Transmission electron microscopy ; [four volume set]: a textbook for materials science 2 Diffraction
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Plenum Press [u.a.]
2009
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | LXII S., S. 197 - 368, 15 S. Ill., graph. Darst. |
ISBN: | 9780387765006 9780387765020 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV035706725 | ||
003 | DE-604 | ||
005 | 20160526 | ||
007 | t | ||
008 | 090902s2009 ad|| |||| 00||| eng d | ||
020 | |a 9780387765006 |c hardcover |9 978-0-387-76500-6 | ||
020 | |a 9780387765020 |c softcover |9 978-0-387-76502-0 | ||
035 | |a (OCoLC)633626253 | ||
035 | |a (DE-599)BVBBV035706725 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-703 |a DE-20 |a DE-188 |a DE-384 | ||
100 | 1 | |a Williams, David B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transmission electron microscopy ; [four volume set] |b a textbook for materials science |n 2 |p Diffraction |c David B. Williams and C. Barry Carter |
250 | |a 2. ed. | ||
264 | 1 | |a New York [u.a.] |b Plenum Press [u.a.] |c 2009 | |
300 | |a LXII S., S. 197 - 368, 15 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Werkstoff |0 (DE-588)4065579-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Durchstrahlungselektronenmikroskopie |0 (DE-588)4215608-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektronenmikroskopie |0 (DE-588)4014327-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektronenmikroskopie |0 (DE-588)4014327-2 |D s |
689 | 0 | 1 | |a Werkstoff |0 (DE-588)4065579-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Durchstrahlungselektronenmikroskopie |0 (DE-588)4215608-7 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Carter, C. Barry |e Verfasser |0 (DE-588)1114078794 |4 aut | |
773 | 0 | 8 | |w (DE-604)BV011029125 |g 2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-76501-3 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017760559&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017760559 |
Datensatz im Suchindex
_version_ | 1804139425481883648 |
---|---|
adam_text | Titel: Bd. 2. Transmission electron microscopy. Diffraction
Autor: Williams, David B.
Jahr: 2009
Contents
About the Authors......................................... vii
Preface................................................. xi
Foreword to First Edition................................... xiii
Foreword to Second Edition.................................. xv
Acknowledgments......................................... xix
List of Initials and Acronyms................................. xxi
List of Symbols........................................... xxv
About the Companion Volume............................... xxxi
Figure Credits............................................ xlix
PART 1 BASICS ....................................... 1
1 The Transmission Electron Microscope
Chapter Preview...................................... 3
1.1 What Materials Should We Study in the TEM?.......... 3
1.2 Why Use Electrons?............................... 4
1.2. A An Extremely Brief History................... 4
1.2.B Microscopy and the Concept of Resolution...... 5
1.2.C Interaction of Electrons with Matter............ 7
1.2.D Depth of Field and Depth of focus............. 8
1.2.E Diffraction................................ 8
1.3 Limitations of the TEM............................ 9
1.3.A Sampling................................. 9
1.3.B Interpreting Transmission Images.............. 9
1.3.C Electron Beam Damage and Safety............. 10
1.3.D Specimen Preparation....................... 11
1.4 Different Kinds of TEMs........................... 11
1.5 Some Fundamental Properties of Electrons............. 11
1.6 Microscopy on the Internet/World Wide Web........... 15
1.6.A Microscopy and Analysis-Related Web Sites..... 15
1.6.B Microscopy and Analysis Software............. 15
Chapter Summary..................................... 17
2 Scattering and Diffraction................................ 23
yx
Chapter Preview....................................... r:
2.1 Why Are We Interested in Electron Scattering?.......... ¿5
2.2 Terminology of Scattering and Diffraction............. 25
2.3 The Angle of Scattering............................ 26
2.4 The Interaction Cross Section and Its Differential........ 27
2.4.A Scattering from an Isolated Atom.............. 27
2.4.B Scattering from the Specimen................. 28
2.4.C Some Numbers............................. 28
2.5 The Mean Free Path............................... 28
2.6 How We Use Scattering in the TEM.................. 29
2.7 Comparison to X-ray Diffraction..................... 30
2.8 Fraunhofer and Fresnel Diffraction................... 30
2.9 Diffraction of Light from Slits and Holes.............. 31
2.10 Constructive Interference........................... 33
2.11 A Word About Angles............................. 34
2.12 Electron-Diffraction Patterns........................ 34
Chapter Summary...................................... 36
3 Elastic Scattering....................................... 39
Chapter Preview....................................... 39
3.1 Particles and Waves............................... 39
3.2 Mechanisms of Elastic Scattering..................... 40
3.3 Elastic Scattering from Isolated Atoms................ 41
3.4 The Rutherford Cross Section....................... 41
3.5 Modifications to the Rutherford Cross Section.......... 42
3.6 Coherency of the Rutherford-Scattered Electrons........ 43
3.7 The Atomic-Scattering Factor....................... 44
3.8 The Origin of/(8)................................. 45
3.9 The Structure Factor F(0)........................... 46
3.10 Simple Diffraction Concepts......................... 47
3.10. A Interference of Electron Waves; Creation of
the Direct and Diffracted Beams............... 47
3.10.B Diffraction Equations....................... 48
Chapter Summary...................................... 49
4 Inelastic Scattering and Beam Damage...................... 53
Chapter Preview....................................... 53
4.1 Which Inelastic Processes Occur in the TEM?........... 53
