Algebraic cryptanalysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Springer
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXIII, 356 S. graph. Darst. |
ISBN: | 9780387887579 9780387887562 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035726051 | ||
003 | DE-604 | ||
005 | 20131216 | ||
007 | t | ||
008 | 090915s2009 gw d||| |||| 00||| eng d | ||
015 | |a 08,N41,0006 |2 dnb | ||
020 | |a 9780387887579 |9 978-0-387-88757-9 | ||
020 | |a 9780387887562 |c Gb. : ca. EUR 98.07 (freier Pr.), ca. sfr 152.50 (freier Pr.) |9 978-0-387-88756-2 | ||
024 | 3 | |a 9780387887562 | |
028 | 5 | 2 | |a 12320585 |
035 | |a (OCoLC)288985473 | ||
035 | |a (DE-599)DNB990523063 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-739 |a DE-703 |a DE-12 |a DE-898 | ||
050 | 0 | |a QA76.9 | |
050 | 0 | |a Z103 | |
082 | 0 | |a 005.82 |2 22 | |
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a ST 276 |0 (DE-625)143642: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
084 | |a 24,1 |2 ssgn | ||
100 | 1 | |a Bard, Gregory V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic cryptanalysis |c Gregory V. Bard |
264 | 1 | |a Dordrecht [u.a.] |b Springer |c 2009 | |
300 | |a XXXIII, 356 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Cryptography | |
650 | 4 | |a Data encryption (Computer science) | |
650 | 0 | 7 | |a Kryptoanalyse |0 (DE-588)4830502-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kryptoanalyse |0 (DE-588)4830502-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018002747&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018002747 |
Datensatz im Suchindex
_version_ | 1804140003229433856 |
---|---|
adam_text | Contents
List of
Ta
¡
.....................................................xxvii
List of
Fi;
;s
....................................................xxix
List of
AI ¡thms..................................................xxxi
List of
Al
viations
.............................................xxxi
і і
1
Intre
:tion: How to Use this Book
.............................. 1
Part I Ci analysis
2
The
.
:k Cipher Keeloq and Algebraic Attacks
................... 9
2.1
iát
is Algebraic Cryptanalysis?
............................. 10
.1
The CSP Model
..................................... 10
2.2 ;
Keeloq Specification
.................................... 10
2.3
deling the Non-linear Function
............................ 11
.1
I/O Relations and the NLF
............................ 12
2.4
scribing the Shift-Registers
................................ 12
. 1
Disposing of the Secret Key Shift-Register
............... 13
2.4.2
Disposing of the Plaintext Shift-Register
................. 13
2.5
The Polynomial System of Equations
.......................... 13
2.6
Variable and Equation Count
................................. 14
2.7
Dropping the Degree to Quadratic
............................. 14
2.8
Fixing or Guessing Bits in Advance
........................... 15
2.9
The Failure of a Frontal Assault
.............................. 16
3
The Fixed-Point Attack
......................................... 17
3.1
Overview
................................................. 17
3.1.1
Notational Conventions
............................... 17
3.1.2
The Two-Function Representation
...................... 17
3.1.3
Acquiring an fk -oracle
.............................. 18
Contents
3.2
The Consequences of Fixed Points
............................ 18
3.3
How to Find Fixed Points
.................................... 19
3.4
How far must we search?
