Infinite Regress Arguments:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Springer
2010
|
Schriftenreihe: | Argumentation Library
17 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 211 S. graph. Darst. |
ISBN: | 9789048133406 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035682311 | ||
003 | DE-604 | ||
005 | 20100323 | ||
007 | t | ||
008 | 090818s2010 gw d||| |||| 00||| eng d | ||
015 | |a 09,N30,0072 |2 dnb | ||
016 | 7 | |a 995196370 |2 DE-101 | |
020 | |a 9789048133406 |9 978-90-481-3340-6 | ||
024 | 3 | |a 9789048133406 | |
028 | 5 | 2 | |a 12644964 |
035 | |a (OCoLC)607109057 | ||
035 | |a (DE-599)DNB995196370 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29 |a DE-473 |a DE-19 | ||
050 | 0 | |a BC177 | |
082 | 0 | |a 160 |2 22 | |
084 | |a CC 4400 |0 (DE-625)17626: |2 rvk | ||
084 | |a ER 620 |0 (DE-625)27737: |2 rvk | ||
084 | |a 5,1 |2 ssgn | ||
084 | |a 100 |2 sdnb | ||
100 | 1 | |a Gratton, Claude |e Verfasser |4 aut | |
245 | 1 | 0 | |a Infinite Regress Arguments |c Claude Gratton |
264 | 1 | |a Dordrecht [u.a.] |b Springer |c 2010 | |
300 | |a XII, 211 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Argumentation Library |v 17 | |
650 | 4 | |a Infinite regress | |
650 | 4 | |a Judgment (Logic) | |
650 | 4 | |a Logic | |
650 | 4 | |a Reasoning | |
650 | 0 | 7 | |a Infinitäre Logik |0 (DE-588)4161654-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erkenntnistheorie |0 (DE-588)4070914-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Argument |0 (DE-588)4273545-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Argument |0 (DE-588)4273545-2 |D s |
689 | 0 | 1 | |a Erkenntnistheorie |0 (DE-588)4070914-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Infinitäre Logik |0 (DE-588)4161654-6 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Argumentation Library |v 17 |w (DE-604)BV012739610 |9 17 | |
856 | 4 | 2 | |m Digitalisierung UB Erlangen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017736563&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017736563 |
Datensatz im Suchindex
_version_ | 1804139389580738560 |
---|---|
adam_text | CONTENTS 1 WHAT IS AN INFINITE REGRESS ARGUMENT? I 1.1 THE GENERAL
STRUCTURE OF INFINITE REGRESS ARGUMENTS I 1.2 BOUNDARIES OF AN INFINITE
REGRESS ARGUMENT . . . . . 5 1.2.1 BOUNDARIES WHEN AN INFINITE REGRESS
IS VICIOUS 6 1.2.2 BOUNDARIES WHEN AN INFINITE REGRESS IS BENIGN 9 1.3 A
HYPOTHESIS ABOUT THE NATURE OF INFINITE REGRESSES . 12 1.4 TESTING
HYPOTHESIS H . . . . . . . . . . . . . . . . . . 18 1.5 TESTING
HYPOTHESIS H WITH NONCONCATENATING REGRESSES. 21 1.6 POTENTIALLY
INFINITE AND ACTUALLY INFINITE REGRESSES. 25 1.7 THE NECESSARY QUANTITY
OFTERMS AND RELATIONS. . 28 1.8 APPLICATIONS OF HYPOTHESIS H TO VARIOUS
EXAMPLES 31 1.8.1 PLATO S COUCH . . . . . . . . . 31 1.8.2 TEACHERS
TAUGHT BY TEACHERS . 32 1.8.3 GODS GIVING MEANING TO GODS 33 1.8.4 MAPS
OF MAPS . . . . . . . . . 35 1.8.5 LEWIS CARROLL S WHAT THE TORTOISE
SAID TO ACHILLES 38 1.9 LOGICAL FUNCTIONS OF INFINITE REGRESSES. 44
1.9.1 BENIGN REGRESSES . . . . 45 1.9.2 SUPERFLUOUS REGRESSES ..... 49
1.10 COGENCY AND BENIGN REGRESSES. . . . . 52 2 THE FORMAL AND NONFORMAL
LOGIC OF INFINITE CONCATENATING REGRESSES 57 2.1 RECURRING TERMS, LOOPS,
AND REGRESS FORMULAS . . . . . 57 2.2 THE RELATION OF TERMS AND OBJECTS
OF AN INFINITE REGRESS . . . 63 2.3
APPLICATIONS........................... 64 2.4 RECURRING TERMS, LOOPS,
AND INFINITE CONCATENATING REGRESSES 68 2.5 RELATIONS AND LOOPS. . . . .
. . . . . . . . . . 72 2.6 BLOCKING ALL POSSIBLE LOOPS . . . . . . . . .
