Public key cryptography: theory and practice
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chennai [u.a.]
Pearson Education
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXII, 562 S. |
ISBN: | 9788131708323 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035693055 | ||
003 | DE-604 | ||
005 | 20101007 | ||
007 | t | ||
008 | 090825s2009 xxu |||| 00||| eng d | ||
010 | |a 2009012766 | ||
020 | |a 9788131708323 |c pbk. |9 978-81-317-0832-3 | ||
035 | |a (OCoLC)317778105 | ||
035 | |a (DE-599)BVBBV035693055 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 | ||
050 | 0 | |a TK5102.94 | |
082 | 0 | |a 005.8/2 | |
084 | |a ST 276 |0 (DE-625)143642: |2 rvk | ||
100 | 1 | |a Das, Abhijt |e Verfasser |4 aut | |
245 | 1 | 0 | |a Public key cryptography |b theory and practice |c Abhijit Das, C. E. Veni Madhavan |
264 | 1 | |a Chennai [u.a.] |b Pearson Education |c 2009 | |
300 | |a XXII, 562 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Public key cryptography | |
650 | 4 | |a Telecommunication |x Security measures |x Mathematics | |
650 | 4 | |a Computers |x Access control |x Mathematics | |
650 | 0 | 7 | |a Kryptologie |0 (DE-588)4033329-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Public-Key-Kryptosystem |0 (DE-588)4209133-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kryptologie |0 (DE-588)4033329-2 |D s |
689 | 0 | 1 | |a Public-Key-Kryptosystem |0 (DE-588)4209133-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Madhavan, C. E. Veni |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017747100&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017747100 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804139405411090432 |
---|---|
adam_text | Contents
Preface
xiii
Notations
xv
1
Overview
1
1.1
Introduction
......................................... 2
1.2
Common
Cryptographie Primitives
............................. 2
1.2.1
The Classical Problem: Secure
Transmission
of
Messages
............ 2
Symmetric-key or secret-key cryptography
.................... 4
Asymmetric-key or public-key cryptography
................... 4
1.2.2
Key Exchange
................................... 5
1.2.3
Digital Signatures
. ................................. 5
1.2.4
Entity Authentication
................................ 6
1.2.5
Secret Sharing
................................... 8
1.2.6
Hashing
....................................... 8
1.2.7
Certification
..................................... 9
1.3
Public-key Cryptography
................................... 9
1.3.1
The Mathematical Problems
............................ 9
1.3.2
Realization of Key Pairs
.............................. 10
1.3.3
Public-key Cryptanalysis
.............................. 11
1.4
Some Cryptographic Terms
................................. 11
1.4.1
Models of Attacks
................................. 12
1.4.2
Models of Passive Attacks
............................. 12
1.4.3
Public Versus Private Algorithms
.......................... 13
2
Mathematical Concepts
15
2.1
Introduction
......................................... 16
2.2
Sets, Relations and Functions
................................ 16
2.2.1
Set Operations
................................... 17
2.2.2
Relations
...................................... 17
2.2.3
Functions
...................................... 18
2.2.4
The Axioms of Mathematics
............................ 19
Exercise Set
2.2 ....................................... 20
2.3
Groups
............................................ 21
2.3.1
Definition and Basic Properties
........................... 21
2.3.2
Subgroups, Cosets and Quotient Groups
...................... 23
2.3.3
Homomorphisms
.................................. 25
2.3.4
Generators and Orders
............................... 26
2.3.5
Sylow s Theorem
.................................. 27
Exercise Set
2.3....................................... 29
2.4
Rings
............................................. 31
2.4.1
Definition and Basic Properties
........................... 31
2.4.2
Subrings, Ideals and Quotient Rings
........................ 34
2.4.3
Homomorphisms
.................................. 37
2.4.4
Factorization in Rings
............................... 39
Exercise Set
2.4 ....................................... 42
2.5
Integers
............................................ 44
Contents
2.5.1
Divisibility
..................................... 44
2.5.2
Congruences
.................................... 45
2.5.3
Quadratic Residues
................................. 48
2.5.4
Some Assorted Topics
............................... 52
The prime number theorem
............................. 53
Density of smooth integers
............................. 54
The extended Riemann hypothesis
......................... 54
Exercise Set
2.5 ....................................... 56
2.6
Polynomials
......................................... 57
