathesisof Internal Alkynes with Acyclic Alkenes 129
46.3.3.4 Variation 4: Ethene-Assisted Metathesis 130
46.3.3.5 Variation 5: Metathesis of Alkynes with Cycloalkenes 131
46.3.4 Method 4: Cross Metathesis of Alkenes with Conjugated Dienes 135
46.3.5 Method 5: Cross Metathesis of Alkenes Followed by Elimination 140
46.3.6 Method 6: Ring-Rearrangement Metathesis 141
46.4 Synthesis by Aldol and Related Condensation Reactions
K. P. C. Minbiole
46.4 Synthesis by Aldol and Related Condensation Reactions 147
46.4.1 Synthesis of 1,3-Dienes with an Electron-Withdrawing Group at C1 148
46.4.1.1 Method 1: Formation of the ot,B-Alkene 148
46.4.1.1.1 Variation 1: Under Basic Conditions with Thermodynamic Control 149
46.4.1.1.2 Variation2: Under Kinetic Conditions with Subsequent Elimination 150
46.4.1.1.3 Variation3: Under Lewis Acidic Conditions 151
46.4.1.1.4 Variation4: Other Approaches 153
46.4.1.2 Method 2: Formation of the Y,6-Alkene 153
46.4.1.2.1 Variation 1: Driven by Extended Conjugation 154
46.4.1.2.2 Variation 2: Lactone Formation 154
46.4.1.2.3 Variation3: Other Reactions 156
46.4.2 Synthesis of 1,3-Dienes with an Electron-Withdrawing Croup at C2 158
46.4.2.1 Method 1: Formation of the a.p-Alkene 158
46.4.2.1.1 Variation 1: Single-Step Reactions 159
46.4.2.1.2 Variation2: MultistepReactions 159
46.4.2.1.3 Variation3: Other Strategies 160
46.4.3 Synthesis of 1,3-Dienes with Two Electron-Withdrawing Groups at C1 160
46.4.3.1 Methodi: Formation of the a,p-Alkene 161
46.4.3.1.1 Variation 1: Under Standard Basic Conditions 161
46.4.3.1.2 Variation 2: Using Alternative Promoters 162
46.4.3.1.3 Variation 3: From Non-Ester Substrates 162
46.4.3.2 Method2: Formation of the y.o-Alkene 163
46.4.4 Synthesis of 1,3-Dienes with Electron-Withdrawing Groups at C1 and C3 — 164
46.4.4.1 Method 1: Knoevenagel and Related Condensations 165
46.4.5 Synthesis of 1,3-Dienes with Electron-Withdrawing Groups at C2 and C3 — 166
46.4.5.1 Methodi: Single Stobbe Reaction 166
46.4.5.2 Method2: Double Stobbe Reaction 167
46.5 Synthesis by Metal-Mediated C—C Bond Forming Reactions of Alkynes,
Diynes, and Enynes
V. Gandon, S. Thorimbert, and M. Malacria
46.5 Synthesis by Metal-Mediated C—C Bond Forming Reactions of Alkynes,
Diynes, and Enynes 173
46.5.1 Acyclic 1,3-Dienes 173
46.5.1.1 Method 1: Nickel-Catalyzed Aldehyde-Alkyne and Aldehyde-Enyne
Coupling 173
46.5.1.1.1 Variation 1: Nickel-Catalyzed Aldehyde-Alkyne Coupling 173
46.5.1.1.2 Variation 2: Nickel-Catalyzed Aldehyde-Enyne Coupling 174
46.5.1.2 Method2: Coupling of Alkynes 175
46.5.1.2.1 Variation 1: Titanium-Mediated Carbometalation of Internal Alkynes — 176
46.5.1.2.2 Variation 2: Zirconium-Mediated Carbometalation of Alkynes 177
46.5.1.2.3 Variation 3: Ruthenium-Catalyzed Dimerization of Propargyl Alcohols ••• 180
46.5.1.3 Method 3: 2:1 Co-oligomerization of Alkynes and Alkenes 181
46.5.1.3.1 Variation 1: Cobalt-Mediated C—H Activation 181
46.5.1.3.2 Variation 2: Nickel-Mediated C—H Activation 182
46.5.2 Endocyclic 1,3-Dienes 183
46.5.2.1 Method 1: Synthesis via Zirconacyclopentadienes 183
46.5.2.2 Method 2: Six-Membered Rings by [2 + 2 + 2] Cydoaddition 185
46.5.2.2.1 Variation 1: Titanium-Catalyzed Cydoaddition 186
46.5.2.2.2 Variation 2: Zirconium-Mediated Cydoaddition 186
46.5.2.2.3 Variation 3: Ruthenium-Catalyzed Cydoaddition 187
46.5.2.2.4 Variations Cobalt-Mediated Cydoaddition 190
46.5.2.2.5 Variation 5: Rhodium-Catalyzed Cydoaddition 197
46.5.2.2.6 Variation 6: Iridium-Catalyzed Cydoaddition 201
46.5.2.2.7 Variation 7: Nickel-Catalyzed Cydoaddition 203
46.5.2.3 Method 3: Six-Membered Rings by Cycloisomerization of 1,5-Enynes ••¦ 205
46.5.2.4 Method 4: Seven-Membered Rings by Cydoaddition or
Cycloisomerization of Diynes 206
46.5.2.5 Method 5: Codimerization Reaction between 1,3-Dienes and Alkynes • • 207
46.5.2.6 Method 6: Cobalt-Mediated Syntheses of Alkaloids and Steroids 207
46.5.3 1,3-Dienes Having Two Exocyclic Double Bonds 210
46.5.3.1 Method!: Cyclization of Diynes 210
46.5.3.1.1 Variation 1: Titanium-Promoted Cyclization of Diynes 210