4.2 X-ray Emission................................... 55
4.2.A Characteristic X-rays........................ 55
4.2.B Bremsstrahlung X-rays....................... 60
4.3 Secondary-Electron Emission........................ 60
4.3.A Secondary Electrons......................... 60
4.3.B Auger Electrons............................ 61
4.4 Electron-Hole Pairs and Cathodoluminescence (CL)...... 62
4.5 Plasmons and Phonons............................ 63
4.6 Beam Damage.............................. 64
4.6.A Electron Dose......................... 65
4.6.B Specimen Heating........................... 65
4.6.C Beam Damage in Polymers................... 66
4.6.D Beam Damage in Covalent and Ionic Crystals___ 66
4.6.E Beam Damage in Metals..................... 66
4.6.F Sputtering............................. gg
Chapter Summary........................ ™
5 Electron Sources....................................... 73
Chapter Preview....................................... 73
5.1 The Physics of Different Electron Sources............... 73
5.1.A Thermionic Emission......................... 74
5.1.B Field Emission.............................. 74
5.2 The Characteristics of the Electron Beam.............. 75
5.2.A Brightness ................................ 75
5.2.B Temporal Coherency and Energy Spread........ 76
5.2.C Spatial Coherency and Source Size............. 77
5.2.D Stability.................................. 77
5.3 Electron Guns.................................... 77
5.3.A Thermionic Guns........................... 77
5.3.B Field-Emission Guns (FEGs)................. 80
5.4 Comparison of Guns.............................. 81
5.5 Measuring Your Gun Characteristics.................. 82
5.5.A Beam Current.............................. 82
5.5.B Convergence Angle......................... 83
5.5.C Calculating the Beam Diameter................ 83
5.5.D Measuring the Beam Diameter................ 85
5.5.E Energy Spread............................. 85
5.5.F Spatial Coherency.......................... 86
5.6 What kV should You Use?.......................... 86
Chapter Summary..................................... 87
6 Lenses, Apertures, and Resolution......................... 91
Chapter Preview...................................... 91
6.1 Why Learn About Lenses?.......................... 91
6.2 Light Optics and Electron Optics..................... 92
6.2.A How to Draw a Ray Diagram................. 92
6.2.B The Principal Optical Elements................ 94
6.2.C The Lens Equation ......................... 94
6.2.D Magnification, Demagnification, and Focus...... 95
6.3 Electron Lenses................................... 96
6.3.A Polepieces and Coils......................... 96
6.3.B Different Kinds of Lenses.................... 97
6.3.C Electron Ray Paths Through Magnetic Fields___ 99
6.3.D Image Rotation and the Eucentric Plane......... 100
6.3.E Deflecting the Beam......................... 101
6.4 Apertures and Diaphragms......................... 101
6.5 Real Lenses and their Problems...................... 102
6.5.A Spherical Aberration........................ 103
6.5.B Chromatic Aberration....................... 104
6.5.C Astigmatism............................... 106
6.6 The Resolution of the Electron Lens (and Ultimately of the
TEM).......................................... 106
6.6.A Theoretical Resolution (Diffraction-Limited
Resolution)............................... 107
6.6.B The Practical Resolution Due to Spherical
Aberration................................ 108
6.6.C Specimen-Limited Resolution Due to Chromatic
Aberration................................ 109
6.6.D Confusion in the Definitions of Resolution....... 109
6.7 Depth of Focus and Depth of Field................... 110
Chapter Summary..................................... Ill
How to See Electrons.................................. 115
Chapter Preview...................................... j
7.1 Electron Detection and Display..................... in
7.2 Viewing Screens................................. j J°
7.3 Electron Detectors............................... J j?
7.3.A Semiconductor Detectors.................... 11
7.3.B Scintillator-Photomultiplier Detectors/TV
Cameras................................. 1 ^
7.3.C Charge-Coupled Device (CCD) Detectors....... 120
7.3.D Faraday Cup............................. 121
7.4 Which Detector Do We Use for which Signal?......... 122
7.5 Image Recording................................. 122
7.5.A Photographic Emulsions.................... 122
7.5.B Other Image-Recording Methods............. 124
7.6 Comparison of Scanning Images and Static Images...... 124
Chapter Summary..................................... 125
Pumps and Holders.................................... 127
Chapter Preview...................................... 127
8.1 The Vacuum.................................... 127
8.2 Roughing Pumps................................ 128
8.3 High/Ultra High Vacuum Pumps.................... 129
8.3.A Diffusion Pumps .......................... 129
8.3.B Turbomolecular Pumps..................... 129
8.3.C Ion Pumps............................... 130
8.3.D Cryogenic (Adsorption) Pumps............... 130
8.4 The Whole System............................... 130
8.5 Leak Detection.................................. 131
8.6 Contamination: Hydrocarbons and Water Vapor....... 132
8.7 Specimen Holders and Stages....................... 132
8.8 Side-Entry Holders............................... 133
8.9 Top-entry Holders............................... 134
8.10 Tilt and Rotate Holders........................... 134
8.11 In-Situ Holders.................................. 135
8.12 Plasma Cleaners................................. 138
Chapter Summary..................................... 138
The Instrument........................................ 141
Chapter Preview...................................... 141
9.1 The Illumination System........................... 142
9.1 .A TEM Operation Using a Parallel Beam......... 142
9.1.B Convergent-Beam (S)TEM Mode............. 143
9.1.C The Condenser-Objective Lens............... 145