2.6.1
Elementary Properties
............................... 58
2.6.2
Roots of Polynomials
................................ 59
2.6.3
Algebraic Elements and Extensions
........................ 61
Exercise Set
2.6 ....................................... 63
2.7
Vector Spaces and Modules
................................. 64
2.7.1
Vector Spaces
.................................... 65
2.7.2
Modules
....................................... 69
2.7.3
Algebras
...................................... 71
Exercise Set
2.7 ....................................... 72
2.8
Fields
............................................. 74
2.8.1
Properties of Field Extensions
.........................■ · 74
2.8.2
Splitting Fields and Algebraic Closure
....................... 76
2.8.3
Elements of Galois Theory
............................. 78
Exercise Set
2.8 ....................................... 79
2.9
Finite Fields
......................................... 80
2.9.1
Existence and Uniqueness of Finite Fields
..................... 80
2.9.2
Polynomials over Finite Fields
........................... 82
2.9.3
Representation of Finite Fields
........................... 85
Exercise Set
2.9 ....................................... 88
2.10 Affine
and Protective Curves
................................ . 90
2.10.1
Plane Curves
.................................... 90
2.10.2
Polynomial and Rational Functions on Plane Curves
............... 92
2.10.3
Maps Between Plane Curves
................ ............ 95
2.10.4
Divisors on Plane Curves
.............................. 95
Exercise Set
2.10....................................... 97
2.11
EllipticCurves
........................................ 98
2.11.1
The
Weierstrass
Equation
.............................. 98
2.11.2
The Elliptic Curve Group
.............................. 101
2.11.3
Elliptic Curves over Finite Fields
.......................... 106
Exercise Set
2.11...................... . ................ 107
2.12
HyperellipticCurves
..................... . ...............
Ill
2.12.1
The Defining Equations
...............................
Ill
2.12.2
Polynomial and Rational Functions
.......
:
. ................ 112
2.12.3
TheJacobian
.................................... 115
Exercise Set
2.12....................................... 118
2.13
Number Fields
........................................ 119
2.13.1
Some Commutative Algebra
. . ................. . :....... 120
Ideal arithmetic
................................... 120
Localization
..................................... 120
Integral dependence
................................ 121
Contents
Noetherian rings..................................123
Dedekind
domains
.................................125
2.13.2
Number Fields and
Rings..............................125
2.13.3
Unique Factorization of
Ideals...........................131
2.13.4
Norms of Ideals
...................................135
2.13.5
Rational Primes in Number Rings
.........................137
2.13.6
Units in a Number Ring
..............................139
Exercise Set
2.13.......................................139
2.14
p-adic Numbers
.......................................143
2.14.1
The Arithmetic of p-adic Numbers
.........................143
2.14.2
The p-adic Valuation
................................145
2.14.3
Hensel s Lemma
..................................149
Exercise Set
2.14.......................................151
2.15
Statistical Methods
......................................154
2.15.1
Random Variables and Their Probability Distributions
..............154
2.15.2
Operations on Random Variables
..........................155
2.15.3
Expectation, Variance and Correlation
.......................159
2.15.4
Some Famous Probability Distributions
......................162
Uniform distribution
................................162
Bernoulli distribution
................................163
Normal distribution
..................................163
2.15.5
Sample Mean, Variation and Correlation
......................164
Exercise Set
2.15........................................ 165
Algebraic and Number-theoretic Computations
- 173
3.1
Introduction
.........................................174
3.2
Complexity Issues
......................................174
3.2.1
Order Notations
...................................175
3.2.2
Randomized Algorithms
..............................177
3.2.3
Reduction Between Computational Problems
...................178
Exercise Set
3.2 .......................................179
3.3
Multiple-precision Integer Arithmetic
............................180
3.3.1
Representation of Large Integers
..........................181
3.3.2
Basic Arithmetic Operations
............................181
Addition and subtraction
..............................182
Multiplication
....................................183
Squaring
......................................184