46.5.3.1.2 Variation 2: Zirconacene-Derivative-Promoted Cyclization of Diynes 211
46.5.3.1.3 Variation 3: Nickel-Catalyzed Cyclization of Diynes 212
46.5.3.2 Method 2: Cyclization of Enynes 213
46.5.3.2.1 Variation 1: Palladium-Catalyzed Cycloisomerization of Enynes 214
46.5.3.2.2 Variation 2: Ruthenium-Catalyzed Cycloisomerization of Enynes 215
46.5.3.2.3 Variation 3: Iridium(l)-Catalyzed Cycloisomerization of Enynes 216
46.5.3.2.4 Variation4: Cobalt(l)-MediatedCycloisomerization of 1,n-Enynes 217
46.5.3.3 Method3: Cyclization of Allenynes 218
46.5.4 Conjugated Vinylic Cycloalkenes 219
46.5.4.1 Method 1: Cycloisomerization of 1,6-Enynes 219
46.5.4.1.1 Variation 1: Palladium-Catalyzed Cycloisomerization To Give
Vinylcydopentenes 219
46.5.4.1.2 Variation 2: Ruthenium-Catalyzed Cycloisomerization To Give
Vinylcycloalkenes 220
46.5.4.1.3 Variation 3: Platinum- and Gold-Catalyzed Cycloisomerization To Give
Vinylcycloalkenes 221
46.5.4.1.4 Variation 4: Iridium-Catalyzed Cycloisomerization To Give
Vinylcycloalkenes 223
46.5.4.2 Method 2: Cycloisomerization of Allenynes 224
46.5.4.2.1 Variation 1: Platinum-Catalyzed Cycloisomerization To Give
Vinylcycloalkenes 224
46.5.4.2.2 Variation 2: Gold- and Platinum-Catalyzed Cycloisomerization To Give
Cross-Conjugated Trienes 225
46.5.4.2.3 Variation 3: Rhodium-Catalyzed Isomerization To Give Cross-Conjugated
Trienes 225
46.5.4.2.4 Variation 4: Titanium(ll)-Mediated Cyclization To Give Cross-Conjugated
Trienes 226
46.5.4.2.5 Variation 5: Cobalt(l)-Mediated Cyclization To Give Cross-Conjugated
Trienes 227
46.5.5 1,3-Dienes Having Endocyclic and Exocyclic Double Bonds 227
46.5.5.1 Method 1: Cycloisomerization of 1,6- and 1,7-Enynes 228
46.5.5.1.1 Variation 1: Palladium-Catalyzed Cycloisomerization 228
46.5.5.1.2 Variation 2: Gold-Catalyzed Cycloisomerization 228
46.5.5.1.3 Variation 3: Rhodium-Catalyzed Cycloisomerization 230
46.5.5.1.4 Variation 4: Ruthenium-Catalyzed Cycloisomerization 231
46.5.5.2 Method 2: Cycloisomerization of Allenynes 231
46.5.6 s-trans-Heteroannular 1,3-Dienes 232
46.5.6.1 Method 1: Cycloisomerization of Dienynes 232
46.5.6.2 Method 2: Cycloisomerization of Allenynes 232
46.6 Synthesis by Metal-Mediated Coupling Reactions
E. Negishi and G. Wang
46.6 Synthesis by Metal-Mediated Coupling Reactions 239
46.6.1 Method 1: Stoichiometric Synthesis of 1,3-Dienes by Metal-Mediated
Coupling Reactions via Migratory Insertion 244
46.6.1.1 Variation 1: 1,4-Disubstituted E,£-1,3-Dienes by [2C + 2C] Alkenyl-Alkenyl
Coupling via Organoboron Migratory Insertion Reactions — 245
46.6.1.2 Variation 2: 1,4-Disubstituted E.Z-1,3-Dienes by [2C + 2C] Alkynyl-Alkenyl
Coupling via Organoboron Migratory Insertion Reactions — 246
46.6.1.3 Variation 3: 1,4-Disubstituted Z.Z-1,3-Dienes by [2C + 2C] Alkynyl-Alkynyl
Coupling via Boron- or Zirconium-Mediated Migratory
Insertion 247
46.6.1.4 Variation 4: Other Organozirconium Migratory Insertion Reactions for the
Synthesis of 1,3-Dienes 248
46.6.2 Method 2: Stoichiometric Synthesis of 1,3-Dienes by Metal-Mediated
[2C + 2C] Coupling via Carbometalation 249
46.6.2.1 Variation 1: Synthesis of 1,3-Dienes by Controlled Alkyne Dimerization via
syn-Carbometalation 251
46.6.2.2 Variation 2: Chelation-Guided anti-Carbometalation with Alkenyl- and
Alkynyimetals 252
46.6.2.3 Variation 3: Zirconium-Promoted Ene-Yne Coupling and Alkyne
Dimerization 252
46.6.2.4 Variation 4: Titanium-Promoted Ene-Yne Coupling and Alkyne
Dimerization 255
46.6.3 Method 3: Synthesis of 1,3-Dienes by Palladium-Catalyzed
Cross-Coupling Reactions 256
46.6.3.1 Variation 1: 1,3-Dienes Containing the Parent Vinyl and/or
1-Monosubstituted Vinyl Groups 266
46.6.3.2 Variation 2: 1,4-Disubstituted 1,3-Dienes 271
46.6.3.3 Variation 3: Trisubstituted 1,3-Dienes Excluding Those Containing a Vinyl
or Vinylidene Group 275
46.6.3.4 Variation 4: Tetrasubstituted 1,3-Dienes Excluding Those Containing a
Fully Substituted Alkenyl Group 285
46.6.3.5 Variation 5: Tetra-, Penta-, and Hexasubstituted 1,3-Dienes Containing