9.1.D Translating and Tilting the Beam............. 147
9.1.E Alignment of the C2 Aperture................ 147
9.1.F Condenser-Lens Defects..................... 148
9.1.G Calibration............................ 149
9.2 The Objective Lens and Stage............... ... . . . . . 150
9.3 Forming DPs and Images: The TEM Imaging System.... 152
9.3.A Selected-Area Diffraction................. 152
9.3.B Bright-Field and Dark-Field Imaging .......... 155
9.3.C Centered Dark-Field Operation............... I55
9.3.D Hollow-Cone Diffraction and Dark-Field imaging 157
9.4 Forming DPs and Images: The STEM Imaging System 158
9.4.A Bright-Field STEM Images................... 159
9.4.B Dark-Field STEM Images.................... 161
9.4.C Annular Dark-Field Images .................. 161
9.4.D Magnification in STEM...................... 161
9.5 Alignment and Stigmation.......................... 161
9.5.A Lens Rotation Centers....................... 161
9.5.B Correction of Astigmatism in the Imaging Lenses . 162
9.6 Calibrating the Imaging System...................... 164
9.6.A Magnification Calibration.................... 164
9.6.B Camera-Length Calibration................... 165
9.6.C Rotation of the Image Relative to the DP........ 167
9.6.D Spatial Relationship Between Images and DPs.... 168
9.7 Other Calibrations................................ 168
Chapter Summary..................................... 169
10 Specimen Preparation.................................. 173
Chapter Preview...................................... 173
10.1 Safety.......................................... 173
10.2 Self-Supporting Disk or Use a Grid?.................. 174
10.3 Preparing a Self-Supporting Disk for Final Thinning..... 175
10.3.A Forming a Thin Slice from the Bulk Sample...... 176
10.3.B Cutting the Disk........................... 176
10.3.C Prethinning the Disk........................ 177
10.4 Final Thinning of the Disks......................... 178
10.4.A Electropolishing............................ 178
10.4.B Ion Milling................................ 178
10.5 Cross-Section Specimens........................... 182
10.6 Specimens on Grids/Washers........................ 183
10.6. A Electropolishing—The Window Method
for Metals and Alloys....................... 183
10.6.B Ultramicrotomy............................ 183
10.6.C Grinding and Crushing...................... 184
10.6.D Replication and Extraction................... 184
10.6.E Cleaving and the SACT...................... 186
10.6.F The 90° Wedge............................. 186
10.6.G Lithography............................... 187
10.6.H Preferential Chemical Etching................. 187
10.7 FIB............................................ 188
10.8 Storing Specimens................................. 189
10.9 Some Rules...................................... 189
Chapter Summary..................................... 191
PART 2 DIFFRACTION................................. 195
11 Diffraction in TEM.................................... 197
Chapter Preview...................................... 197
11.1 Why Use Diffraction in the TEM?.................... 197
11.2 The TEM, Diffraction Cameras, and the TV............ 198
11.3 Scattering from a Plane of Atoms.................... 199
11.4 Scattering from a Crystal........................... 200
11.5 Meaning of« in Bragg s Law........................ 202
11.6 A Pictorial Introduction to Dynamical Effects.......... 203
11.7 Use of Indices in Diffraction Patterns................. 204
11.8 Practical Aspects of Diffraction-Pattern Formation...... 204
11.9 More on Selected-Area Diffraction Patterns............ 204
Chapter Summary..................................... 208
12 Thinking in Reciprocal Space............................. 211
Chapter Preview...................................... ;?} J
12.1 Why Introduce Another Lattice?................... 2li
12.2 Mathematical Definition of the Reciprocal Lattice..... 212
12.3 The Vector g................................... 212
12.4 The Laue Equations and their Relation to Bragg s Law . 213
12.5 The Ewald Sphere of Reflection.................... 214
12.6 The Excitation Error............................. 216
12.7 Thin-Foil Effect and the Effect of Accelerating Voltage . 217
Chapter Summary..................................... 218
13 Diffracted Beams...................................... 221
Chapter Preview...................................... 221
13.1 Why Calculate Intensities?........................ 221
13.2 The Approach.................................. 222
13.3 The Amplitude of a Diffracted Beam................ 223
13.4 The Characteristic Length ^g...................... 223
13.5 The Howie-Whelan Equations..................... 224
13.6 Reformulating the Howie-Whelan Equations......... 225
13.7 Solving the Howie-Whelan Equations............... 226
13.8 The Importance of y(1) and y(2)..................... 226
13.9 The Total Wave Amplitude....................... 227
13.10 The Effective Excitation Error..................... 228
13.11 The Column Approximation...................... 229
13.12 The Approximations and Simplifications............. 230
13.13 The Coupled Harmonic Oscillator Analog............ 231
Chapter Summary..................................... 231
14 Bloch Waves.......................................... 235
Chapter Preview...................................... 235
14.1 Wave Equation in TEM.......................... 235
14.2 The Crystal.................................... 236
14.3 Bloch Functions................................ 237
14.4 Schrödinger s Equation for Bloch Waves............. 238
14.5 The Plane-Wave Amplitudes ...................... 239
14.6 Absorption of Bloch Waves....................... 241
Chapter Summary..................................... 242
15 Dispersion Surfaces.................................... 245
Chapter Preview...................................... 245
15.1 Introduction............................ 245
15.2 The Dispersion Diagram When Us = 0.............. 246
15.3 The Dispersion Diagram When £/g ^ 0.............. 247