Fast multiplication
.................................184
Division
.......................................185
Bit-wise operations
.................................187
3.3.3
GCD
........................................187
3.3.4
Modular Arithmetic
.................................190
Modular exponentiation
..............................190
Montgomery exponentiation
............................192
Exercise Set
3.3 .......................................193
3.4
Elementary Number-theoretic Computations
........................195
3.4.1
Primality Testing
..................................195
Deterministic primality proving
..........................197
3.4.2
Generating Random Primes
............................199
v¡
Contents
3.4.3
Modular
Square Roots
...............................200
Exercise Set
3.4 .......................................201
3.5
Arithmetic in Finite Fields
..................................204
3.5.1
Arithmetic in the Ring F2[X]
............................204
3.5.2
Finite Fields of Characteristic
2 ...........................208
3.5.3
Selecting Suitable Finite Fields
...........................210
3.5.4
Factoring Polynomials over Finite Fields
.....................212
Square-free factorization
..............................212
Distinct-degree factorization
............................213
Equal-degree factorization
.............................214
Exercise Set
3.5....................................... 215
3.6
Arithmetic on Elliptic Curves
................................218
3.6.1
Point Arithmetic
..................................218
3.6.2
Counting Points on Elliptic Curves
.........................219
The SEA algorithm
.................................219
The Satoh-FGH algorithm
.............................221
3.6.3
Choosing Good Elliptic Curves
..........................223
3.7
Arithmetic on Hyperelliptic Curves
.............................224
3.7.1 ·
Arithmetic in the Jacobian
.............................225
3.7.2
Counting Points in Jacobians of Hyperelliptic Curves
...............225
Exercise Set
3.7.......................................228
3.8
Random Numbers
......................................228
3.8.1
Pseudorandom Bit Generators
...........................228
3.8.2
Cryptographically Strong Pseudorandom Bit Generators
.............229
3.8.3
Seeding Pseudorandom Bit Generators
...................... . 230
Exercise Set
3.8.......................................231
The Intractable Mathematical Problems
237
4.1
Introduction
.........................................238
4.2
The Problems at a Glance
..............·....................239
Exercise Set
4.2.......................................242
4.3
The Integer Factorization Problem
..............................243
4.3.1
Older Algorithms
..................................244
Trial division
.....................................244
Pollard s rho method
................................244
Pollard sp
- 1
method
...............................245
Williams
ρ
+1
method
..............................247
4.3.2
The Quadratic Sieve Method
............................248
The basic
algoritam
.................................248
Sieving
.......................................249
Incomplete sieving
.................................251
Large prime variation
................................251
The multiple polynomial quadratic sieve
...........-.■...........252
Parallelization
....................................253
TWINKLE: Shamir s fectoring device
....................... 254
4.3.3
Factorization Using Elliptic Curves
........................255
4.3.4
The Number Field Sieve Method
..........................258
Selecting die polynomial
ƒ
(X)
...........................259
Construction of
Q
...................................259
Contents
vii
Constraction
of Q
.................................259
Construction of W
. . ...............................260
Computing the factorization of a + ba
.......................260
Sieving
.......................................261
The running time of the SNFSM
..........................262
Exercise Set
4.3 .......................................262
4.4
The Finite Field Discrete Logarithm Problem
........................264
4.4.1
Square Root Methods
................................264
Shanks baby-step-giant-step method
.......................265
Pollard s rho method
................................265
The Pohlig-Hellman method
............................266
4.4.2
The Index Calculus Method
............................267
4.4.3
Algorithms for Prime Fields
............................268
The basic ICM
...................................268
The linear sieve method
..............................270
The number field sieve method
...........................272
4.4.4
Algorithms for Fields of Characteristic
2......................273
The basic ICM
...................................274.