.................................... 20
3.4.1
With Analytic Combinatorics
.......................... 21
3.4.2
Without Analytic Combinatorics
....................... 23
3.5
Comparison to Brute Force
.................................. 23
3.6
Summary
................................................. 24
3.7
Other Notes
............................................... 25
3.7.1
A Note about Keeloq s Utilization
...................... 25
3.7.2
RPA
vs
KPA
vs
СРА
................................. 26
3.8
Wagner s Attack
........................................... 26
3.8.1
Later Work on Keeloq
................................ 27
Iterated Permutations
.......................................... 29
4.1
Applications to Cryptography
................................ 29
4.2
Background
............................................... 30
4.2.1
Combinatorial Classes
................................ 30
4.2.2
Ordinary and Exponential Generating Functions
.......... 30
4.2.3
Operations on OGFs
.................................. 31
4.2.4
Examples
........................................... 34
4.2.5
Operations on EGFs
.................................. 36
4.2.6
Notation and Definitions
.............................. 39
4.3
Strong and Weak Cycle Structure Theorems
.................... 40
4.3.1
Expected Values
..................................... 41
4.4
Corollaries
................................................ 43
4.4.1
On Cycles in Iterated Permutations
..................... 45
4.4.2
Limited Cycle Counts
................................ 46
4.4.3
Monomial Counting
.................................. 47
4.5
Of Pure Mathematical Interest
................................ 47
4.5.1
The Sigma Divisor Function
........................... 48
4.5.2
The
Zeta
Function and Apery s Constant
................. 48
4.5.3
Greatest Common Divisors and Cycle Length
............ 49
4.6
Highly Iterated Ciphers
...................................... 49
4.6.1
Distinguishing Iterated Ciphers
........................ 50
4.6.2
A Key Recovery Attack
............................... 52
Stream Ciphers
................................................ 55
5.1
The Stream Ciphers Bivium and
Trivium
....................... 55
5.1.1
Background
......................................... 55
5.1.2
Bivium as Equations
................................. 61
5.1.3
An Excellent Trick
................................... 64
5.1.4
Bivium-A
........................................... 65
5.1.5
A Notational Issue
................................... 65
5.1.6
For Further Reading
.................................. 65
5.2
The Stream Cipher QUAD
................................... 66
Contents xjx
5.2.1
How QUAD
Works .................................. 66
5.2.2
Proof of Security
.................................... 67
5.2.3
The Yang-Chen-Bernstein-Chen Attack against QUAD
___ 72
5.2.4
Extending to GF(16)
................................. 75
5.2.5
For Further Reading
.................................. 77
5.3
Conclusions for QUAD
..................................... 78
Part II Linear Systems Mod
2
6
Some Basic Facts about Linear Algebra over GF(2)
................ 81
6.1
Sources
................................................... 81
6.2
Boolean Matrices vs GF(2) Matrices
.......................... 81
6.2.1
Implementing with the Integers
........................ 82
6.3
Why is GF(2) Different?
.................................... 82
6.3.1
There are Self-Orthogonal Vectors
...................... 82
6.3.2
Something that Fails
.................................. 83
6.3.3
The Probability a Random Square Matrix Singular or
Invertible
........................................... 84
6.4
Null Space from the RREF
................................... 85
6.5
The Number of Solutions to a Linear System
................... 86
7
The Complexity of GF(2)-Matrix Operations
...................... 89
7.1
The Cost Model
............................................ 89
7.1.1
A Word on Architecture and Cross-Over
................. 90
7.1.2
Is the Model Trivial?
................................. 91
7.1.3
Counting Field Operations
............................ 91
7.1.4
Success and Failure
.................................. 92
7.2
Notational Conventions
..................................... 92
7.3
To Invert or to Solve?
....................................... 93
7.4
Data Structure Choices
...................................... 94
7.4.1
Dense Form: An Array with Swaps
..................... 94
7.4.2
Permutation Matrices
................................. 94
7.5
Analysis of Classical Techniques with our Model
................ 96
7.5.1
Naïve
Matrix Multiplication
........................... 96
7.5.2
Matrix Addition
..................................... 96
7.5.3
Dense Gaussian Elimination
........................... 96
7.5.4
Back-Solving a Triangulated Linear System
.............. 98
7.6
Strassen s Algorithms
....................................... 99
7.6.1
Strassen s Algorithm for Matrix Multiplication
........... 100
7.6.2
Misunderstanding Strassen s Matrix Inversion Formula
---- 101
7.7
The Unsuitability of Strassen s Algorithm for Inversion
........... 101
7.7.1
Strassen s Approach to Matrix Inversion
................. 102
7.7.2
Bunch and Hopcroft s Solution
......................... 103
7.7.3
Ibara,
Moran,
and Hui s Solution
....................... 103
Contents
On the Exponent of Certain Matrix Operations
107
8.1
Very Low Exponents
........................................107
8.2
The Equicompl
exity
Theorems
...............................108
8.2.1
Starting Point
.......................................109
8.2.2
Proofs
..............................................109
8.3
Determinants and Matrix Inverses
.............................118
8.3.1
Background
.........................................118
8.3.2
The Baur-Strassen-Morgenstern Theorem
................120
8.3.3
Consequences for the Determinant and Inverse
...........132
The Method of Four Russians
...................................133
9.0.4
The Fair Coin Assumption
............................134
9.1
Origins and Previous Work
..................................134
9.1.1
Strassen s Algorithm
.................................135
9.2
Rapid Subspace Enumeration
................................135
9.3
The Four Russians Matrix Multiplication Algorithm
.............137
9.3.1
Role of the Gray Code
................................137
9.3.2
Transposing the Matrix Product
........................138
9.3.3
Improvements
.......................................138
9.3.4
A Quick Computation
................................139
9.3.5
M4RM Experiments Performed by
S
AGE Staff
...........139
9.3.6
Multiple Gray-Code Tables and Cache Management
.......141
9.4
The Four Russians Matrix Inversion Algorithm
..................141
9.4.1
Stage
1:............................................141
9.4.2
Stage
2:............................................142
9.4.3
Stage
3:............................................142
9.4.4
A Curious Note on Stage
1
of M4RI
....................143
9.4.5
Triangulation
or Inversion?
