Applied combinatorics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
Chapman & Hall/CRC
2009
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVII, 860 S. graph. Darst. |
ISBN: | 9781420099829 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035689144 | ||
003 | DE-604 | ||
005 | 20090925 | ||
007 | t | ||
008 | 090821s2009 xxud||| |||| 00||| eng d | ||
010 | |a 2009013043 | ||
020 | |a 9781420099829 |c hardcover : alk. paper |9 978-1-4200-9982-9 | ||
035 | |a (OCoLC)429479492 | ||
035 | |a (DE-599)BVBBV035689144 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-634 |a DE-91G |a DE-11 |a DE-83 | ||
050 | 0 | |a QA164 | |
082 | 0 | |a 511/.6 | |
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a 05-01 |2 msc | ||
084 | |a 94C15 |2 msc | ||
084 | |a 68E10 |2 msc | ||
084 | |a MAT 050f |2 stub | ||
084 | |a 90C10 |2 msc | ||
100 | 1 | |a Roberts, Fred S. |d 1943- |e Verfasser |0 (DE-588)13624419X |4 aut | |
245 | 1 | 0 | |a Applied combinatorics |c Fred Roberts ; Barry Tesman |
250 | |a 2. ed. | ||
264 | 1 | |a Boca Raton [u.a.] |b Chapman & Hall/CRC |c 2009 | |
300 | |a XXVII, 860 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Analyse combinatoire | |
650 | 4 | |a Combinatorial analysis | |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tesman, Barry |e Sonstige |4 oth | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017743248&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017743248 |
Datensatz im Suchindex
_version_ | 1804139399603027968 |
---|---|
adam_text | APPLIED COMBINATORICS SECOND EDITION FRED S. ROBERTS BARRY TESMAN LSSP)