The adaptation of the linear sieve method
.....................275
Coppersmith s algorithm
..............................276
Exercise Set
4.4 ........................................279
4.5
The Elliptic Curve Discrete Logarithm Problem (ECDLP)
.................281
4.5.1
The MOV Reduction
................................282
The correctness of the algorithm
..........................283
Choosing
к
.....................................284
Computing em(P, R)
................................284
4.5.2
The SmartASS Method
...............................286
4.5.3
The Xedni Calculus Method
............................289
Exercise Set
4.5 .......................................291
4.6
The Hyperelliptic Curve Discrete Logarithm Problem
...................292
4.6.1
Choosing the Factor Base
..............................293
4.6.2
Checking the Smoothness of a Divisor
.......................293
4.6.3
The Algorithm
...................................294
4.7
Solving Large Sparse Linear Systems over Finite Rings
..................294
4.7.1
Structured Gaussian Elimination
..........................296
4.7.2
The Conjugate Gradient Method
..........................297
4.7.3
The Lanczos Method
................................298
4.7.4
The Wiedemann Method
..............................299
4.8
The Subset Sum Problem
..................................300
4.8.1
The Low-Density Subset Sum Problem
......................301
4.8.2
The Lattice-Basis Reduction Algorithm
......................302
Exercise Set
4.8 .......................................304
Cryptographic Algorithms
309
5.1
Introduction
.........................................310
5.2
Secure Transmission of Messages
..............................310
5.2.1
The RSA Public-key Encryption Algorithm
....................310
RSA key pair
....................................310
RSA encryption
...................................312
viii
Contents
RSA
decryption
...................................312
5.2.2
The Rabin
Public-key Encryption Algorithm
...................313
Rabin key pair
...................................313
Rabin encryption
..................................314
Rabin decryption
..................................314
5.2.3
The Goldwasser-Micali Encryption Algorithm
..................315
Goldwasser-Micali key pair
............................315
Goldwasser-Micali encryption
...........................315
Goldwasser-Micali decryption
...........................316
5.2.4
The Blum-Goldwasser Encryption Algorithm
...................317
Blum-Goldwasser key pair
.............................317
Blum-Goldwasser encryption
...........................318
Blum-Goldwasser decryption
...........................318
5.2.5
The ElGamal Public-key Encryption Algorithm
..................319
ElGamal key pair
..................................319
ElGamal encryption
................................320
ElGamal decryption
................................320
5.2.6
The Chor-Rivest Public-key Encryption Algorithm
................321
Chor-Rivest key pair
................................321
Chor-Rivest encryption
...............................322
Chor-Rivest decryption
...............................322
5.2.7
The XTR Public-key Encryption Algorithm
....................323
XTR key pair
....................................327
XTR encryption
...................................327
XTR decryption
...................................328
5.2.8
The NTRU Public-key Encryption Algorithm
...................328
NTRUkeypair
...................................328
NTRU encryption
..................................330
NTRU decryption
..................................331
Exercise Set
5.2 .......................................332
5.3
Key Exchange
........................................334
5.3.1
Basic Key-Exchange Protocols
...........................334
The Diffie-Hellman key-exchange protocol
....................334
Small-subgroup attacks
...............................335
Cofactor exponentiation
..............................336
5.3.2
Authenticated Key-Exchange Protocols
. . ....................336
Unknown key-share attacks
.............................336
The Menezes-Qu-Vanstone key-exchange protocol
................ 338
Exercise Set
5.3 .......................................339