............................145
9.5
Exact Analysis of Complexity
................................145
9.5.1
An Alternative Computation
...........................146
9.5.2
Full Elimination, not Triangular
........................147
9.5.3
The Rank of
3*
Rows, or Why
к
+
ε
is not Enough
........148
9.5.4
Using Bulk Logical Operations
.........................149
9.6
Experimental and Numerical Results
..........................149
9.7
M4RI Experiments Performed by
S
AGE Staff
...................151
9.7.1
Determination of
к
...................................151
9.7.2
The Transpose Experiment
............................151
9.8
Pairing With Strassen s Algorithm for Matrix Multiplication
......151
9.8.1
Pairing M4RI with Strassen
...........................152
9.9
Higher Values of
q
..........................................152
9.9.1
Building the Gray Code over GF(^)
....................152
9.9.2
Other Modifications
..................................153
9.9.3
Running Time
.......................................153
9.9.4
Implementation
......................................154
Contents
XXI
10
The Quadratic Sieve
............................................] 59
10.1
Motivation
................................................159
10.1.1
A View of RSA from
60,000
feet
.......................160
10.1.2
Two Facts from Number Theory
........................161
10.1.3
Reconstructing the Private Key from the Public Key
.......161
10.2
Trial Division
..............................................163
10.2.1
Other Ideas
.........................................165
10.2.2
Sieve of Eratosthenes
.................................167
10.3
Theoretical Foundations
.....................................169
10.4
The
Naïve
Sieve
............................................170
10.4.1
An Extended Example
................................171
10.5
The
Godei
Vectors
..........................................171
10.5.
1 Benefits of the Notation
...............................172
10.5.2
Unlimited-Dimension Vectors
..........................173
10.5.3
The Master Stratagem
................................173
10.5.4
Historical Interlude
...................................
1
73
10.5.5
Review of Null Spaces
................................174
10.5.6
Constructing a Vector in the Even-Space
.................175
10.6
The Linear Sieve Algorithm
..................................176
10.6.1
Matrix Dimensions in the Linear
&
Quadratic Sieve
.......176
10.6.2
The Running Time
...................................178
10.7
The Example, Revisited
.....................................178
10.8
Rapidly Generating Smooth Squares
...........................180
10.8.1
New Strategy
........................................181
10.9
Further Reading
............................................183
lO.lOHistorical Notes
............................................183
Part III Polynomial Systems and Satisfiability
11
Strategies for Polynomial Systems
................................187
11.1
Why Solve Polynomial Systems of Equations over Finite Fields?