One or Two Fully Substituted Alkenyl Groups Excluding
1,1,2,3-Tetrasubstituted 1,3-Dienes 287
46.6.4 Method 4: 1,3-Dienes through Modification of 4C Compounds 290
46.6.4.1 Variation 1: 1,3-Dienes via Heterofunctionalized 1,3-Dienes 290
46.6.4.2 Variation 2: 1,3-Dienes via 1,3-Enynes and 1,3-Diynes 300
46.6.5 Method 5: Synthesis of 1,3-Dienes by Catalytic Carbometalation and
Oxymetalation Reactions 308
46.6.5.1 Variation 1: 1,3-Dienes via the Heck Reaction 308
46.6.5.2 Variation 2: Other Catalytic Carbopalladation Routes to 1,3-Dienes 315
46.6.5.3 Variation 3: 1,3-Dienes via Oxymetalation Reactions 326
46.6.6 Method 6: Synthesis of 1,3-Diene-Containing Oligoenes and
Oligoenynes of Natural Origin and Related Compounds 332
46.7 Synthesis by Cydoaddition and Electrocyclic Reactions
M. Shindo, T. Yoshikawa, and K. Yaji
46.7 Synthesis by Cydoaddition and Electrocyclic Reactions 353
46.7.1 Method 1: Thermal Electrocyclic Ring-Opening Reactions of
Cyclobutenes 353
46.7.1.1 Variation 1: Acyclic 1,3-Dienes from 3,4-Unsubstituted Cyclobutenes — 354
46.7.1.2 Variation 2: Acyclic 1,3-Dienes from 3-Substituted Cyclobutenes 356
46.7.1.3 Variation 3: Acyclic 1,3-Dienes from Multisubstituted Cyclobutenes 359
46.7.1.4 Variation 4: Cydoalka-1,3-dienes from 3,4-Fused Cyclobutenes (Ring
Expansion) 364
46.7.1.5 Variation 5: 1,3-Dienes from 1,2-Fused Cyclobutenes 368
46.7.1.6 Variation 6: 1,3-Dienes from 1,4-Fused Cyclobutenes 369
46.7.2 Method 2: Photochemical Reactions of Cyclobutenes 370
46.7.3 Method 3: Thermal Six-Electron Electrocyclizations To Give
Cyclohexa-1,3-dienes 371
46.7.3.1 Variation 1: Cyclohexa-1,3-dienes from Acyclic 1,3,5-Trienes 374
46.7.3.2 Variation 2: 1,6-Fused Cyclohexa-1,3-dienes from 1,2-Fused 1,3,5-Trienes 377
46.7.3.3 Variation 3: 1,2-Fused Cyclohexa-1,3-dienes from 2,3-Fused 1,3,5-Trienes 380
46.7.3.4 Variation 4: 2,3-Ring-Fused Cyclohexa-1,3-dienes from 3,4-Ring-Fused
1,3,5-Trienes 382
46.7.3.5 Variation 5: 5,6-Fused Cyclohexa-1,3-dienes from Cycloalka-1,3,5-trienes- 383
46.7.4 Method 4: Photochemical Six-Electron Electrocyclizations 385
46.7.5 Method 5: Unsaturated Carbocycles via a Combination of Thermally
Induced Electrocyclizations 386
46.7.6 Method 6: [6 + 4] Cycloadditions between Buta-1,3-dienes and
Hexa-1,3,5-trienes 389
46.7.6.1 Variation 1: [6 + 4] Cycloadditions of Tropones 389
46.7.6.2 Variation 2: [6 + 4] Cycloadditions of Fulvenes 394
46.8 Synthesis by Extrusion
R. S. Grainger and P. J. Jervis
46.8 Synthesis by Extrusion 401
46.8.1 Extrusion of Alkenes 401
46.8.1.1 Methodi: Thermal Cracking of Cyclohexene 401
46.8.1.2 Method 2: Extrusion of Cyclopentadiene 402
46.8.1.2.1 Variation 1: Cracking of Dicyclopentadiene 402
46.8.1.2.2 Variation 2: Cyclopentadiene as a Protecting Group 402
46.8.1.3 Method3: Extrusion of Maleic Anhydride 403
46.8.2 Extrusion of Carbon Dioxide 404
46.8.2.1 Method 1: Carbon Dioxide Extrusion from Six-Membered Lactones 404
46.8.2.2 Method 2: Carbon Dioxide Extrusion with In Situ Trapping of the Diene • 405
46.8.2.3 Method 3: Carbon Dioxide Extrusion from Vinyl-Substituted p-Lactones • 406
46.8.2.3.1 Variation 1: Decarboxylative Extrusion from p-Lactones 406
46.8.2.3.2 Variation 2: Tandem Lactone Formation-Carbon Dioxide Extrusion 407
46.8.3 Extrusion of Carbon Monoxide 408
46.8.3.1 Methodi: Carbon Monoxide Extrusion from Monocydic
Cyclopent-3-en-1-ones 408
46.8.3.2 Method 2: Extrusion of a Bridging Carbon Monoxide from Strained Rings 409
46.8.3.3 Method 3: Carbon Monoxide Extrusion with In Situ Trapping of the Diene 410
46.8.3.4 Method 4: Carbon Monoxide Extrusion To Afford Cyclooctatetraenes • • • 411
46.8.3.5 Method 5: Carbon Monoxide Extrusion from p-Allenyl Aldehydes 411
46.8.4 Extrusion of Sulfur Dioxide 412
46.8.4.1 Method 1: Thermal Extrusion of Sulfur Dioxide from
2,5-Dihydrothiophene 1,1-Dioxides 412
46.8.4.1.1 Variation 1: Preparation of 1,4-Disubstituted 1,3-Dienes via Thermolysis ¦ 413
46.8.4.1.2 Variation 2: Preparation of Terminal 1,3-Dienes via Thermolysis 415