15.4 Relating Dispersion Surfaces and Diffraction Patterns .. 247
15.5 The Relation Between Ue, Çg, and sg................. 250
15.6 The Amplitudes of Bloch Waves.................... 252
15.7 Extending to More Beams........................ 253
15.8 Dispersion Surfaces and Defects.................... 254
Chapter Summary............................ 254
16 Diffraction from Crystals........................ 257
Chapter Preview............................ 257
16.1 Review of Diffraction from a Primitive Lattice........ 257
16.2 Structure Factors: The Idea.................... 258
16.3 Some Important Structures: BCC, FCC and HCP...... 259
16.4 Extending fee and hep to Include a Basis............. 261
16.5 Applying the bec and fee Analysis to Simple Cubic..... 262
16.6 Extending hep to TiAl............................ 262
16.7 Superlattice Reflections and Imaging................ 262
16.8 Diffraction from Long-Period Superlattices........... 264
16.9 Forbidden Reflections............................ 265
16.10 Using the International Tables..................... 265
Chapter Summary..................................... 267
17 Diffraction from Small Volumes.......................... 271
Chapter Preview...................................... 271
17.1 Introduction................................... 271
17.1.A The Summation Approach................. 272
17.1.B The Integration Approach................. 273
17.2 The Thin-Foil Effect............................. 273
17.3 Diffraction from Wedge-Shaped Specimens........... 274
17.4 Diffraction from Planar Defects.................... 275
17.5 Diffraction from Particles......................... 277
17.6 Diffraction from Dislocations, Individually and
Collectively.................................... 278
17.7 Diffraction and the Dispersion Surface.............. 279
Chapter Summary..................................... 281
18 Obtaining and Indexing Parallel-Beam Diffraction Patterns..... 283
Chapter Preview...................................... 283
18.1 Choosing Your Technique........................ 284
18.2 Experimental SAD Techniques..................... 284
18.3 The Stereographic Projection...................... 286
18.4 Indexing Single-Crystal DPs....................... 287
18.5 Ring Patterns from Polycrystalline Materials.......... 290
18.6 Ring Patterns from Hollow-Cone Diffraction......... 291
18.7 Ring Patterns from Amorphous Materials............ 293
18.8 Precession Diffraction............................ 295
18.9 Double Diffraction.............................. 296
18.10 Orientation of the Specimen....................... 298
18.11 Orientation Relationships......................... 302
18.12 Computer Analysis.............................. 303
18.13 Automated Orientation Determination and
Orientation Mapping............................ 305
Chapter Summary..................................... 305
19 Kikuchi Diffraction.................................... 311
Chapter Preview...................................... 311
19.1 The Origin of Kikuchi Lines....................... 311
19.2 Kikuchi Lines and Bragg Scattering................. 312
19.3 Constructing Kikuchi Maps....................... 313
19.4 Crystal Orientation and Kikuchi Maps.............. 317
19.5 Setting the Value of Sg........................... 318
19.6 Intensities..................................... 319
Chapter Summary..................................... 320
20 Obtaining CBED Patterns............................... 323
Chapter Preview...................................... 323
20.1 Why Use a Convergent Beam?..................... 323
20.2 Obtaining CBED Patterns......................... 324
20.2.A Comparing SAD and CBED................. 325
20.2.B CBED in TEM Mode....................... 326
20.2.C CBED in STEM Mode ..................... 326
20.3 Experimental Variables............................ 327
20.3.A Choosing the C2 Aperture................... 327
20.3.B Selecting the Camera Length................. 328
20.3.C Choice of Beam Size........................ 329
20.3.D Effect of Specimen Thickness................. 329
20.4 Focused and Defocused CBED Patterns.............. 329
20.4.A Focusing a CBED Pattern................... 330
20.4.B Large-Angle (Defocused) CBED Patterns....... 330
20.4.C Final Adjustment.......................... 332
20.5 Energy Filtering................................. 334
20.6 Zero-Order and High-Order Laue-Zone Diffraction..... 335
20.6.A ZOLZ Patterns............................ 335
20.6.B HOLZ Patterns............................ 336
20.7 Kikuchi and Bragg Lines in CBED Patterns........... 338
20.8 HOLZ Lines.................................... 339
20.8.A The Relationship Between HOLZ Lines and
Kikuchi Lines............................. 339
20.8.B Acquiring HOLZ Lines..................... 341
20.9 Hollow-Cone/Precession CBED..................... 342
Chapter Summary..................................... 343
21 Using Convergent-Beam Techniques....................... 347
Chapter Preview...................................... 347
21.1 Indexing CBED Patterns.......................... 348
21.1.A Indexing ZOLZ and HOLZ Patterns........... 348
21.1.B Indexing HOLZ Lines...................... 351
21.2 Thickness Determination.......................... 352
21.3 Unit-Cell Determination........................... 354
21.3.A Experimental Considerations................. 354
21.3.B The Importance of the HOLZ-Ring Radius..... 355
21.3.C Determining the Lattice Centering............. 356
21.4 Basics of Symmetry Determination.................. 357
21.4. A Reminder of Symmetry Concepts............. 357
21.4.B Friedel s Law............................. 358
21.4.C Looking for Symmetry in Your Patterns........ 358
21.5 Lattice-Strain Measurement........................ 361
21.6 Determination of Enantiomorphism................. 363
21.7 Structure Factor and Charge-Density Determination___ 364
21.8 Other Methods.................................. 365
21.8.A Scanning Methods......................... 365
21.8.B Nanodiffraction........................... 366
Chapter Summary.............................