CRC PRESS VV^ J TAYLOR & FRANCIS GROUP BOCA RATON LONDON NEW YORK CRC
PRESS IS AN IMPRINT OF THE TAYLOR & FRANCIS GROUP AN INFORMA BUSINESS A
CHAPMAN & HALL BOOK CONTENTS PREFACE XVII NOTATION XXVII 1 WHAT IS
COMBINATORICS? 1 1.1 THE THREE PROBLEMS OF COMBINATORICS 1 1.2 THE
HISTORY AND APPLICATIONS OF COMBINATORICS 8 REFERENCES FOR CHAPTER 1 13
PART I THE BASIC TOOLS OF COMBINATORICS 15 2 BASIC COUNTING RULES 15 2.1
THE PRODUCT RULE 15 2.2 THE SUM RULE 23 2.3 PERMUTATIONS 25 2.4
COMPLEXITY OF COMPUTATION 27 2.5 R-PERMUTATIONS 32 2.6 SUBSETS 34 2.7
R-COMBINATIONS 35 2.8 PROBABILITY 41 2.9 SAMPLING WITH REPLACEMENT 47
2.10 OCCUPANCY PROBLEMS 51 2.10.1 THE TYPES OF OCCUPANCY PROBLEMS 51
2.10.2 CASE 1: DISTINGUISHABLE BALLS AND DISTINGUISHABLE CELLS . . . 53
2.10.3 CASE 2: INDISTINGUISHABLE BALLS AND DISTINGUISHABLE CELLS . . 53
2.10.4 CASE 3: DISTINGUISHABLE BALLS AND INDISTINGUISHABLE CELLS . . 54
2.10.5 CASE 4: INDISTINGUISHABLE BALLS AND INDISTINGUISHABLE CELLS . 55
2.10.6 EXAMPLES 56 2.11 MULTINOMIAL COEFFICIENTS 59 2.11.1 OCCUPANCY
PROBLEMS WITH A SPECIFIED DISTRIBUTION 59 2.11.2 PERMUTATIONS WITH
CLASSES OF INDISTINGUISHABLE OBJECTS . . . 62 2.12 COMPLETE DIGEST BY
ENZYMES 64 VLL VLLL CONTENTS 2.13 PERMUTATIONS WITH CLASSES OF
INDISTINGUISHABLE OBJECTS REVISITED . . 68 2.14 THE BINOMIAL EXPANSION
70 2.15 POWER IN SIMPLE GAMES 73 2.15.1 EXAMPLES OF SIMPLE GAMES 73
2.15.2 THE SHAPLEY-SHUBIK POWER INDEX 75 2.15.3 THE U.N. SECURITY
COUNCIL 78 2.15.4 BICAMERAL LEGISLATURES 78 2.15.5 COST ALLOCATION 79
2.15.6 CHARACTERISTIC FUNCTIONS 80 2.16 GENERATING PERMUTATIONS AND
COMBINATIONS 84 2.16.1 AN ALGORITHM FOR GENERATING PERMUTATIONS 84
2.16.2 AN ALGORITHM FOR GENERATING SUBSETS OF SETS 86 2.16.3 AN
ALGORITHM FOR GENERATING COMBINATIONS 88 2.17 INVERSION DISTANCE BETWEEN
PERMUTATIONS AND THE STUDY OF MUTATIONS 91 2.18 GOOD ALGORITHMS 96
2.18.1 ASYMPTOTIC ANALYSIS 96 2.18.2 NP-COMPLETE PROBLEMS 99 2.19
PIGEONHOLE PRINCIPLE AND ITS GENERALIZATIONS 101 2.19.1 THE SIMPLEST
VERSION OF THE PIGEONHOLE PRINCIPLE 101 2.19.2 GENERALIZATIONS AND
APPLICATIONS OF THE PIGEONHOLE PRINCIPLE 103 2.19.3 RAMSEY NUMBERS 106
ADDITIONAL EXERCISES FOR CHAPTER 2 ILL REFERENCES FOR CHAPTER 2 113 3
INTRODUCTION TO GRAPH THEORY 119 3.1 FUNDAMENTAL CONCEPTS 119 3.1.1 SOME
EXAMPLES 119 3.1.2 DEFINITION OF DIGRAPH AND GRAPH 124 3.1.3 LABELED
DIGRAPHS AND THE ISOMORPHISM PROBLEM 127 3.2 CONNECTEDNESS 133 3.2.1
REACHING IN DIGRAPHS 133 3.2.2 JOINING IN GRAPHS 135 3.2.3 STRONGLY
CONNECTED DIGRAPHS AND CONNECTED GRAPHS 135 3.2.4 SUBGRAPHS 137 3.2.5