46.8.4.1.3 Variation 3: Preparation of 2,3-Disubstituted 1,3-Dienes via Thermolysis ¦ 416
46.8.4.1.4 Variation 4: Preparation of Other Substitution Patterns via Thermolysis •• 418
46.8.4.2 Method 2: Thermolysis Followed by In Situ Trapping 418
46.8.4.2.1 Variation 1: Intermolecular Diels-Alder Trapping of the Diene 419
46.8.4.2.2 Variation 2: Intramolecular Diels-Alder Trapping of the Diene 420
46.8.4.2.3 Variation 3: Other In Situ Trapping Reactions 421
46.8.4.3 Method 3: Extrusion from Cyclic Sulfones in the Presence of Lithium
Aluminum Hydride 422
46.8.4.4 Method 4: Reaction of Cyclic Sulfones with Ultrasonically Dispersed
Potassium 423
46.8.4.4.1 Variation 1: Using Standard Conditions 423
46.8.4.4.2 Variation 2: In the Presence of a Proton Source 424
46.8.4.5 Method 5: Tandem Retro-Diels-Alder/Sulfur Dioxide Extrusion from
Cyclic Sulfones 425
46.8.4.6 Method 6: Photochemical Extrusion of Sulfur Dioxide from
2,5-Dihydrothiophene 1,1 -Dioxides 426
46.8.4.7 Method 7: Extrusion from In Situ Generated Thiirane 1,1-Dioxides (The
Ramberg-Backlund Reaction) 427
46.8.4.7.1 Variation 1: Hexa-1,3,5-trienes from Diallylic Sulfones 427
46.8.4.7.2 Variation 2: Terminal 1,3-Dienes via The Vinylogous Ramberg-Backlund
Reaction 428
46.8.4.7.3 Variation 3: Application of the Ramberg-Backlund Reaction to an Iterative
Ring-Growing Procedure 429
46.8.4.8 Method 8: Base-Induced Isomerization and Thermal Elimination of
2,3-Dihydrothiophene 1,1 -Dioxides 430
46.8.4.9 Method 9: Extrusion from Cyclic Sulfinate Esters 431
46.8.4.10 Method 10: 1,3,5-Trienes from 2,7-Dihydrothiepin 1,1-Dioxides 432
46.8.4.10.1 Variation 1: Synthesis of Open-Chain 1,3,5-Trienes 432
46.8.4.10.2 Variation 2: Synthesis of Cydodecatetraenes 433
46.8.4.10.3 Variation 3: Synthesis of Cydooctatetraenes 433
46.8.5 Extrusion of Nitrogen 434
46.8.5.1 Method 1: Dienesfrom 2,5-Dihydro-IH-pyrroles 435
46.8.5.2 Method 2: Extrusion of Nitrogen from Hydrazine-Derived Azo
Compounds 435
46.8.5.3 Method 3: Extrusion of Nitrogen from Pyridazine-Derived Azo
Compounds 436
46.8.6 Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-diones and Related Molecules 436
46.8.6.1 Method 1: Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione by
Thermolysis 437
46.8.6.2 Method 2: Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione in the
Presence of a Reducing Agent 439
46.8.6.3 Method 3: Extrusion from Related Diazines 441
46.9 Synthesis by Elimination
M. P. Schramm
46.9 Synthesis by Elimination 445
46.9.1 Synthesis by 1,2-Elimination 445
46.9.1.1 Method 1: Elimination of Hydrogen and a Heteroatom 446
46.9.1.1.1 Variation 1: Dehydrohalogenation ••• 4^6
46.9.1.1.2 Variation 2: Dehydration 448
46.9.1.1.3 Variation3: Loss of Acetic Acid or Trifluoroacetic Acid 457
46.9.1.1.4 Variation 4: Loss of a Sulfonic Acid 460
46.9.1.1.5 Variation 5: Loss of Hydrogen and an Alkoxy or Aryloxy Group 463
46.9.1.1.6 Variation 6: Loss of Hydrogen and an Arylsulfinyl Group 464
46.9.1.1.7 Variation 7: Loss of Hydrogen and a Selenium-Containing Group 465
46.9.1.1.8 Variation 8: Loss of Hydrogen and a Nitrogen-Containing Group 468
46.9.1.2 Method 2: Elimination of a Silicon-Containing Group and a Heteroatom ¦ 468
46.9.1.2.1 Variationl: Loss of Silicon-and Oxygen-Bearing Groups 469
46.9.1.2.2 Variation 2: Loss of Silicon- and Nitrogen-Containing Groups 471
46.9.1.3 Method 3: Elimination of a Carbon Fragment and a
Heteroatom-Containing Group 472
46.9.1.3.1 Variationl: Lossof Acetic Acid and Carbon Dioxide 472
46.9.1.3.2 Variation 2: Grob Fragmentation 473
46.9.1.4 Method 4: Elimination of Two Heteroatoms or Heteroatom-Containing
Groups 475
46.9.1.4.1 Variationl: Lossof an Oxygen-Containing Group and a Halogen Atom •• 475
46.9.1.4.2 Variation 2: Dehalogenation 476
46.9.1.4.3 Variation 3: Loss of Nitrate and Acetate (or Methanesulfonate) 477
46.9.1.5 Method 5: Elimination of a Shared Atom Such as Oxygen or Sulfur 477
46.9.1.5.1 Variationl: Expulsion of Oxygen from Oxiranes 477
46.9.1.5.2 Variation 2: Desulfurization of Thiiranes 478
46.9.2 Synthesis by 1,4-Elimination 479