... 187
11.2
Universal Maps
............................................189
11.3
Polynomials over GF(2)
.....................................191
11.3.1
Exponents: x2=x
....................................191
11.3.2
Equivalent versus Identical Polynomials
.................191
11.3.3
Coefficients
.........................................192
11.3.4
Linear Combinations
.................................192
11.4
Degree Reduction Techniques
................................192
11.4.1
An Easy but Hard-to-State Condition
....................193
11.4.2
An Algorithm that meets this Condition
.................194
11.4.3
Interpretation
........................................195
11.4.4
Summary
...........................................
l96
11.4.5
Detour: Asymptotics of the Choose Function
...........196
11.4.6
Complexity Calculation
...............................197
11.4.7
Efficiency Note
......................................198
xxii Contents
11.4.8
The Greedy Degree-Dropper Algorithm
.................198
11.4.9
Counter-Example for Linear Systems
...................199
11.5
NP-Completeness of MP
....................................199
11.6
Measures of Difficulty in MQ
................................203
11.6.1
The Role of Over-Definition
...........................203
11.6.2
Ultra-Sparse Quadratic Systems
........................203
11.6.3
Other Views of Sparsity
...............................205
11.6.4
Structure
...........................................205
11.7
The Role of Guessing a Few Variables
.........................206
11.7.1
Measuring Infeasible Running Times
....................206
11.7.2
Fix-XL
.............................................207
12
Algorithms for Solving Polynomial Systems
.......................209
12.1
A Philosophical Point on Complexity Theory
...................209
12.2 Gröbner
Bases Algorithms
...................................210
12.2.1
Double-Exponential Running Time
.....................210
12.2.2
Remarks about
Gröbner
Bases
.........................210
1
2.3
Linearization
..............................................211
12.4
The XL Algorithm
..........................................213
12.4.1
Complexity Analysis
.................................215
12.4.2
Sufficiently Many Equations
...........................216
12.4.3
Jumping Two Degrees
................................216
12.4.4
Fix-XL
.............................................217
12.5
ElimLin
..................................................219
12.5.1
Why is this useful?
...................................220
12.5.2
How to use ElimLin
..................................221
12.5.3
On the Sub-Space of Linear Equations in the Span of a
Quadratic System of Equations
.........................223
12.5.4
The Weight of the Basis
...............................224
12.5.5
One Last Trick for GF(2)-only
.........................225
12.5.6
Notes on the Sufficient Rank Condition
..................226
12.6
Comparisons between XL and F4
.............................227
12.7
SAT-Solvers
...............................................228
12.8
System Fragmentation
......................................228
12.8.1
Separability
.........................................229
12.8.2
Gaussian Elimination is Not Enough
....................230
12.8.3
Depth First Search
...................................230
12.8.4
Nearly Separable Systems
.............................231
12.8.5
Removing Multiple vertices
...........................232
12.8.6
Relation to Menger s Theorem
.........................232
12.8.7
Balance in Vertex Cuts
................................233
12.8.8
Applicability
........................................233
12.9
Resultants
.................................................234
12.9.1
The Univariate Case
..................................234
12.9.2
The Bivariate Case
...................................235
Contents xxiii
12.9.3 Multivariate
Case....................................
236
12.9.4
Further Reading
.....................................238
12.10ТІ1Є
Raddum-Semaev Method
................................238
12.10.1
Building the Graph
...................................238
12.10.2
Agreeing
...........................................239
12.10.3Propigation
.........................................240
12.10.4Termination
.........................................240
12.10.5Gluing.............................................
240
12.
lO.óSplitting
............................................242
^.lOJSummary
...........................................242
12.1
lThe Zhuang-Zi
Algorithm
...................................243
12.1
2Homotopy
Approach
........................................243
13
Converting MQ to CNF-SAT
....................................245
13.1
Summary
.................................................245
13.2
Introduction
...............................................246
13.2.1
Application to Cryptanalysis
...........................247
13.3
Notation and Definitions
.....................................247
13.4
Converting MQ to SAT
......................................248
1
3.4.1
The Conversion
......................................248
13.4.2
Measures of Difficulty
................................250
13.4.3
Preprocessing
.......................................252
13.4.4
Fixing Variables in Advance
...........................253
13.4.5
SAT-Solver Used
....................................254
13.5
Experimental Results
.......................................255
13.5.1
The Source of the Equations
...........................255
13.5.2
Note About the Variance
..............................255
13.5.3
The Log-Normal Distribution of Running Times
..........256
13.5.4
The Optimal Cutting Number
..........................257
13.6
Cubic Systems
.............................................258
13.6.1
Do All Possible Monomials Appear?
....................258
13.6.2
Measures of Efficiency
...............................260
13.7
Further Reading
............................................260
13.7.1
Previous Work
.......................................260
13.7.2
Further Work
........................................261
13.8
Conclusions
...............................................262
14
How do SAT-Solvers Operate?