CONNECTED COMPONENTS 138 3.3 GRAPH COLORING AND ITS APPLICATIONS 145
3.3.1 SOME APPLICATIONS 145 3.3.2 PLANAR GRAPHS 151 3.3.3 CALCULATING
THE CHROMATIC NUMBER 154 3.3.4 2-COLORABLE GRAPHS 155 CONTENTS IX 3.3.5
GRAPH-COLORING VARIANTS 159 3.4 CHROMATIC POLYNOMIALS 172 3.4.1
DEFINITIONS AND EXAMPLES 172 3.4.2 REDUCTION THEOREMS 175 3.4.3
PROPERTIES OF CHROMATIC POLYNOMIALS 179 3.5 TREES 185 3.5.1 DEFINITION
OF A TREE AND EXAMPLES 185 3.5.2 PROPERTIES OF TREES 188 3.5.3 PROOF OF
THEOREM 3.15 188 3.5.4 SPANNING TREES 189 3.5.5 PROOF OF THEOREM 3.16
AND A RELATED RESULT 192 3.5.6 CHEMICAL BONDS AND THE NUMBER OF TREES
193 3.5.7 PHYLOGENETIC TREE RECONSTRUCTION 196 3.6 APPLICATIONS OF
ROOTED TREES TO SEARCHING, SORTING, AND PHYLOGENY RECONSTRUCTION 202
3.6.1 DEFINITIONS 202 3.6.2 SEARCH TREES 205 3.6.3 PROOF OF THEOREM 3.24
206 3.6.4 SORTING 207 3.6.5 THE PERFECT PHYLOGENY PROBLEM 211 3.7
REPRESENTING A GRAPH IN THE COMPUTER 219 3.8 RAMSEY NUMBERS REVISITED
224 REFERENCES FOR CHAPTER 3 228 4 RELATIONS 235 4.1 RELATIONS 235 4.1.1
BINARY RELATIONS 235 4.1.2 PROPERTIES OF RELATIONS/PATTERNS IN DIGRAPHS
240 4.2 ORDER RELATIONS AND THEIR VARIANTS 247 4.2.1 DEFINING THE
CONCEPT OF ORDER RELATION 247 4.2.2 THE DIAGRAM OF AN ORDER RELATION 250
4.2.3 LINEAR ORDERS 252 4.2.4 WEAK ORDERS 254 4.2.5 STABLE MARRIAGES 256
4.3 LINEAR EXTENSIONS OF PARTIAL ORDERS 260 4.3.1 LINEAR EXTENSIONS AND
DIMENSION 260 4.3.2 CHAINS AND ANTICHAINS 265 4.3.3 INTERVAL ORDERS 270
4.4 LATTICES AND BOOLEAN ALGEBRAS 274 4.4.1 LATTICES 274 4.4.2 BOOLEAN
ALGEBRAS 276 REFERENCES FOR CHAPTER 4 282 X CONTENTS PART II THE
COUNTING PROBLEM 285 5 GENERATING FUNCTIONS AND THEIR APPLICATIONS 285
5.1 EXAMPLES OF GENERATING FUNCTIONS 285 5.1.1 POWER SERIES 286 5.1.2
GENERATING FUNCTIONS 288 5.2 OPERATING ON GENERATING FUNCTIONS 297 5.3
APPLICATIONS TO COUNTING 302 5.3.1 SAMPLING PROBLEMS 302 5.3.2 A COMMENT
ON OCCUPANCY PROBLEMS 309 5.4 THE BINOMIAL THEOREM 312 5.5 EXPONENTIAL
GENERATING FUNCTIONS AND GENERATING FUNCTIONS FOR PERMUTATIONS 320 5.5.1
DEFINITION OF EXPONENTIAL GENERATING FUNCTION 320 5.5.2 APPLICATIONS TO
COUNTING PERMUTATIONS . . . . 321 5.5.3 DISTRIBUTIONS OF
DISTINGUISHABLE BALLS INTO INDISTINGUISHABLE CELLS 325 5.6 PROBABILITY
GENERATING FUNCTIONS 328 5.7 THE COLEMAN AND BANZHAF POWER INDICES 333
REFERENCES FOR CHAPTER 5 337 6 RECURRENCE RELATIONS 339 6.1 SOME
EXAMPLES 339 6.1.1 SOME SIMPLE RECURRENCES 339 6.1.2 FIBONACCI NUMBERS
AND THEIR APPLICATIONS 346 6.1.3 DERANGEMENTS 350 6.1.4 RECURRENCES