46.9.2.1 Method 1: Elimination of Hydrogen and a Heteroatom 479
46.9.2.1.1 Variationl: Elimination of a Hydrogen Halide 480
46.9.2.1.2 Variation 2: Elimination of Water or Its Equivalent 481
46.9.2.1.3 Variation 3: Elimination of Hydrogen and an Oxygen Atom Bonded to
Carbon 485
46.9.2.1.4 Variation 4: Elimination of Acetic Acid 489
46.9.2.1.5 Variation 5: Elimination of Benzenesulfinic Acid 490
46.9.2.1.6 Variation 6: Elimination of Hydrogen and Oxygen from Peroxides 491
46.9.2.2 Method 2: Elimination of Two Carbon Atoms 492
46.9.2.3 Method 3: Elimination of a Carbon Fragment and a Heteroatom 493
46.9.2.4 Method 4: Elimination of Two Bromine Atoms or Two
Heteroatom-Containing Groups 493
46.9.2.4.1 Variationl: Elimination of Two Bromine Atoms 493
46.9.2.4.2 Variation 2: Elimination of Two Oxygen-Containing Groups 495
46.9.2.5 Method 5: Elimination of a Shared Heteroatom or Group 501
46.9.2.5.1 Variationl: Elimination of Carbon Monoxide 501
46.9.2.5.2 Variation 2: Elimination of a Shared Oxygen Atom 502
46.9.2.5.3 Variation 3: Elimination of Sulfur Dioxide 502
46.9.3 Synthesis by 1,2,3,4-Elimination 503
46.9.3.1 Method 1: Elimination of Two Hydrogens and Two Heteroatoms or
Heteroatom-Containing Groups 503
46.9.3.1.1 Variationl: DoubleDehydrobromination 503
46.9.3.1.2 Variation 2: Double Dehydrochlorination 506
46.9.3.1.3 Variation 3: Double Dehydroiodination 507
46.9.3.1.4 Variations Double Dehydration 508
46.9.3.1.5 Variation 5: Dehydroxylation-Desulfonylation by the Loss of Acetoxy and
Benzenesulfonate Functions 510
46.9.3.2 Method 2: Elimination of Four Bromine Atoms 514
46.9.3.3 Method 3: Elimination of Two Hydrogen Atoms and a Shared Oxygen
Atom 514
46.9.4 Synthesis by Other Elimination Procedures 516
46.9.4.1 Method 1: Elimination of Sulfur Dioxide via Variations of the
Ramberg-Backlund Reaction 516
46.9.4.2 Method 2: Elimination of 4-Methylpyridin-2-amine from
N-{1-[4-(Dimethylamino)phenyl]pent-4-enyl}-4-methylpyri-
din-2-amine Using Rhodium(l) 517
46.9.4.3 Method 3: Elimination by Zeolite NaY 517
46.9.4.4 Method 4: Conversion of Propargyl Ethers into 1,3-Dienes 517
46.10 Synthesis by Reduction
D. J. Ramon and M. Yus
46.10 Synthesis by Reduction 523
46.10.1 Synthesis from Enynes 523
46.10.1.1 Method 1: Hydrogenation Reactions 523
46.10.1.1.1 Variation 1: Using the Lindlar Catalyst 523
46.10.1.1.2 Variation 2: Using a Poisoned Lindlar Catalyst 527
46.10.1.1.3 Variation 3: Using the Rosenmund Catalyst 528
46.10.1.1.4 Variation 4: Using a Palladium on Charcoal Catalyst 530
46.10.1.1.5 Variation 5: Using Raney Nickel Catalyst 530
46.10.1.1.6 Variation 6: Using the P-2 Nickel Catalyst 531
46.10.1.2 Method 2: Hydrometalation Reactions 532
46.10.1.2.1 Variation 1: Hydroboration 533
46.10.1.2.2 Variation 2: Hydroalumination 534
46.10.1.3 Method 3: Other Reduction Processes 537
46.10.1.3.1 Variation 1: Using Hydrazine 537
46.10.1.3.2 Variation 2: Using Metallic Zinc 537
46.10.2 Synthesis from Diynes 541
46.10.2.1 Method 1: Hydrogenation Reactions 541
46.10.2.2 Method 2: Hydrometalation Reactions 541
46.10.2.3 Method 3: Reduction Using Metallic Zinc 542
46.10.3 Synthesis from Arenes 543
46.10.3.1 Method 1: Birch Reductions 543
46.10.3.2 Method2: Hydride Addition 544
46.11 Synthesis by Isomerization of Unconjugated Dienes, Altenes, Alkynes, and
Methylenecyclopropanes
R. E. Taylor, C. R. Diene, and E. M. Daly
46.11 Synthesis by Isomerization of Unconjugated Dienes, Allenes, Alkynes, and
Methylenecyclopropanes 549
46.11.1 Isomerization of Unconjugated Dienes 549
46.11.1.1 Method 1: Base-Mediated Isomerization 549
46.11.1.1.1 Variationi: Of Unfunctionalized Unconjugated Dienes 549
46.11.1.1.2 Variation 2: Of Functionalized Unconjugated Dienes 550
46.11.1.2 Method 2: Acid-Mediated Isomerization 551
46.11.1.3 Method 3: Electron-Transfer-Mediated Isomerization 552
46.11.1.4 Method 4: Metal-Mediated Isomerization 553
46.11.1.4.1 Variationi: Palladium-Catalyzed Isomerization 553
46.11.1.4.2 Variation 2: Europium-Catalyzed Isomerization 554