PART 3 IMAGING..................................... 369
22 Amplitude Contrast............................ yi
Chapter Preview........ -,7,
22.1 What Is Contrast?..... . . . . . . . . . . . . . . . . . . . .WWW 371
22.2 Amplitude contrast....................... ....... 372
22.2.A Images and Diffraction Patterns.............. 372
22.2.B Use of the Objective Aperture or the STEM
Detector: BF and DF Images................ 372
22.3 Mass-Thickness Contrast......................... 373
22.3.A Mechanism of Mass-Thickness Contrast...... 373
22.3.B TEM Images............................ 374
22.3.C STEM Images........................... 376
22.3.D Specimens Showing Mass-Thickness Contrast.. 377
22.3.E Quantitative Mass-Thickness Contrast....... 378
22.4 Z-Contrast.................................... 379
22.5 TEM Diffraction Contrast........................ 381
22.5.A Two-Beam Conditions.................... 381
22.5.B Setting the Deviation Parameter, s........... 382
22.5.C Setting Up a Two-Beam CDF Image......... 382
22.5.D Relationship Between the Image and
the Diffraction Pattern.................... 384
22.6 STEM Diffraction Contrast....................... 384
Chapter Summary..................................... 386
23 Phase-Contrast Images................................. 389
Chapter Preview...................................... 389
23.1 Introduction................................... 389
23.2 The Origin of Lattice Fringes...................... 389
23.3 Some Practical Aspects of Lattice Fringes............ 390
23.3.A Ifs = O................................. 390
23.3.B Ifs*O................................. 390
23.4 On-Axis Lattice-Fringe Imaging.................... 391
23.5 Moiré Patterns................................. 392
23.5.A Translational Moiré Fringes................ 393
23.5.B Rotational Moiré Fringes.................. 393
23.5.C General Moiré Fringes.................... 393
23.6 Experimental Observations of Moiré Fringes.......... 393
23.6.A Translational Moiré Patterns............... 394
23.6.B Rotational Moiré Patterns................. 394
23.6.C Dislocations and Moiré Fringes............. 394
23.6.D Complex Moiré Fringes................... 396
23.7 Fresnel Contrast................................ 397
23.7.A The Fresnel Biprism...................... 397
23.7.B Magnetic-Domain Walls .................. 398
23.8 Fresnel Contrast from Voids or Gas Bubbles.......... 399
23.9 Fresnel Contrast from Lattice Defects............... 400
23.9.A Grain Boundaries........................ 402
23.9.B End-On Dislocations..................... 402
Chapter Summary..................................... 402
24 Thickness and Bending Effects............................ 407
Chapter Preview...................................... 407
24.1 The Fundamental Ideas.......................... 407
24.2 Thickness Fringes............................... 408
24.3 Thickness Fringes and the DP..................... 410
24.4 Bend Contours (Annoying Artifact, Useful Tool,
Invaluable Insight).............................. 411
24.5 ZAPs and Real-Space Crystallography.............. 412
24.6 Hillocks, Dents, or Saddles........................ 413
24.7 Absorption Effects.............................. 413
24.8 Computer Simulation of Thickness Fringes........... 414
24.9 Thickness-Fringe/Bend-Contour Interactions......... 414
24.10 Other Effects of Bending.......................... 415
Chapter Summary..................................... 416
419
25 Planar Defects........................................
419
Chapter Preview...................................... Hiy
25.1 Translations and Rotations ....................... 4iy
25.2 Why Do Translations Produce Contrast?............. 421
25.3 The Scattering Matrix............................ 422
25.4 Using the Scattering Matrix....................... 423
25.5 Stacking Faults in fee Materials.................... 424
25.5.A Why fee Materials?....................... 424
25.5.B Some Rules............................. 425
25.5.C Intensity Calculations..................... 426
25.5.D Overlapping Faults....................... 426
25.6 Other Translations: n and 5 Fringes................. 427
25.7 Phase Boundaries............................... 429
25.8 Rotation Boundaries............................. 430
25.9 Diffraction Patterns and Dispersion Surfaces......... 430
25.10 Bloch Waves and BF/DF Image Pairs............... 431
25.11 Computer Modeling............................. 432
25.12 The Generalized Cross Section..................... 433
25.13 Quantitative Imaging............................ 434
25.13.A Theoretical Basis and Parameters........... 434
25.13.B Apparent Extinction Distance.............. 435
25.13.C Avoiding the Column Approximation........ 435
25.13.D The User Interface....................... 436
Chapter Summary..................................... 436
26 Imaging Strain Fields................................... 441
Chapter Preview...................................... 441
26.1 Why Image Strain Fields?......................... 441
26.2 Howie-Whelan Equations......................... 442
26.3 Contrast from a Single Dislocation................. 444
26.4 Displacement Fields and Ewald s Sphere............. 447
26.5 Dislocation Nodes and Networks................... 448
26.6 Dislocation Loops and Dipoles.................... 448
26.7 Dislocation Pairs, Arrays, and Tangles.............. 450
26.8 Surface Effects ................................. 451
26.9 Dislocations and Interfaces........................ 452
26.10 Volume Defects and Particles...................... 456
26.11 Simulating Images............................... 457
26.1 l.A The Defect Geometry..................... 457
26.11 .B Crystal Defects and Calculating the
Displacement Field....................... 458
26.1 l.C The Parameters.......................... 458
Chapter Summary..................................... 459
27 Weak-Beam Dark-Field Microscopy....................... 463
Chapter Preview............................. 453
27.1 Intensity in WBDF Images ........................ 463
27.2 Setting Sg Using the Kikuchi Pattern .... 464
27.3 How to Do WBDF.............................. 466
27.4 Thickness Fringes in Weak-Beam Images............ 467
27.5 Imaging Strain Fields............................ 468
27.6 Predicting Dislocation Peak Positions.......... . . . . . 469
27.7 Phasor Diagrams............................. 47O
27.8 Weak-Beam Images of Dissociated Dislocations 473
27.9 Other Thoughts........................... . . . . . . 477
21.9. A Thinking of Weak-Beam Diffraction
as a Coupled Pendulum................... 477
27.9.B Bloch Waves............................ 478
27.9.C If Other Reflections are Present............. 478
27.9.D The Future Is Now....................... 478
Chapter Summary..................................... 479
28 High-Resolution TEM.................................. 483
Chapter Preview...................................... 483
28.1 The Role of an Optical System..................... 483
28.2 The Radio Analogy.............................. 484
28.3 The Specimen.................................. 485