INVOLVING MORE THAN ONE SEQUENCE 354 6.2 THE METHOD OF CHARACTERISTIC
ROOTS 360 6.2.1 THE CASE OF DISTINCT ROOTS 360 6.2.2 COMPUTATION OF THE
KTH FIBONACCI NUMBER 363 6.2.3 THE CASE OF MULTIPLE ROOTS 364 6.3
SOLVING RECURRENCES USING GENERATING FUNCTIONS 369 6.3.1 THE METHOD 369
6.3.2 DERANGEMENTS 375 6.3.3 SIMULTANEOUS EQUATIONS FOR GENERATING
FUNCTIONS 377 6.4 SOME RECURRENCES INVOLVING CONVOLUTIONS 382 6.4.1 THE
NUMBER OF SIMPLE, ORDERED, ROOTED TREES 382 6.4.2 THE WAYS TO MULTIPLY A
SEQUENCE OF NUMBERS IN A COMPUTER 386 6.4.3 SECONDARY STRUCTURE IN RNA
389 CONTENTS XI 6.4.4 ORGANIC COMPOUNDS BUILT UP FROM BENZENE RINGS 391
REFERENCES FOR CHAPTER 6 400 7 THE PRINCIPLE OF INCLUSION AND EXCLUSION
403 7.1 THE PRINCIPLE AND SOME OF ITS APPLICATIONS 403 7.1.1 SOME SIMPLE
EXAMPLES 403 7.1.2 PROOF OF THEOREM 6.1 406 7.1.3 PRIME NUMBERS,
CRYPTOGRAPHY, AND SIEVES 407 7.1.4 THE PROBABILISTIC CASE 412 7.1.5 THE
OCCUPANCY PROBLEM WITH DISTINGUISHABLE BALLS AND CELLS 413 7.1.6
CHROMATIC POLYNOMIALS 414 7.1.7 DERANGEMENTS 417 7.1.8 COUNTING
COMBINATIONS 418 7.1.9 ROOK POLYNOMIALS 419 7.2 THE NUMBER OF OBJECTS
HAVING EXACTLY M PROPERTIES 425 7.2.1 THE MAIN RESULT AND ITS
APPLICATIONS 425 7.2.2 PROOFS OF THEOREMS 7.4 AND 7.5 431 REFERENCES FOR
CHAPTER 7 436 8 THE POLYA THEORY OF COUNTING 439 8.1 EQUIVALENCE
RELATIONS 439 8.1.1 DISTINCT CONFIGURATIONS AND DATABASES 439 8.1.2
DEFINITION OF EQUIVALENCE RELATIONS 440 8.1.3 EQUIVALENCE CLASSES 445
8.2 PERMUTATION GROUPS 449 8.2.1 DEFINITION OF A PERMUTATION GROUP 449
8.2.2 THE EQUIVALENCE RELATION INDUCED BY A PERMUTATION GROUP . 452
8.2.3 AUTOMORPHISMS OF GRAPHS 453 8 3 BURNSIDE S LEMMA 457 8.3.1
STATEMENT OF BURNSIDE S LEMMA 457 8.3.2 PROOF OF BURNSIDE S LEMMA 459
8.4 DISTINCT COLORINGS 462 8.4.1 DEFINITION OF A COLORING 462 8.4.2
EQUIVALENT COLORINGS 464 8.4.3 GRAPH COLORINGS EQUIVALENT UNDER
AUTOMORPHISMS 466 8.4.4 THE CASE OF SWITCHING FUNCTIONS 467 8.5 THE
CYCLE INDEX 472 8.5.1 PERMUTATIONS AS PRODUCTS OF CYCLES 472 8.5.2 A
SPECIAL CASE OF POLYA S THEOREM 474 8.5.3 GRAPH COLORINGS EQUIVALENT
UNDER AUTOMORPHISMS REVISITED 475 XII CONTENTS 8.5.4 THE CASE OF
SWITCHING FUNCTIONS 476 8.5.5 THE CYCLE INDEX OF A PERMUTATION GROUP 476
8.5.6 PROOF OF THEOREM 8.6 477 8.6 POLYA S THEOREM 480 8.6.1 THE
INVENTORY OF COLORINGS 480 8.6.2 COMPUTING THE PATTERN INVENTORY 482
8.6.3 THE CASE OF SWITCHING FUNCTIONS 484 8.6.4 PROOF OF POLYA S THEOREM
485 REFERENCES FOR CHAPTER 8 488 PART III THE EXISTENCE PROBLEM 489 9
COMBINATORIAL DESIGNS * 489 9.1 BLOCK DESIGNS 489 9.2 LATIN SQUARES 494