46.11.1.4.3 Variation 3: Zirconocene-Mediated Skeletal Rearrangements 555
46.11.1.4.4 Variation 4: Titanium-Mediated Skeletal Rearrangement 556
46.11.1.5 Method 5: Isomerization by Sigmatropic Rearrangements 557
46.11.1.5.1 Variationi: Thermally Induced Sigmatropic Rearrangements 557
46.11.1.5.2 Variation 2: Palladium(ll)-Assisted Cope Rearrangements 559
46.11.1.6 Method 6: Isomerization by Allylic Substitution Reactions 559
46.11.1.6.1 Variation 1: Palladium(O)-Mediated Substitution of Doubly Allylic Acetates
and Carbonates 559
46.11.1.6.2 Variation 2: Rearrangements Mediated by Thionyl Chloride 561
46.11.1.7 Method 7: Isomerization by Other Processes 563
46.11.2 Isomerization of Allenes 563
46.11.2.1 Method 1: Acid-Catalyzed Isomerization 563
46.11.2.2 Method 2: Metal-Catalyzed Isomerization 565
46.11.2.3 Method 3: Thermally and Photochemically Induced Isomerization 568
46.11.2.3.1 Variationi: Thermal Rearrangements of Polyenes 568
46.11.2.3.2 Variation 2: Photochemical Rearrangements of 1,2,6-Trienes 569
46.11.2.3.3 Variation3: [1,5]-Sigmatropic Shifts of Vinylallenes 569
46.11.3 Isomerization of Alkynes 571
46.11.3.1 Method 1: Base-Catalyzed Isomerization 571
46.11.3.2 Method 2: Metal-Catalyzed Isomerization 571
46.11.3.2.1 Variationi: Of Aliphatic Alkynes 571
46.11.3.2.2 Variation 2: OfYnones 574
46.11.3.3 Method 3: Thermally Induced Rearrangements 577
46.11.3.3.1 Variationi: Cope Rearrangements of Enynes 578
46.11.3.3.2 Variation 2: Thermally Induced Rearrangements of Propargyl Vinyl Ethers- 578
46.11.3.4 Method 4: Organocatalyzed Isomerization of Ynones 581
46.11.4 Isomerization of Methylenecyclopropanes 583
46.11.4.1 Method 1: Transition-Metal-Catalyzed Isomerization of
Methylenecyclopropanes 583
46.11.4.1.1 Variation 1: Under Stoichiometric Conditions 583
46.11.4.1.2 Variation 2: Under Catalytic Conditions 584
46.12 Synthesis from Arenes and Polyenes
Y.-S. Wong
46.12 Synthesis from Arenes and Polyenes 589
46.12.1 Method 1: Reductive Dearomatization of Arenes by Addition of
Organolithiums Followed by Electrophilic Trapping 591
46.12.1.1 Variation 1: Of Electron-Withdrawing Carbon-Substituted Arenes with
Alkyl Organolithium Species 591
46.12.1.2 Variation 2: Of Alkenyl-Substituted Arenes with Alkenyl Organolithium
Species 594
46.12.1.3 Variation 3: Of Sulfone-Substituted Arenes 595
46.12.1.4 Variation 4: Of Sulfonamide-Substituted Arenes 595
46.12.1.5 Variation 5: Of Phosphinamide-Substituted Arenes 596
46.12.2 Method 2: Alkylation of ortho-Substituted Phenols 596
46.12.2.1 Variation 1: Of Alkali Metal Phenolate Salts 596
46.12.2.2 Variation 2: Of Arenoxasulfonium Ylides by [2,3]-Sigmatropic
Rearrangement 599
46.12.3 Method 3: Alkenylation of ortho-Alkyl-Substituted Phenols 600
46.12.4 Method 4: Arylation of ortho-Alkyl-Substituted Phenols 601
46.12.5 Method 5: Alkynylation of ortho-Alkyl-Substituted Phenols 602
46.12.6 Method 6: Hydroxylation of ortho-Alkyl-Substituted Phenols (Synthesis
of o-Quinols) 603
46.12.7 Method 7: Alkoxylation of ortho-Alkyl-Substituted Phenols (Synthesis of
o-Quinol Ethers) 608
46.12.7.1 Variation 1: Of 2-(Hydroxymethyl)phenols To Give
Spiroepoxycyclohexa-2,4-dien-1-ones 608
46.12.7.2 Variation 2: To Give 6-Alkoxy-6-alkylcydohexa-2,4-dien-1 -ones 609
46.12.8 Method 8: Acyloxylation of ortho-Alkyl-Substituted Phenols (Synthesis of
o-Quinol Acetates) 609
46.12.9 Method 9: Addition of Oximes to ortho-Alkyl-Substituted Phenols
(Synthesis of o-Quinol Oximes) 612
46.12.10 Method 10: Alkoxylation of ortho-Alkoxy-Substituted Phenols (Synthesis
of o-Quinone Acetals) 613
46.12.11 Method 11: Acyloxylation of ortho-Alkoxy-Substituted Phenols (Synthesis
of o-Quinone Alkoxy Acetates) 615
46.12.12 Method 12: Diacyloxylation of Phenols (Synthesis of o-Quinone
Diacetates) 616
46.12.13 Method 13: Amination of ortho-Alkyl-Substituted Phenol Derivatives — 617
46.12.14 Method 14: Alkylation of ortho-Alkyl-Substituted Aniline Derivatives 619
46.12.14.1 Variation 1: By Hetero-Claisen Rearrangement of N-Arylhydroxylamine
Derivatives 619
46.12.14.2 Variation 2: By Imino-Diels-Alder Reaction 619