5.4
Digital Signatures
......................................340
5.4.1
The RSA Digital Signature Algorithm
.......................341
5.4.2
The Rabin Digital Signature Algorithm
......................342
5.4.3
The ElGamal Digital Signature Algorithm
.....................343
5.4.4
The
Schnorr
Digital Signature Algorithm
............ . . . . . . ; . . 344
5.4.5
The Nyberg-Rueppel Digital Signature Algorithm
................345
5.4.6
The Digital Signature Algorithm (DSA)
...................... 346
5.4.7
The Elliptic Curve Digital Signature Algorithm (ECDSA)
......:..... 348
5.4.8
The XTR Signature Algorithm
...........................349
5.4.9
The NTRUSign Algorithm
............. . ... . . . .........352
Contents ix
5.4.10 Blind
Signature
Schemes
.............................. 355
Chaum s RSA
blind signature protocol
....................... 355
The
Schnorr
blind signature protocol
........................ 356
The Okamoto-Schnorr blind signature protocol
.................. 357
5.4.11
Undeniable Signature Schemes
........................... 357
The
Chaum-Van Antwerpen
undeniable signature scheme
............ 358
RSA-based undeniable signature scheme
..................... 360
5.4.12
Signcryption
.................................... 362
Exercise Set
5.4 ....................................... 364
5.5
Entity Authentication
..................................... 366
5.5.1
Passwords
...................................... 366
5.5.2
Challenge-Response Algorithms
.......................... 368
A challenge-response scheme based on encryption-decryption
.......... 368
A challenge-response scheme based on digital signatures
............. 369
Mutual authentication
................................ 370
5.5.3
Zero-Knowledge Protocols
............................. 370
The
Feige-Fiat-Shamir (FFS)
protocol
...................... 372
The
Guillou-Quisquater(GQ)
protocol
...................... 373
The
Schnorr
protocol
................................ 374
Exercise Set
5.5 ....................................... 375
6
Standards
381
6.1
Introduction
.........................................382
6.2
IEEE Standards
........................................382
6.2.1
The Data Types
...................................383
Bit strings
......................................383
Octet strings
....................................383
Integers
........................................384
Prime finite fields
..................................384
Finite fields of characteristic
2...........................384
Extension fields of odd characteristics
.......................384
Elliptic curves
....................................385
Elliptic curve points
................................385
Convolution polynomial rings
...........................386
6.2.2
Conversion Among Data Types
...........................386
Converting bit strings to octet strings (BS2OS)
..................386
Converting octet strings to bit strings (OS2BS)
..................387
Converting integers to bit strings (I2BS)
......................388
Converting bit strings to integers (BS2I)
......................388
Converting integers to octet strings (I2OS)
.....................388
Converting octet strings to integers (OS2I)
.....................389
Converting field elements to octet strings (FE2OS)
................389
Converting octet strings to field elements (OS2FE)
................389
Converting field elements to integers (FE2I)
....................389
Converting elliptic curve points to octet strings (EC2OS)
.............389
Converting octet strings to elliptic curve points (OS2EC)
.............390
Converting ring elements to octet strings (RE2OS)
................390
Converting octet strings to ring elements (OS2RE)
................391
Converting ring elements to bit strings (RE2BS)
..................391
Contents
Converting bit strings to ring elements
(BS2RE)..................391
Converting binary elements to octet strings (BE2OS)
...............392
Converting octet strings to binary elements (OS2BE)
...............392
6.3
RSA Standards
........................................
393
6.3.1
PKCS#1
......................................
393
RSAkeys
......................................
394
RSA key operations
.................................