9.2.1 SOME EXAMPLES 494 9.2.2 ORTHOGONAL LATIN SQUARES 497 9.2.3
EXISTENCE RESULTS FOR ORTHOGONAL FAMILIES 500 9.2.4 PROOF OF THEOREM 9.3
505 9.2.5 ORTHOGONAL ARRAYS WITH APPLICATIONS TO CRYPTOGRAPHY .... 506
9.3 FINITE FIELDS AND COMPLETE ORTHOGONAL FAMILIES OF LATIN SQUARES . .
513 9.3.1 MODULAR ARITHMETIC 513 9.3.2 MODULAR ARITHMETIC AND THE RSA
CRYPTOSYSTEM 514 9.3.3 THE FINITE FIELDS GF(P*) 516 9.3.4 CONSTRUCTION
OF A COMPLETE ORTHOGONAL FAMILY OFNXN LATIN SQUARES IF N IS A POWER OF A
PRIME 519 9.3.5 JUSTIFICATION OF THE CONSTRUCTION OF A COMPLETE
ORTHOGONAL FAMILY IF N = P K 521 9.4 BALANCED INCOMPLETE BLOCK DESIGNS
525 9.4.1 (B,V,R, FC,A)-DESIGNS 525 9.4.2 NECESSARY CONDITIONS FOR THE
EXISTENCE OF (B,V,R, K, A)-DESIGNS 528 9.4.3 PROOF OF FISHER S
INEQUALITY 530 9.4.4 RESOLVABLE DESIGNS 532 9.4.5 STEINER TRIPLE SYSTEMS
533 9.4.6 SYMMETRIC BALANCED INCOMPLETE BLOCK DESIGNS 536 9.4.7 BUILDING
NEW (B, V, R, &, A)-DESIGNS FROM EXISTING ONES .... 537 9.4.8 GROUP
TESTING AND ITS APPLICATIONS 539 9.4.9 STEINER SYSTEMS AND THE NATIONAL
LOTTERY 542 9.5 FINITE PROJECTIVE PLANES 549 9.5.1 BASIC PROPERTIES 549
CONTENTS ** 9.5.2 PROJECTIVE PLANES, LATIN SQUARES, AND (V, K,
A)-DESIGNS .... 553 REFERENCES FOR CHAPTER 9 558 10 CODING THEORY 561
10.1 INFORMATION TRANSMISSION 561 10.2 ENCODING AND DECODING 562 10.3
ERROR-CORRECTING CODES 567 10.3.1 ERROR CORRECTION AND HAMMING DISTANCE
567 10.3.2 THE HAMMING BOUND 570 10.3.3 THE PROBABILITY OF ERROR 571
10.3.4 CONSENSUS DECODING AND ITS CONNECTION TO FINDING PATTERNS IN
MOLECULAR SEQUENCES 573 10.4 LINEAR CODES 582 10.4.1 GENERATOR MATRICES
582 10.4.2 ERROR CORRECTION USING LINEAR CODES 584 10.4.3 HAMMING CODES
587 10.5 THE USE OF BLOCK DESIGNS TO FIND ERROR-CORRECTING CODES 591
10.5.1 HADAMARD CODES 591 10.5.2 CONSTRUCTING HADAMARD DESIGNS 592
10.5.3 THE RICHEST (N,D)-CODES 597 10.5.4 SOME APPLICATIONS 602
REFERENCES FOR CHAPTER 10 605 11 EXISTENCE PROBLEMS IN GRAPH THEORY 609
11.1 DEPTH-FIRST SEARCH: A TEST FOR CONNECTEDNESS 610 11.1.1 DEPTH-FIRST
SEARCH 610 11.1.2 THE COMPUTATIONAL COMPLEXITY OF DEPTH-FIRST SEARCH
.... 612 11.1.3 A FORMAL STATEMENT OF THE ALGORITHM 612 11.1.4 TESTING
FOR CONNECTEDNESS OF TRULY MASSIVE GRAPHS 613 11.2 THE ONE-WAY STREET
PROBLEM 616 11.2.1 ROBBINS THEOREM 616 11.2.2 A DEPTH-FIRST SEARCH
ALGORITHM 619 *11.2.3 EFFICIENT ONE-WAY STREET ASSIGNMENTS 621 11.2.4
EFFICIENT ONE-WAY STREET ASSIGNMENTS FOR GRIDS 623 11.2.5 ANNULAR CITIES
AND COMMUNICATIONS IN INTERCONNECTION NETWORKS 625 11.3 EULERIAN CHAINS
AND PATHS 632 11.3.1 THE KOENIGSBERG BRIDGE PROBLEM 632 11.3.2 AN