46.12.15 Method 15: Alkenylation of ortho-Alkyl-Substituted Anilines 620
46.12.16 Method 16: Hydroxylation of ortho-Alkyl-Substituted Anilines (Synthesis
of o-Quinol Imines) 620
46.12.17 Method 17: Acyloxylation of ortho-Alkyl-Substituted Aniline Derivatives
(Synthesis of o-Quinol Imide Acetates) 621
46.12.17.1 Variation 1: By Wessely Oxidation 621
46.12.17.2 Variation 2: By Rearrangement of N-Arylhydroxylamine Derivatives 621
46.12.18 Method 18: Amidation of ortho-Alkyl-Substituted Aniline Derivatives
(Synthesis of o-Quinol Imide Amides) 622
46.12.19 Method 19: ris-Cydohexanediols by Enzymatic Dihydroxylation of Arenes- 623
46.12.20 Method 20: Alkylations of Polyenes 626
46.12.20.1 Variation 1: Cyclopropanation 626
46.12.20.2 Variation 2: Hydrozirconation 626
46.12.20.3 Variation 3: Nickel-Catalyzed Polyene-Aldehyde Reductive Coupling
Reaction with Triethylborane 627
46.12.20.4 Variation 4: Cobalt-Catalyzed Polyene-Alkyl
Halide-[(Trimethylsilyl)methyl]magnesium Chloride Coupling
Reaction 627
46.12.21 Method 21: Epoxidation of Polyenes 628
46.12.21.1 Variation 1: Julia-Colonna Asymmetric Epoxidation 628
46.12.21.2 Variation 2: Chiral Manganese(lll)-salen Catalyzed Epoxidation 628
46.12.21.3 Variation 3: Chiral-Dioxirane-Catalyzed Epoxidation 629
46.12.22 Method 22: Dihydroxylation of Polyenes 630
46.13 Synthesis via Metal Complexes of Dienes
I. Bauer and H.-J. Knolker
46.13 Synthesis via Metal Complexes of Dienes 637
46.13.1 Release of 1,3-Dienes by Demetalation of Tricarbonyl(1,3-diene)iron
Complexes 637
46.13.1.1 Methodi: Oxidative Demetalation 637
46.13.1.2 Method 2: Ligand Exchange 637
46.13.2 Isomerization of 1,4-Dienes 639
46.13.2.1 Method 1: Synthesis via Intermediate Tricarbonyl(1,3-diene)iron
Complexes 639
46.13.3 Acylation of Tricarbonyl(1,3-diene)iron Complexes 640
46.13.3.1 Methodi: IntermolecularAcylation 640
46.13.3.2 Method 2: Intramolecular Acylation 642
46.13.4 Palladium-Catalyzed Coupling of Substituted (1,3-Diene)iron Complexes — 642
46.13.5 Cyclization of (1,3-Diene)iron Complexes with Pendent Double Bonds 642
46.13.6 Oxidative Cyclization of (1,3-Diene)metal Complexes 643
46.13.6.1 Methodi: Oxidative Cyclization of Tricarbonyl(1,3-diene)iron Complexes 644
46.13.6.2 Method 2: Oxidative Cyclization of
Cyclohexa-1,3-diene(cyclopentadienyl)cobalt Complexes — 645
46.13.7 Modification at the Periphery of Tricarbonyl(t)4-1,3-diene)iron Complexes — 646
46.13.7.1 Method 1: Nudeophilic Addition to Carbonyl and Heterocarbonyl
Functions Adjacent to Tricarbonyl(r)4-1,3-diene)iron
Complexes 646
46.13.7.1.1 Variation 1: Addition to Aldehydes 646
46.13.7.1.2 Variation 2: Addition to Imines 647
46.13.7.1.3 Variation 3: Addition to Ketones 648
46.13.7.1.4 Variation 4: Addition to Carboxylic Acid Derivatives 650
46.13.7.2 Method 2: Reactions at Groups Other Than Carbonyl or Heterocarbonyl
Adjacent to Tricarbonyl(T|4-1,3-diene)iron Complexes 651
46.13.7.2.1 Variation 1: Reaction of Electrophiles with Tricarbonyl(dienoate)iron or
Tricarbonyl(dienone)iron Complexes 651
46.13.7.2.2 Variation 2: Addition to Tricarbonyl(T)4-triene)iron Complexes 652
46.13.7.2.3 Variation 3: Substitution of Tricarbonyl(2,4-dien-1-ol)iron Derivatives — 652
46.13.8 Reaction of (r|5-Dienyl)metal Complexes with Nucleophiles 654
46.13.8.1 Method 1: Reaction of Cyclic (r|5-Dienyl)iron Complexes with
Nucleophiles 654
46.13.8.2 Method 2: Reaction of Acyclic (ti5-Dienyl)iron Complexes with
Nucleophiles 657
46.13.8.3 Method 3: Reaction of Cyclic (rf-Dienyl)manganese Complexes with
Nucleophiles 658
46.13.9 Reactions of (m-Allyl)tricarbonyliron Lactone Complexes 660
46.13.9.1 Method 1: Modification at the Periphery of (jt-Allyl)tricarbonyliron
Lactone Complexes 660
46.13.10 Cyclopentadienones by Iron-Mediated [2 + 2 + 1] Cycloaddition 661
46.13.10.1 Method 1: Reaction of Alkynes with Pentacarbonyliron 661
Keyword Index 669
Author Index 711
Abbreviations 739 |
any_adam_object | 1 |
author_GND | (DE-588)117013870 |
building | Verbundindex |
bvnumber | BV035726103 |