28.4 Applying the WPOA to the TEM................... 487
28.5 The Transfer Function........................... 487
28.6 More on x(u), sinx(u), and cosx(u)................. 488
28.7 Scherzer Defocus................................ 490
28.8 Envelope Damping Functions..................... 491
28.9 Imaging Using Passbands......................... 492
28.10 Experimental Considerations...................... 493
28.11 The Future for HRTEM.......................... 494
28.12 The TEM as a Linear System...................... 494
28.13 FEG TEMs and the Information Limit.............. 495
28.14 Some Difficulties in Using an FEG................. 498
28.15 Selectively Imaging Sublattices..................... 500
28.16 Interfaces and Surfaces........................... 502
28.17 Incommensurate Structures....................... 503
28.18 Quasicrystals................................... 504
28.19 Single Atoms................................... 505
Chapter Summary..................................... 506
29 Other Imaging Techniques............................... 511
Chapter Preview...................................... 511
29.1 Stereo Microscopy and Tomography................ 511
29.2 2|D Microscopy................................ 512
29.3 Magnetic Specimens............................. 514
29.3.A The Magnetic Correction.................. 514
29.3.B Lorentz Microscopy...................... 515
29.4 Chemically Sensitive Images....................... 517
29.5 Imaging with Diffusely Scattered Electrons........... 517
29.6 Surface Imaging................................ 519
29.6.A Reflection Electron Microscopy............. 519
29.6.B Topographic Contrast.................... 521
29.7 High-Order BF Imaging.......................... 521
29.8 Secondary-Electron Imaging....................... 522
29.9 Backscattered-Electron Imaging.................... 523
29.10 Charge-Collection Microscopy and Cathodoluminescence 523
29.11 Electron Holography............................ 524
29.12 In Situ TEM: Dynamic Experiments................ 526
29.13 Fluctuation Microscopy.......................... 528
29.14 Other Variations Possible in a STEM................ 528
Chapter Summary..................................... 529
30 Image Simulation...................................... 533
Chapter Preview...................................... 533
30.1 Simulating images............................... 533
30.2 The Multislice Method........................... 533
30.3 The Reciprocal-Space Approach................... -534
30.4 The FFT Approach.............................. 536
30.5 The Real-Space approach......................... 536
30.6 Bloch Waves and HRTEM Simulation.............. 536
30.7 The Ewald Sphere Is Curved...................... 537
30.8 Choosing the Thickness of the Slice................. 537
30.9 Beam Convergence.............................. 538
30.10 Modeling the Structure........................... 540
30.11 Surface Grooves and Simulating Fresnel Contrast...... 540
30.12 Calculating Images of Defects..................... 542
30.13 Simulating Quasicrystals.......................... 543
30.14 Bonding in Crystals.............................. 544
30.15 Simulating Z-Contrast........................... 545
30.16 Software for Phase-Contrast HRTEM............... 545
Chapter Summary..................................... 545
31 Processing and Quantifying Images........................ 549
Chapter Preview...................................... 549
31.1 What Is Image Processing?........................ 549
31.2 Processing and Quantifying Images................. 550
31.3 A Cautionary Note.............................. 550
31.4 Image Input.................................... 550
31.5 Processing Techniques........................... 551
31.5.A Fourier Filtering and Reconstruction........ 551
31.5.B Analyzing Diffractograms................. 552
31.5.C Averaging Images and Other Techniques..... 554
31.5.D Kernels................................ 556
31.6 Applications................................... 556
31.6.A Beam-Sensitive Materials.................. 556
31.6.B Periodic Images......................... 557
31.6.C Correcting Drift......................... 557
31.6.D Reconstructing the Phase.................. 557
31.6.E Diffraction Patterns...................... 558
31.6.F Tilted-Beam Series....................... 559
31.7 Automated Alignment........................... 560
31.8 Quantitative Methods of Image Analysis............. 561
31.9 Pattern Recognition in HRTEM................... 562
31.10 Parameterizing the Image Using QUANTITEM....... 563
31.10. A The Example of a Specimen with Uniform
Composition............................ 563
31.10.B Calibrating the Path of R.................. 565
31.10.C Noise Analysis.......................... 565
31.11 Quantitative Chemical Lattice Imaging.............. 567
31.12 Methods of Measuring Fit........................ 568
31.13 Quantitative Comparison of Simulated and Experimental
HRTEM Images............................... 57O
31.14 A Fourier Technique for Quantitative Analysis........ 571
31.15 Real or Reciprocal Space? ..................... 572
31.16 Software.................... 573
31.17 The Optical Bench—A Little History................ 573
Chapter Summary............................. ...... 575
PART 4 SPECTROMETRY.............................. 579
32 X-ray Spectrometry.......................... ggj
Chapter Preview......................... 58]
32.1 X-ray Analysis: Why Bother?...................... 581
32.2 Basic Operational Mode.......................... 584
32.3 The Energy-Dispersive Spectrometer................ 584
32.4 Semiconductor Detectors......................... 585
32.4.A How Does an XEDS Work?............... 585
32.4.B Cool Detectors.......................... 586
32.4.C Different Kinds of Windows............... 586
32.4.D Intrinsic-Germanium Detectors............. 587
32.4.E Silicon-Drift Detectors.................... 588
32.5 Detectors with High-Energy Resolution.............. 589
32.6 Wavelength-Dispersive Spectrometers............... 589
32.6.A Crystal WDS........................... 589
32.6.B CCD-Based WDS........................ 590
32.6.C Bolometers/Microcalorimeters.............. 590
32.7 Turning X-rays into Spectra....................... 591
32.8 Energy Resolution .............................. 593
32.9 What You Should Know about Your XEDS.......... 594
32.9.A Detector Characteristics................... 594
32.9.B Processing Variables...................... 596
32.10 The XEDS-AEM Interface........................ 598
32.10.A Collection Angle......................... 598
32.10.B Take-Off Angle.......................... 599
32.10.C Orientation of the Detector to the
Specimen............................... 599
32.11 Protecting the Detector from Intense Radiation....... 600
Chapter Summary..................................... 601
33 X-ray Spectra and Images............................... 605
Chapter Preview...................................... 605
33.1 The Ideal Spectrum.............................. 605
33.1.A The Characteristic Peaks.................. 605
