Introduction to mathematical logic:
"Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. Th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2010
|
Ausgabe: | 5. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Godel, Church, Kleene, Rosser, and Turing."--BOOK JACKET. |
Beschreibung: | XXIV, 469 S. |
ISBN: | 1584888768 9781584888765 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035699997 | ||
003 | DE-604 | ||
005 | 20091211 | ||
007 | t | ||
008 | 090831s2010 |||| 00||| eng d | ||
015 | |a GBA954634 |2 dnb | ||
020 | |a 1584888768 |c (hbk.) : £39.99 |9 1-58488-876-8 | ||
020 | |a 9781584888765 |9 978-1-58488-876-5 | ||
035 | |a (OCoLC)148589097 | ||
035 | |a (DE-599)HBZHT016030657 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-634 |a DE-19 | ||
050 | 0 | |a QA9 | |
082 | 0 | |a 511.3 |2 22 | |
084 | |a CC 2400 |0 (DE-625)17608: |2 rvk | ||
084 | |a MAT 030f |2 stub | ||
100 | 1 | |a Mendelson, Elliott |d 1931- |e Verfasser |0 (DE-588)121929035 |4 aut | |
245 | 1 | 0 | |a Introduction to mathematical logic |c Elliott Mendelson |
250 | |a 5. ed. | ||
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2010 | |
300 | |a XXIV, 469 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 1 | |a "Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Godel, Church, Kleene, Rosser, and Turing."--BOOK JACKET. | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Logic, Symbolic and mathematical |v Problems, exercises, etc. | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017753949&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017753949 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804139415667212288 |
---|---|
adam_text | Titel: Introduction to mathematical logic
Autor: Mendelson, Elliott
Jahr: 2010
Contents
Preface.................................................................................................................. xiii
Introduction..........................................................................................................xv
1. The Propositional Calculus............................................................................1
1.1 Propositional Connectives. Truth Tables..........................................1
1.2 Tautologies............................................................................................5
1.3 Adequate Sets of Connectives..........................................................18
1.4 An Axiom System for the Propositional Calculus........................24
1.5 Independence. Many-Valued Logics...............................................34
1.6 Other Axiomatizations......................................................................37
2. First-Order Logic and Model Theory.........................................................41
2.1 Quantifiers...........................................................................................41
2.1.1 Parentheses............................................................................44
2.2 First-Order Languages and Their Interpretations.
Satisfiability and Truth. Models....................................................48
2.3 First-Order Theories...........................................................................61
2.3.1 Logicai Axioms......................................................................62
2.3.2 Proper Axioms......................................................................62
2.3.3 Rules of Inference.................................................................62
2.4 Properties of First-Order Theories...................................................64
2.5 Additional Metatheorems and Derived Rules...............................69
2.5.1 Particularization Rule A4....................................................69
2.5.2 Existential Rule E4................................................................69
2.6 Rule C..................................................................................................73
2.7 Completeness Theorems...................................................................77
2.8 First-Order Theories with Equality..................................................88
2.9 Definitions of New Function Lettere
and Individuai Constants.................................................................97
2.10 Prenex Normal Forms.....................................................................100
2.11 Isomorphism of Interpretations. Categoricity of Theories.........105
2.12 Generalized First-Order Theories. Completeness
and Decidability...............................................................................107
2.12.1 Mathematical Applications..............................................Ili
2.13 Elementary Equivalence. Elementaiy Extensions........................117
2.14 Ultrapowers. Nonstandard Analysis..........................................123
2.14.1 Reduced Direct Products.................................................125
2.14.2 Nonstandard Analysis.....................................................131
2.15 Semantic Trees..................................................................................135
2.16 Quantification Theory AUowing Empty Domains......................141
Contents
3. Formai Number Theory..............................................................................149
3.1 An Axiom System..............................................................................149
3.2 Number-Theoretic Functions and Relations..................................166
3.3 Primitive Recursive and Recursive Functions...............................171
3.4 Arithmetization. Godei Numbers....................................................188
3.5 The Fixed-Point Theorem. Gòdel s
Incompleteness Theorem...................................................................202
3.6 Recursive Undecidability. Church s Theorem...............................214
3.7 Nonstandard Models.........................................................................224
4. Axiomatic Set Theory..................................................................................227
4.1 An Axiom System..............................................................................227
4.2 Ordinai Numbers...............................................................................242
4.3 Equinumerosity. Finite and Denumerable Sets.............................256
4.3.1 Finite Sets...............................................................................261
4.4 Hartogs Theorem. Initial Ordinals. Ordinai Arithmetic............266
4.5 The Axiom of Choice. The Axiom of Regularity...........................279
4.6 Other Axiomatizations of Set Theory..............................................290