ctrlnum | (OCoLC)633894732 (DE-599)BVBBV035726103 |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008cc4500</leader><controlfield tag="001">BV035726103</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090915s2009 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783131189912</subfield><subfield code="9">978-3-13-118991-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781588905376</subfield><subfield code="9">978-1-58890-537-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633894732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035726103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Science of synthesis</subfield><subfield code="b">Houben-Weyl methods of molecular transformations</subfield><subfield code="n">46 = Category 6, Compounds with all-carbon functions</subfield><subfield code="p">1,3-Dienes</subfield><subfield code="c">ed. board: D. Bellus ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stuttgart [u.a.]</subfield><subfield code="b">Thieme</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 744 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellus, Daniel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houben, Josef</subfield><subfield code="d">1875-1940</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)117013870</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV013247070</subfield><subfield code="g">46</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018002796&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018002796</subfield></datafield></record></collection> |
id | DE-604.BV035726103 |
illustrated | Illustrated |
indexdate | 2024-08-20T00:15:11Z |
institution | BVB |
isbn | 9783131189912 9781588905376 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018002796 |
oclc_num | 633894732 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-210 DE-91G DE-BY-TUM DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-210 DE-91G DE-BY-TUM DE-188 |
physical | XXII, 744 S. graph. Darst. 26 cm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Thieme |
record_format | marc |
spelling | Science of synthesis Houben-Weyl methods of molecular transformations 46 = Category 6, Compounds with all-carbon functions 1,3-Dienes ed. board: D. Bellus ... Stuttgart [u.a.] Thieme 2009 XXII, 744 S. graph. Darst. 26 cm txt rdacontent n rdamedia nc rdacarrier Bellus, Daniel Sonstige oth Houben, Josef 1875-1940 Sonstige (DE-588)117013870 oth (DE-604)BV013247070 46 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018002796&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Science of synthesis Houben-Weyl methods of molecular transformations |
title | Science of synthesis Houben-Weyl methods of molecular transformations |
title_auth | Science of synthesis Houben-Weyl methods of molecular transformations |
title_exact_search | Science of synthesis Houben-Weyl methods of molecular transformations |
title_full | Science of synthesis Houben-Weyl methods of molecular transformations 46 = Category 6, Compounds with all-carbon functions 1,3-Dienes ed. board: D. Bellus ... |
title_fullStr | Science of synthesis Houben-Weyl methods of molecular transformations 46 = Category 6, Compounds with all-carbon functions 1,3-Dienes ed. board: D. Bellus ... |
title_full_unstemmed | Science of synthesis Houben-Weyl methods of molecular transformations 46 = Category 6, Compounds with all-carbon functions 1,3-Dienes ed. board: D. Bellus ... |
title_short | Science of synthesis |
title_sort | science of synthesis houben weyl methods of molecular transformations 1 3 dienes |
title_sub | Houben-Weyl methods of molecular transformations |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018002796&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013247070 |
work_keys_str_mv | AT bellusdaniel scienceofsynthesishoubenweylmethodsofmoleculartransformations46category6compoundswithallcarbonfunctions AT houbenjosef scienceofsynthesishoubenweylmethodsofmoleculartransformations46category6compoundswithallcarbonfunctions |