33.1.B The Continuum Bremsstrahlung Background .. 606
33.2 Artifacts Common to Si(Li) XEDS Systems.......... 606
33.3 The Real Spectrum.............................. 608
33.3.A Pre-Specimen Effects..................... 608
33.3.B Post-Specimen Scatter.................... 611
33.3.C Coherent Bremsstrahlung.................. 613
33.4 Measuring the Quality of the XEDS-AEM Interface___ 614
33.4.A Peak-to-Background Ratio................. 614
33.4.B Efficiency of the XEDS System............. 614
33.5 Acquiring X-ray Spectra.......................... 615
33.5.A Spot Mode............................. 615
33.5.B Spectrum-Line Profiles.................... 616
33.6 Acquiring X-ray Images.......................... 616
33.6.A Analog Dot Mapping..................... 617
33.6.B Digital Mapping......................... 618
33.6.C Spectrum Imaging (SI).................... 619
33.6.D Position-Tagged Spectrometry (PTS)......... 620
Chapter Summary..................................... 620
34 Qualitative X-ray Analysis and Imaging.................... 625
Chapter Preview...................................... 625
34.1 Microscope and Specimen Variables................ 625
34.2 Basic Acquisition Requirements: Counts, Counts, and
More Caffeine.................................. 626
34.3 Peak Identification.............................. 627
34.4 Peak Deconvolution............................. °30
34.5 Peak Visibility.................................. 632
34.6 Common Errors................................ 634
34.7 Qualitative X-ray Imaging: Principles and Practice..... 634
Chapter Summary..................................... 636
5 Quantitative X-ray Analysis.............................. 639
Chapter Preview...................................... 639
35.1 Historical Perspective............................ 639
35.2 The Cliff-Lorimer Ratio Technique................. 640
35.3 Practical Steps for Quantification................... 641
35.3.A Background Subtraction.................. 641
35.3.B Peak Integration......................... 644
35.4 Determining ¿-Factors........................... 646
35.4.A Experimental Determination of/cAB......... 646
35.4.B Errors in Quantification: The Statistics....... 647
35.4.C Calculating kAB......................... 648
35.5 The Zeta-Factor Method......................... 652
35.6 Absorption Correction........................... 654
35.7 The Zeta-Factor Absorption Correction............. 656
35.8 The Fluorescence Correction...................... 656
35.9 ALCHEMI.................................... 657
35.10 Quantitative X-ray Mapping...................... 658
Chapter Summary..................................... 660
36 Spatial Resolution and Minimum Detection.................. 663
Chapter Preview...................................... 663
36.1 Why Is Spatial Resolution Important?............... 663
36.2 Definition and Measurement of Spatial Resolution..... 664
36.2.A Beam Spreading......................... 665
36.2.B The Spatial-Resolution Equation............ 666
36.2.C Measurement of Spatial Resolution.......... 667
36.3 Thickness Measurement.......................... 668
36.3.A TEM Methods.......................... 669
36.3.B Contamination-Spot Separation Method...... 670
36.3.C Convergent-Beam Diffraction Method....... 671
36.3.D Electron Energy-Loss Spectrometry Methods . . 671
36.3.E X-ray Spectrometry Method............... 671
36.4 Minimum Detection............................. 672
36.4.A Experimental Factors Affecting the MMF..... 673
36.4.B Statistical Criterion for the MMF........... 673
36.4.C Comparison with Other Definitions.......... 674
36.4.D Minimum-Detectable Mass................ 674
Chapter Summary.............................. 575
37 Electron Energy-Loss Spectrometers and Filters.............. 679
Chapter Preview............. ^79
37.1 Why Do EELS?................................[ 679
37.1 .A Pros and Cons of Inelastic Scattering......... 679
37.1.B The Energy-Loss Spectrum ................ 680
37.2 EELS Instrumentation........................... 681
37.3 The Magnetic Prism: A Spectrometer and a Lens...... 681
37.3.A Focusing the Spectrometer................. 682
37.3.B Spectrometer Dispersion................... 683
37.3.C Spectrometer Resolution.................. 683
37.3.D Calibrating the Spectrometer............... 684
37.4 Acquiring a Spectrum............................ 684
37.4.A Image and Diffraction Modes.............. 685
37.4.B Spectrometer-Collection Angle.............. 685
37.4.C Spatial Selection......................... 688
37.5 Problems with PEELS............................ 688
37.5.A Point-Spread Function.................... 688
37.5.B PEELS Artifacts......................... 689
37.6 Imaging Filters................................. 690
37.6.A The Omega Filter........................ 691
37.6.B The GIF............................... 692
37.7 Monochromators............................... 693
37.8 Using Your Spectrometer and Filter................ 694
Chapter Summary..................................... 696
38 Low-Loss and No-Loss Spectra and Images.................. 699
Chapter Preview...................................... 699
38.1 A Few Basic Concepts........................... 699
38.2 The Zero-Loss Peak (ZLP)........................ 701
38.2.A Why the ZLP Really Isn t.................. 701
38.2.B Removing the Tail of the ZLP.............. 701
38.2.C Zero-Loss Images and Diffraction Patterns___ 702
38.3 The Low-Loss Spectrum.......................... 703
38.3.A Chemical Fingerprinting................... 704
38.3.B Dielectric-Constant Determination.......... 705
38.3.C Plasmons............................... 705
38.3.D Plasmon-Loss Analysis.................... 707
38.3.E Single-Electron Excitations................. 709
38.3.F The Band Gap .......................... 709
38.4 Modeling The Low-Loss Spectrum ................. 710
Chapter Summary..................................... 711
39 High Energy-Loss Spectra and Images..................... 715
Chapter Preview...................................... 715
39.1 The High-Loss Spectrum......................... 715
39.1.A Inner-Shell Ionization .................... 715
39.1.B Ionization-Edge Characteristics............. 717
39.2 Acquiring a High-Loss Spectrum................... 721
39.3 Qualitative Analysis............................. 723
39.4 Quantitative Analysis............................ 723
39.4.A Derivation of the Equations for
Quantification .......................... 724
39.4.B Background Subtraction.................. 726
39.4.C Edge Integration......................... 728
39.4.D The Partial Ionization Cross Section......... 728
39.5 Measuring Thickness from the Core-Loss Spectrum .... 730
39.6 Deconvolution ................................. 731
39.7 Correction for Convergence of the Incident Beam...... 733
39.8 The Effect of the Specimen Orientation.............. 733
39.9 EFTEM Imaging with Ionization Edges............. 733
39.9.A Qualitative Imaging...................... 734
39.9.B Quantitative Imaging..................... 734
39.10 Spatial Resolution: Atomic-Column EELS........... 735