...................................263
14.1
The Problem Itself
..........................................263
14.1.1
Conjunctive Normal Form
.............................264
14.2
Solvers like Walk-SAT
......................................264
14.2.1
The Search Space
....................................265
14.2.2
Papadimitriou s Algorithm
............................265
14.2.3
Greedy SAT or G-SAT
................................266
14.2.4
Walk-SAT
..........................................267
xxiv
Contents
14.2.5
Walk-SAT versus Papadimitriou
........................268
14.2.6
Where Heuristic Methods Fail
.........................268
14.2.7
Closing Thoughts on Heuristic Methods
.................269
14.3
Back-Tracking
.............................................269
14.4
Chaff and its Descendants
...................................272
14.4.1
Variable Management
................................272
14.4.2
Unit Propagation
.....................................273
14.4.3
The Method of Watched Literals
.......................273
14.4.4
Absent Literals
......................................274
14.4.5
Summary
...........................................274
14.5
Enhancements to Chaff
......................................275
14.5.1
Learned Clauses
.....................................275
14.5.2
The Alarm Clock
....................................275
14.5.3
The Third Finger
....................................276
14.6
Economic Motivations
......................................276
14.7
Further Reading
............................................277
15
Applying SAT-Solvers to Extension Fields of Low Degree
...........279
15.1
Introduction
...............................................279
15.2
Solving GF(2) Systems via SAT-Solvers
.......................280
15.2.1
Sparsity
............................................280
15.3
Overview
.................................................281
15.4
Polynomial Systems over Extension Fields of GF(2)
.............281
15.4.1
Extensions of the Coefficient Field
......................282
15.4.2
Difficulty in Bits
.....................................282
15.5
Finding Efficient Arithmetic Representations via Matrices
........282
15.6
Using the Algebraic Normal Forms
............................286
15.6.1
Remarks on the Special Forms
.........................287
15.6.2
Remarks on Degree
..................................287
15.6.3
Remarks on Coefficients
..............................288
15.6.4
Solving with
Gröbner
Bases
...........................288
15.7
Experimental Results
.......................................289
15.7.1
Computers Used
.....................................291
15.7.2
Polynomial Systems Used
.............................291
15.8
Inverses and Determinants
...................................292
15.8.1
Determinants
........................................292
15.8.2
Inverses
............................................292
15.8.3
Rijndael and the Para-Inverse Operation
.................293
15.9
Conclusions
...............................................294
l5.10Review
of Extension Fields
..................................295
15.10.1Constructing
the Field
................................295
lS.lO^Regular Representation
...............................297
15.11
Reversing the Isomorphism: The Existence of Dead Give-Aways
... 298
Contents xxv
A On the Philosophy of Block Ciphers With Small Blocks
.............301
A.
1
Definitions
................................................301
A.2 Brute-Force Generic Attacks on Ciphers with Small Blocks
.......302
A.3 Key Recovery vs. Applications of Ciphers with Small Blocks
......303
A.4 The Keeloq Code-book—Practical Considerations
...............306
A.
5
Conclusions
...............................................307
В
Formulas for the Field Multiplication law for Low-Degree
Extensions of GF(2)
............................................309
B.I For GF(4)
.................................................309
B.2 For GF(8)
.................................................309
B.3 For GF(16)
................................................310
B.4 For GF(32)
................................................311
B.5 For GF(64)
................................................312
С
Polynomials and Graph Coloring, with Other Applications
.........315
C.I A Very Useful Lemma
......................................315
C.2 Graph Coloring
............................................316
C.2.1 The
с
φ
pn Case
.....................................316
C.2.2 Application to GF(2) Polynomials
......................316
C.3 Related Applications
........................................317
C.3.1 Radio Channel Assignments
...........................317
C.3.2 Register Allocation
...................................318
C.4 Interval Graphs
............................................318
C.4.1 Scheduling an Interval Graph Scheduling Problem
........319
C.4.2 Comparison to Other Problems
.........................320
C.4.3 Moral of the Story
...................................321
D
Options for Very Sparse Matrices
................................323
D.
1
Preliminary Points
..........................................323
D.