ALGORITHM FOR FINDING AN EULERIAN CLOSED CHAIN 633 11.3.3 FURTHER
RESULTS ABOUT EULERIAN CHAINS AND PATHS 635 11.4 APPLICATIONS OF
EULERIAN CHAINS AND PATHS 640 11.4.1 THE CHINESE POSTMAN PROBLEM 640
XIV CONTENTS 11.4.2 COMPUTER GRAPH PLOTTING 642 11.4.3 STREET SWEEPING
642 11.4.4 FINDING UNKNOWN RNA/DNA CHAINS 645 11.4.5 A CODING
APPLICATION 648 11.4.6 DE BRUIJN SEQUENCES AND TELECOMMUNICATIONS 650
11.5 HAMILTONIAN CHAINS AND PATHS 656 11.5.1 DEFINITIONS 656 11.5.2
SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A HAMILTONIAN CIRCUIT IN A
GRAPH 658 11.5.3 SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A
HAMILTONIAN CYCLE IN A DIGRAPH 660 11.6 APPLICATIONS OF HAMILTONIAN
CHAINS AND PATHS 666 11.6.1 TOURNAMENTS 666 11.6.2 TOPOLOGICAL SORTING
669 11.6.3 SCHEDULING PROBLEMS IN OPERATIONS RESEARCH 670 11.6.4
FACILITIES DESIGN 671 11.6.5 SEQUENCING BY HYBRIDIZATION 673 REFERENCES
FOR CHAPTER 11 678 PART IV COMBINATORIAL OPTIMIZATION 683 12 MATCHING
AND COVERING 683 12.1 SOME MATCHING PROBLEMS 683 12.2 SOME EXISTENCE
RESULTS: BIPARTITE MATCHING AND SYSTEMS OF DISTINCT REPRESENTATIVES 690
12.2.1 BIPARTITE MATCHING 690 12.2.2 SYSTEMS OF DISTINCT REPRESENTATIVES
692 12.3 THE EXISTENCE OF PERFECT MATCHINGS FOR ARBITRARY GRAPHS 699
12.4 MAXIMUM MATCHINGS AND MINIMUM COVERINGS 702 12.4.1 VERTEX COVERINGS
702 12.4.2 EDGE COVERINGS 704 12.5 FINDING A MAXIMUM MATCHING 706 12.5.1
M-AUGMENTING CHAINS 706 12.5.2 PROOF OF THEOREM 12.7 707 12.5.3 AN
ALGORITHM FOR FINDING A MAXIMUM MATCHING 709 12.6 MATCHING AS MANY
ELEMENTS OF X AS POSSIBLE 714 12.7 MAXIMUM-WEIGHT MATCHING 716 12.7.1
THE CHINESE POSTMAN PROBLEM REVISITED 717 12.7.2 AN ALGORITHM FOR THE
OPTIMAL ASSIGNMENT PROBLEM (MAXIMUM-WEIGHT MATCHING) 718 12.8 STABLE
MATCHINGS 724 12.8.1 GALE-SHAPLEY ALGORITHM 726 CONTENTS XV 12.8.2
NUMBERS OF STABLE MATCHINGS 727 12.8.3 STRUCTURE OF STABLE MATCHINGS 729
12.8.4 STABLE MARRIAGE EXTENSIONS 731 REFERENCES FOR CHAPTER 12 735 13
OPTIMIZATION PROBLEMS FOR GRAPHS AND NETWORKS 737 13.1 MINIMUM SPANNING
TREES 737 13.1.1 KRUSKAL S ALGORITHM 737 13.1.2 PROOF OF THEOREM 13.1
740 13.1.3 PRIM S ALGORITHM 741 13.2 THE SHORTEST ROUTE PROBLEM 745
13.2.1 THE PROBLEM 745 13.2.2 DIJKSTRA S ALGORITHM 748 13.2.3
APPLICATIONS TO SCHEDULING PROBLEMS 751 13.3 NETWORK FLOWS 757 13.3.1
THE MAXIMUM-FLOW PROBLEM 757 13.3.2 CUTS 760 13.3.3 A FAULTY MAX-FLOW
ALGORITHM 763 13.3.4 AUGMENTING CHAINS 764 13.3.5 THE MAX-FLOW ALGORITHM
768 13.3.6 A LABELING PROCEDURE FOR FINDING AUGMENTING CHAINS . . . .