39.11 Detection Limits................................. 736
Chapter Summary..................................... 737
40 Fine Structure and Finer Details.......................... 741
Chapter Preview...................................... 741
40.1 Why Does Fine Structure Occur?.................... 741
40.2 ELNES Physics.................................. 742
40.2.A Principles............................... 742
40.2.B White Lines............................. 744
40.2.C Quantum Aspects........................ 744
40.3 Applications of ELNES........................... 745
40.4 ELNES Fingerprinting............................ 746
40.5 ELNES Calculations.............................. 747
40.5.A The Potential Choice..................... 748
40.5.B Core-Holes and Excitons.................. 749
40.5.C Comparison of ELNES Calculations and
Experiments............................ 750
40.6 Chemical Shifts in the Edge Onset................... 750
40.7 EXELFS....................................... 751
40.7.A RDF via EXELFS....................... 752
40.7.B RDF via Energy-Filtered Diffraction......... 753
40.7.C A Final Thought Experiment............... 753
40.8 Angle-Resolved EELS............................ 755
40.9 EELS Tomography............................... 755
Chapter Summary..................................... 757
Index................................................... j_i
|
any_adam_object | 1 |
author | Williams, David B. Carter, C. Barry |
author_GND | (DE-588)1114078794 |
author_facet | Williams, David B. Carter, C. Barry |
author_role | aut aut |
author_sort | Williams, David B. |
author_variant | d b w db dbw c b c cb cbc |
building | Verbundindex |
bvnumber | BV035706725 |
ctrlnum | (OCoLC)633626253 (DE-599)BVBBV035706725 |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01839nam a2200421 cc4500</leader><controlfield tag="001">BV035706725</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160526 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090902s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387765006</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-0-387-76500-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387765020</subfield><subfield code="c">softcover</subfield><subfield code="9">978-0-387-76502-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633626253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035706725</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Williams, David B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transmission electron microscopy ; [four volume set]</subfield><subfield code="b">a textbook for materials science</subfield><subfield code="n">2</subfield><subfield code="p">Diffraction</subfield><subfield code="c">David B. Williams and C. Barry Carter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Plenum Press [u.a.]</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LXII S., S. 197 - 368, 15 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Durchstrahlungselektronenmikroskopie</subfield><subfield code="0">(DE-588)4215608-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronenmikroskopie</subfield><subfield code="0">(DE-588)4014327-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektronenmikroskopie</subfield><subfield code="0">(DE-588)4014327-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Durchstrahlungselektronenmikroskopie</subfield><subfield code="0">(DE-588)4215608-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carter, C. Barry</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1114078794</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV011029125</subfield><subfield code="g">2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-76501-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017760559&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017760559</subfield></datafield></record></collection> |
id | DE-604.BV035706725 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:43:53Z |
institution | BVB |
isbn | 9780387765006 9780387765020 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017760559 |
oclc_num | 633626253 |
open_access_boolean | |
owner | DE-1050 DE-703 DE-20 DE-188 DE-384 |
owner_facet | DE-1050 DE-703 DE-20 DE-188 DE-384 |
physical | LXII S., S. 197 - 368, 15 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Plenum Press [u.a.] |
record_format | marc |
spelling | Williams, David B. Verfasser aut Transmission electron microscopy ; [four volume set] a textbook for materials science 2 Diffraction David B. Williams and C. Barry Carter 2. ed. New York [u.a.] Plenum Press [u.a.] 2009 LXII S., S. 197 - 368, 15 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Werkstoff (DE-588)4065579-9 gnd rswk-swf Durchstrahlungselektronenmikroskopie (DE-588)4215608-7 gnd rswk-swf Elektronenmikroskopie (DE-588)4014327-2 gnd rswk-swf Elektronenmikroskopie (DE-588)4014327-2 s Werkstoff (DE-588)4065579-9 s DE-604 Durchstrahlungselektronenmikroskopie (DE-588)4215608-7 s Carter, C. Barry Verfasser (DE-588)1114078794 aut (DE-604)BV011029125 2 Erscheint auch als Online-Ausgabe 978-0-387-76501-3 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017760559&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Williams, David B. Carter, C. Barry Transmission electron microscopy ; [four volume set] a textbook for materials science Werkstoff (DE-588)4065579-9 gnd Durchstrahlungselektronenmikroskopie (DE-588)4215608-7 gnd Elektronenmikroskopie (DE-588)4014327-2 gnd |
subject_GND | (DE-588)4065579-9 (DE-588)4215608-7 (DE-588)4014327-2 |
title | Transmission electron microscopy ; [four volume set] a textbook for materials science |
title_auth | Transmission electron microscopy ; [four volume set] a textbook for materials science |
title_exact_search | Transmission electron microscopy ; [four volume set] a textbook for materials science |
title_full | Transmission electron microscopy ; [four volume set] a textbook for materials science 2 Diffraction David B. Williams and C. Barry Carter |
title_fullStr | Transmission electron microscopy ; [four volume set] a textbook for materials science 2 Diffraction David B. Williams and C. Barry Carter |
title_full_unstemmed | Transmission electron microscopy ; [four volume set] a textbook for materials science 2 Diffraction David B. Williams and C. Barry Carter |
title_short | Transmission electron microscopy ; [four volume set] |
title_sort | transmission electron microscopy four volume set a textbook for materials science diffraction |
title_sub | a textbook for materials science |
topic | Werkstoff (DE-588)4065579-9 gnd Durchstrahlungselektronenmikroskopie (DE-588)4215608-7 gnd Elektronenmikroskopie (DE-588)4014327-2 gnd |
topic_facet | Werkstoff Durchstrahlungselektronenmikroskopie Elektronenmikroskopie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017760559&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011029125 |
work_keys_str_mv | AT williamsdavidb transmissionelectronmicroscopyfourvolumesetatextbookformaterialsscience2 AT cartercbarry transmissionelectronmicroscopyfourvolumesetatextbookformaterialsscience2 |