394
RSAES-OAEP encryption scheme
.........................395
RSASSA-PSS signature scheme with appendix
..................398
A mask-generation
fonction
............................399
The RSA encryption scheme ofPKCS#l, Version
1.5..............400
The RSA signature scheme of PKCS#1, Version
1.5...............401
6.3.2
PKCS#3
......................................402
Cryptanalysis in Practice
405
7.1
Introduction
.........................................406
7.2
Side-Channel Attacks
....................................407
7.2.1
TimingAttack
...................................407
Details of the attack
.................................407
Countermeasures
..................................410
7.2.2
Power Analysis
...................................411
Simple power analysis (SPA)
............................411
Differential power analysis
(DPA).........................413
Countermeasures
..................................415
7.2.3
Fault Analysis
....................................416
Fault attack on RSA based on CRT
.........................417
Fault attack on RSA without CRT
.........................417
Fault attack on the Rabin digital signature algorithm
...............418
Fault attack on DSA
................................418
Fault attack on the ElGamal signature scheme
...................419
Fault attack on the Feige-Fiat-Shamir identification protocol
...........420
Countermeasures
..................................422
Exercise Set
7.2 .......................................423
7.3
Backdoor Attacks
......................................424
7.3.1
AttacksonRSA
...................................425
Hiding prime factor
.................................425
Hiding small private exponent
...........................428
Hiding small public exponent
...........................429
7.3.2
An Attack on ElGamal Signatures
.........................430
7.3.3
An Attack on ElGamal Encryption
.........................431
7.3.4
Countermeasures
..................................432
Exercise Set
7
J
.......................................432
Quantum Computation and Cryptography
437
8.1
Introduction
. . . . *. . ...................................438
8.2
Quantum Computation
....................................438
8.2.1
System
.......................................439
8.2.2
Entanglement
....................................440
8.2.3
Evolution
......................................442
8.2.4
Measurement
....................................443
Contents xi
8.2.5 The Deutsch
Algorithm
...............................445
Exercise Set
8.2 .......................................446
8.3
Quantum Cryptography
...................................448
Exercise Set
8.3 .......................................451
8.4
Quantum Cryptanalysis
...................................452
8.4.1
Shor s Algorithm for Computing Period
......................453
8.4.2
Breaking RSA
...................................455
8.4.3
Factoring Integers
..................................455
8.4.4
Computing Discrete Logarithms
..........................456
Exercise Set
8.4 .......................................458
Appendices
A Symmetric Techniques
465
A.I Introduction
.........................................466
A.2 Block Ciphers
........................................466
A.2.1 A Case Study:
DES.................................467
DES
key schedule
..................................468
DES
encryption
...................................468
DES
decryption
...................................471
DES
test vectors
..................................471
Cryptanalysis of
DES................................471
A.2.2 The Advanced Standard: AES
...........................472
Data representation
.................................472
AES key schedule
..................................473
AES encryption
...................................474
AES decryption
...................................476
AES test vectors
..................................478
Cryptanalysis of AES
................................478
A.2.3 Multiple Encryption
................................478
A.2.4 Modes of Operation
.................................480
The ECB mode
...................................480
The CBC mode
...................................481
The CFB mode
...................................481
The OFB mode
...................................482
Exercise Set A.2
.......................................483
A.3 Stream Ciphers
........................................486
A.3.1 Linear Feedback Shift Registers
..........................487
A.3.2 Stream Ciphers Based on LFSRs
..........................489
Exercise Set A.3
.......................................490
A.4 Hash Functions
........................................491
A.4.1 Merkle s
Meta
Method
...............................492
A.4.2 The Secure Hash Algorithm
............................494
Exercise Set A.4
.......................................495
В
Key Exchange in Sensor Networks
497
B.I btroduction
..........................................498
B.2 Security Issues in a Sensor Network
.............................498
B.3 The Basic Bootstrapping Framework
............................500
B.4 The Basic Random Key Predistribution Scheme
.......................502
xii
Contents
B.4.