770 13.3.7 COMPLEXITY OF THE MAX-FLOW ALGORITHM 772 13.3.8 MATCHING
REVISITED 773 13.3.9 MENGER S THEOREMS 776 13.4 MINIMUM-COST FLOW
PROBLEMS 785 13.4.1 SOME EXAMPLES 785 REFERENCES FOR CHAPTER 13 792
APPENDIX: ANSWERS TO SELECTED EXERCISES 797 AUTHOR INDEX 833 SUBJECT
INDEX 841
|
any_adam_object | 1 |
author | Roberts, Fred S. 1943- |
author_GND | (DE-588)13624419X |
author_facet | Roberts, Fred S. 1943- |
author_role | aut |
author_sort | Roberts, Fred S. 1943- |
author_variant | f s r fs fsr |
building | Verbundindex |
bvnumber | BV035689144 |
callnumber-first | Q - Science |
callnumber-label | QA164 |
callnumber-raw | QA164 |
callnumber-search | QA164 |
callnumber-sort | QA 3164 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 170 SK 890 |
classification_tum | MAT 050f |
ctrlnum | (OCoLC)429479492 (DE-599)BVBBV035689144 |
dewey-full | 511/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.6 |
dewey-search | 511/.6 |
dewey-sort | 3511 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01651nam a2200481zc 4500</leader><controlfield tag="001">BV035689144</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090925 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090821s2009 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009013043</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420099829</subfield><subfield code="c">hardcover : alk. paper</subfield><subfield code="9">978-1-4200-9982-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)429479492</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035689144</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA164</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">94C15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68E10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">90C10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roberts, Fred S.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13624419X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied combinatorics</subfield><subfield code="c">Fred Roberts ; Barry Tesman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 860 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse combinatoire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tesman, Barry</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017743248&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017743248</subfield></datafield></record></collection> |
id | DE-604.BV035689144 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:43:28Z |
institution | BVB |
isbn | 9781420099829 |
language | English |
lccn | 2009013043 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017743248 |
oclc_num | 429479492 |
open_access_boolean | |
owner | DE-634 DE-91G DE-BY-TUM DE-11 DE-83 |
owner_facet | DE-634 DE-91G DE-BY-TUM DE-11 DE-83 |
physical | XXVII, 860 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Chapman & Hall/CRC |
record_format | marc |
spelling | Roberts, Fred S. 1943- Verfasser (DE-588)13624419X aut Applied combinatorics Fred Roberts ; Barry Tesman 2. ed. Boca Raton [u.a.] Chapman & Hall/CRC 2009 XXVII, 860 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Analyse combinatoire Combinatorial analysis Kombinatorik (DE-588)4031824-2 gnd rswk-swf Kombinatorik (DE-588)4031824-2 s DE-604 Tesman, Barry Sonstige oth GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017743248&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Roberts, Fred S. 1943- Applied combinatorics Analyse combinatoire Combinatorial analysis Kombinatorik (DE-588)4031824-2 gnd |
subject_GND | (DE-588)4031824-2 |
title | Applied combinatorics |
title_auth | Applied combinatorics |
title_exact_search | Applied combinatorics |
title_full | Applied combinatorics Fred Roberts ; Barry Tesman |
title_fullStr | Applied combinatorics Fred Roberts ; Barry Tesman |
title_full_unstemmed | Applied combinatorics Fred Roberts ; Barry Tesman |
title_short | Applied combinatorics |
title_sort | applied combinatorics |
topic | Analyse combinatoire Combinatorial analysis Kombinatorik (DE-588)4031824-2 gnd |
topic_facet | Analyse combinatoire Combinatorial analysis Kombinatorik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017743248&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT robertsfreds appliedcombinatorics AT tesmanbarry appliedcombinatorics |