4.6.1 Morse-Kelley (MK)..............................................................291
4.6.2 Zermelo-Fraenkel (ZF)........................................................291
4.6.3 The Theory of Types (ST)....................................................293
4.6.3.1 STI (Extensionality Axiom)..................................294
4.6.3.2 ST2 (Comprehension
Axiom Scheme)......................................................294
4.6.3.3 ST3 (Axiom of Infinity).........................................295
4.6.4 Quine s Theories NF and ML.............................................297
4.6.4.1 NF1 (Extensionality)..............................................297
4.6.4.2 NF2 (Comprehension)...........................................298
4.6.5 Set Theory with Urelements...............................................300
5. Computability...............................................................................................309
5.1 Algorithms. Turing Machines..........................................................309
5.2 Diagrams.............................................................................................315
5.3 Partial Recursive Functions. Unsolvable Problems.......................322
5.4 The Kleene-Mostowski Hierarchy. Recursively
Enumerable Sets.................................................................................338
5.5 Other Notions of Computability......................................................350
5.6 Decision Problems..............................................................................368
Appendix A: Second-Order Logic..................................................................375
Appendix B: First Steps in Modal Propositional Logic.............................391
Contents xi
Answers to Selected Exercises........................................................................403
Bibliography.......................................................................................................433
Notation...............................................................................................................447
Index....................................................................................................................453
|
any_adam_object | 1 |
author | Mendelson, Elliott 1931- |
author_GND | (DE-588)121929035 |
author_facet | Mendelson, Elliott 1931- |
author_role | aut |
author_sort | Mendelson, Elliott 1931- |
author_variant | e m em |
building | Verbundindex |
bvnumber | BV035699997 |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9 |
callnumber-search | QA9 |
callnumber-sort | QA 19 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2400 |
classification_tum | MAT 030f |
ctrlnum | (OCoLC)148589097 (DE-599)HBZHT016030657 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
edition | 5. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02069nam a2200445 c 4500</leader><controlfield tag="001">BV035699997</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091211 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090831s2010 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA954634</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584888768</subfield><subfield code="c">(hbk.) : £39.99</subfield><subfield code="9">1-58488-876-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584888765</subfield><subfield code="9">978-1-58488-876-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)148589097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT016030657</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA9</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2400</subfield><subfield code="0">(DE-625)17608:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 030f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mendelson, Elliott</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121929035</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to mathematical logic</subfield><subfield code="c">Elliott Mendelson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 469 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Godel, Church, Kleene, Rosser, and Turing."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="v">Problems, exercises, etc.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017753949&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017753949</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV035699997 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:43:43Z |
institution | BVB |
isbn | 1584888768 9781584888765 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017753949 |
oclc_num | 148589097 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-634 DE-19 DE-BY-UBM |
owner_facet | DE-91G DE-BY-TUM DE-634 DE-19 DE-BY-UBM |
physical | XXIV, 469 S. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | CRC Press |
record_format | marc |
spelling | Mendelson, Elliott 1931- Verfasser (DE-588)121929035 aut Introduction to mathematical logic Elliott Mendelson 5. ed. Boca Raton [u.a.] CRC Press 2010 XXIV, 469 S. txt rdacontent n rdamedia nc rdacarrier "Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Godel, Church, Kleene, Rosser, and Turing."--BOOK JACKET. Logic, Symbolic and mathematical Logic, Symbolic and mathematical Problems, exercises, etc. Mathematische Logik (DE-588)4037951-6 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Mathematische Logik (DE-588)4037951-6 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017753949&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mendelson, Elliott 1931- Introduction to mathematical logic Logic, Symbolic and mathematical Logic, Symbolic and mathematical Problems, exercises, etc. Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4151278-9 |
title | Introduction to mathematical logic |
title_auth | Introduction to mathematical logic |
title_exact_search | Introduction to mathematical logic |
title_full | Introduction to mathematical logic Elliott Mendelson |
title_fullStr | Introduction to mathematical logic Elliott Mendelson |
title_full_unstemmed | Introduction to mathematical logic Elliott Mendelson |
title_short | Introduction to mathematical logic |
title_sort | introduction to mathematical logic |
topic | Logic, Symbolic and mathematical Logic, Symbolic and mathematical Problems, exercises, etc. Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Logic, Symbolic and mathematical Logic, Symbolic and mathematical Problems, exercises, etc. Mathematische Logik Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017753949&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mendelsonelliott introductiontomathematicallogic |