1
The
ç-composite
Scheme
.............................. 504
B.4.2 Multi-path Key Reinforcement
........................... 505
B.5 Random Pairwise Scheme
.................................. 506
B.5.1 Multi-hop Range Extension
............................ 507
B.6 Polynomial-pool-based Key Predistribution
......................... 508
B.6.1 Pairwise Key Predistribution
............................ 509
B.6.2 Grid-based Key Predistribution
........................... 510
B.7 Matrix-based Key Predistribution
.............................. 511
B.8 Location-aware Key Predistribution
............................. 513
B.8.1 Closest Pairwise Keys Scheme
........................... 513
B.8.2 Location-aware Polynomial-pool-based Scheme
.................. 515
С
Complexity Theory and Cryptography
517
C.I Introduction
.........................................518
C.2
Provably
Difficult Computational Problems Are not Suitable
................519
Exercise Set C.2
.......................................519
C.3 One-way Functions and the Complexity Class UP
.....................520
Exercise Set C.3
.......................................522
D
Hints to Selected Exercises
523
References
531
Index
547
|
any_adam_object | 1 |
author | Das, Abhijt Madhavan, C. E. Veni |
author_facet | Das, Abhijt Madhavan, C. E. Veni |
author_role | aut aut |
author_sort | Das, Abhijt |
author_variant | a d ad c e v m cev cevm |
building | Verbundindex |
bvnumber | BV035693055 |
callnumber-first | T - Technology |
callnumber-label | TK5102 |
callnumber-raw | TK5102.94 |
callnumber-search | TK5102.94 |
callnumber-sort | TK 45102.94 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ST 276 |
ctrlnum | (OCoLC)317778105 (DE-599)BVBBV035693055 |
dewey-full | 005.8/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.8/2 |
dewey-search | 005.8/2 |
dewey-sort | 15.8 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01802nam a2200469zc 4500</leader><controlfield tag="001">BV035693055</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101007 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090825s2009 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009012766</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788131708323</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-81-317-0832-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)317778105</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035693055</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5102.94</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.8/2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 276</subfield><subfield code="0">(DE-625)143642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Abhijt</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Public key cryptography</subfield><subfield code="b">theory and practice</subfield><subfield code="c">Abhijit Das, C. E. Veni Madhavan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chennai [u.a.]</subfield><subfield code="b">Pearson Education</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 562 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Public key cryptography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Telecommunication</subfield><subfield code="x">Security measures</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield><subfield code="x">Access control</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kryptologie</subfield><subfield code="0">(DE-588)4033329-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Public-Key-Kryptosystem</subfield><subfield code="0">(DE-588)4209133-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kryptologie</subfield><subfield code="0">(DE-588)4033329-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Public-Key-Kryptosystem</subfield><subfield code="0">(DE-588)4209133-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madhavan, C. E. Veni</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017747100&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017747100</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV035693055 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:43:34Z |
institution | BVB |
isbn | 9788131708323 |
language | English |
lccn | 2009012766 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017747100 |
oclc_num | 317778105 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XXII, 562 S. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Pearson Education |
record_format | marc |
spelling | Das, Abhijt Verfasser aut Public key cryptography theory and practice Abhijit Das, C. E. Veni Madhavan Chennai [u.a.] Pearson Education 2009 XXII, 562 S. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Mathematik Public key cryptography Telecommunication Security measures Mathematics Computers Access control Mathematics Kryptologie (DE-588)4033329-2 gnd rswk-swf Public-Key-Kryptosystem (DE-588)4209133-0 gnd rswk-swf Kryptologie (DE-588)4033329-2 s Public-Key-Kryptosystem (DE-588)4209133-0 s 1\p DE-604 Madhavan, C. E. Veni Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017747100&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Das, Abhijt Madhavan, C. E. Veni Public key cryptography theory and practice Mathematik Public key cryptography Telecommunication Security measures Mathematics Computers Access control Mathematics Kryptologie (DE-588)4033329-2 gnd Public-Key-Kryptosystem (DE-588)4209133-0 gnd |
subject_GND | (DE-588)4033329-2 (DE-588)4209133-0 |
title | Public key cryptography theory and practice |
title_auth | Public key cryptography theory and practice |
title_exact_search | Public key cryptography theory and practice |
title_full | Public key cryptography theory and practice Abhijit Das, C. E. Veni Madhavan |
title_fullStr | Public key cryptography theory and practice Abhijit Das, C. E. Veni Madhavan |
title_full_unstemmed | Public key cryptography theory and practice Abhijit Das, C. E. Veni Madhavan |
title_short | Public key cryptography |
title_sort | public key cryptography theory and practice |
title_sub | theory and practice |
topic | Mathematik Public key cryptography Telecommunication Security measures Mathematics Computers Access control Mathematics Kryptologie (DE-588)4033329-2 gnd Public-Key-Kryptosystem (DE-588)4209133-0 gnd |
topic_facet | Mathematik Public key cryptography Telecommunication Security measures Mathematics Computers Access control Mathematics Kryptologie Public-Key-Kryptosystem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017747100&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dasabhijt publickeycryptographytheoryandpractice AT madhavanceveni publickeycryptographytheoryandpractice |