1.1
Accidental Cancellations
..............................323
D.I.2
Solving Equations by Finding a Null Space
..............324
D.1.3 Data Structures and Storage
...........................324
D.2 Naive Sparse Gaussian Elimination
...........................325
D.2.
1
Sparse Matrices can have Dense Inverses
................326
D.3 Markowitz s Algorithm
......................................326
D.4 The Block Wiedemann Algorithm
.............................326
D.5 The Block Lanczos Algorithm
................................327
D.6 The Pomerance-Smith Algorithm
.............................327
D.6.1 Overview
...........................................328
D.6.2 Inactive and Active Columns
..........................329
D.6.3 The Operations
......................................329
D.6.4 The Actual Algorithm
................................331
D.6.5 Fill-in and Memory Management
.......................332
D.6.6 Technicalities
.......................................333
xxvi Contents
D.6.7
Cremona s
Implementation............................334
D.6.8
Further Reading
.....................................335
E
Inspirational Thoughts, Poetry and Philosophy
....................337
References
.........................................................339
Index
.............................................................351
|
any_adam_object | 1 |
author | Bard, Gregory V. |
author_facet | Bard, Gregory V. |
author_role | aut |
author_sort | Bard, Gregory V. |
author_variant | g v b gv gvb |
building | Verbundindex |
bvnumber | BV035726051 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9 Z103 |
callnumber-search | QA76.9 Z103 |
callnumber-sort | QA 276.9 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 170 ST 276 |
ctrlnum | (OCoLC)288985473 (DE-599)DNB990523063 |
dewey-full | 005.82 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.82 |
dewey-search | 005.82 |
dewey-sort | 15.82 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01647nam a2200469 c 4500</leader><controlfield tag="001">BV035726051</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131216 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090915s2009 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N41,0006</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387887579</subfield><subfield code="9">978-0-387-88757-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387887562</subfield><subfield code="c">Gb. : ca. EUR 98.07 (freier Pr.), ca. sfr 152.50 (freier Pr.)</subfield><subfield code="9">978-0-387-88756-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387887562</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12320585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)288985473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB990523063</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Z103</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.82</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 276</subfield><subfield code="0">(DE-625)143642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bard, Gregory V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic cryptanalysis</subfield><subfield code="c">Gregory V. Bard</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIII, 356 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryptography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data encryption (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kryptoanalyse</subfield><subfield code="0">(DE-588)4830502-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kryptoanalyse</subfield><subfield code="0">(DE-588)4830502-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018002747&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018002747</subfield></datafield></record></collection> |
id | DE-604.BV035726051 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:53:04Z |
institution | BVB |
isbn | 9780387887579 9780387887562 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018002747 |
oclc_num | 288985473 |
open_access_boolean | |
owner | DE-739 DE-703 DE-12 DE-898 DE-BY-UBR |
owner_facet | DE-739 DE-703 DE-12 DE-898 DE-BY-UBR |
physical | XXXIII, 356 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
spelling | Bard, Gregory V. Verfasser aut Algebraic cryptanalysis Gregory V. Bard Dordrecht [u.a.] Springer 2009 XXXIII, 356 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cryptography Data encryption (Computer science) Kryptoanalyse (DE-588)4830502-9 gnd rswk-swf Kryptoanalyse (DE-588)4830502-9 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018002747&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bard, Gregory V. Algebraic cryptanalysis Cryptography Data encryption (Computer science) Kryptoanalyse (DE-588)4830502-9 gnd |
subject_GND | (DE-588)4830502-9 |
title | Algebraic cryptanalysis |
title_auth | Algebraic cryptanalysis |
title_exact_search | Algebraic cryptanalysis |
title_full | Algebraic cryptanalysis Gregory V. Bard |
title_fullStr | Algebraic cryptanalysis Gregory V. Bard |
title_full_unstemmed | Algebraic cryptanalysis Gregory V. Bard |
title_short | Algebraic cryptanalysis |
title_sort | algebraic cryptanalysis |
topic | Cryptography Data encryption (Computer science) Kryptoanalyse (DE-588)4830502-9 gnd |
topic_facet | Cryptography Data encryption (Computer science) Kryptoanalyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018002747&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bardgregoryv algebraiccryptanalysis |