. 75 2.7 ARE IRREFLEXIVITY, OR ASYNIMETRY OR TRANSITIVITY NECESSARY TO
BLOCK LOOPS? . . . . . . . . . . . 78 2.8 CONCATENATING RELATIONS IN
REGRESS FORMULAS . 81 2.9 DIRECTIONS OF INFINITE CONCATENATING
REGRESSES. 82 2.9.1 THE IMPORTANCE OF THE DIRECTION OF AN INFINITE
REGRESS 83 VII VIII CONTENTS 2.9.2 THE FORMAL DIRECTION OF AN INFINITE
REGRESS . 2.9.3 THE SEMANTIC DIRECTION OF AN INFINITE REGRESS 2.10
NON-FORMAL CONSIDERATIONS IN REGRESS FORMULAS . . 2.10.1 RELATIONS AND
THEIR IMPLICATIONS . . . . . . . 2.10.2 UNSTATED PROPERTIES OF RELATIONS
AND TERMS . 2.10.3 STATED PROPERTIES OF OBJECTS OR CONDITIONS IN A
REGRESS FORMULA . 2.10.4 UNSTATED PROPERTIES OF OBJECTS DESIGNATED BY
TERMS. 2.11 SUMMARY . 2.12 EVALUATIVE QUESTIONS . . . . . . . . . . . 3
VICIOUSNESS................... 3.1 ARE THERE INHERENTLY VICIOUS
REGRESSES? . 3.2 CLARK ON VICIOUSNESS . . . . . . . 3.3 JOHNSTONE AND
VICIOUSNESS . 3.4 UNCOMPLETABILITY AND VICIOUSNESS . 3.5 OCCAM S RAZOR:
ONTOLOGICAL EXTRAVAGANCE 3.6 BLOCKING VICIOUS INFINITE REGRESSES 3.6.1
HUME . . . . . . . . . 3.6.2 MILLER . . . . . . . . . . . . 3.6.3
LAURENCE AND MARGOLIS . . . 3.6.4 THE GENERAL FORM OF THE ARGUMENT FOR
BLOCKING REGRESSES 4 CIRCULAR DEFINITIONS, CIRCULAR EXPLANATIONS, AND
INFINITE REGRESSES . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 A FORMAL DERIVATION OF INFINITE REGRESSES FROM CIRCULAR DEFINITIONS
4.2 INFINITELY MANY INFINITE REGRESSES .. 4.3 SEMANTIC CONSIDERATIONS .
. . . . . . . . . . . . . . . . . 4.4 REGRESSES INDEPENDENT OF
CIRCULARITY . . . . . . . . . . . . 4.5 THE VICIOUSNESS OF INFINITE
REGRESSES ENTAILED BY CIRCULAR DEFINITIONS. . . . . . . . . . . . . . .
. . . . . . . . . . . 4.6 THE DERIVATION OF INFINITE REGRESSES FROM
CIRCULAR EXPLANATIONS 5 INFINITE REGRESSESAND RECURRING QUESTIONS . 5.1
RECURRING QUESTIONS AND THE DERIVATION OF INFINITE REGRESSES. . . . . .
. . . . . . 5.2 RECURRING QUESTIONS AND VICIOUS REGRESSES 6 INFINITE
REGRESSES 01 RECURRING PROBLEMS AND RESPONSES 6.1 PLATO S AVIARY IN THE
THEATETUS .. 6.2 MCTAGGART S DISCONTINUAL REGRESS 6.3 MACKIE S
DISCONTINUAL REGRESS .. 6.4 ARMSTRONG S CONTINUAL REGRESS . . 6.5 A
CONTINUAL REGRESS IN DEFENSE OF CANTOR S DIAGONAL METHOD 6.6 LEHRER S
REGRESS OF RECURRING POSSIBLE PROBLEMS AND POSSIBLE RESPONSES 6.7
EVALUATIVE QUESTIONS . 84 86 87 88 89 90 91 98 99 101 102 105 107 111
116 119 120 123 125 127 131 132 134 135 138 139 142 147 149 153 159 161
163 167 172 178 182 188 CONTENTS IX APPENDIXA. 193 APPENDIX B . 195
GLOSSARY 197 REFERENCES 203 INDEX ... 209
|
any_adam_object | 1 |
author | Gratton, Claude |
author_facet | Gratton, Claude |
author_role | aut |
author_sort | Gratton, Claude |
author_variant | c g cg |
building | Verbundindex |
bvnumber | BV035682311 |
callnumber-first | B - Philosophy, Psychology, Religion |
callnumber-label | BC177 |
callnumber-raw | BC177 |
callnumber-search | BC177 |
callnumber-sort | BC 3177 |
callnumber-subject | BC - Logic |
classification_rvk | CC 4400 ER 620 |
ctrlnum | (OCoLC)607109057 (DE-599)DNB995196370 |
dewey-full | 160 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 160 - Philosophical logic |
dewey-raw | 160 |
dewey-search | 160 |
dewey-sort | 3160 |
dewey-tens | 160 - Philosophical logic |
discipline | Sprachwissenschaft Philosophie Literaturwissenschaft |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01935nam a2200565 cb4500</leader><controlfield tag="001">BV035682311</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100323 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090818s2010 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N30,0072</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">995196370</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048133406</subfield><subfield code="9">978-90-481-3340-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9789048133406</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12644964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)607109057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB995196370</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BC177</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">160</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 4400</subfield><subfield code="0">(DE-625)17626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ER 620</subfield><subfield code="0">(DE-625)27737:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">100</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gratton, Claude</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite Regress Arguments</subfield><subfield code="c">Claude Gratton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 211 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Argumentation Library</subfield><subfield code="v">17</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite regress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Judgment (Logic)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reasoning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitäre Logik</subfield><subfield code="0">(DE-588)4161654-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erkenntnistheorie</subfield><subfield code="0">(DE-588)4070914-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Argument</subfield><subfield code="0">(DE-588)4273545-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Argument</subfield><subfield code="0">(DE-588)4273545-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Erkenntnistheorie</subfield><subfield code="0">(DE-588)4070914-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Infinitäre Logik</subfield><subfield code="0">(DE-588)4161654-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Argumentation Library</subfield><subfield code="v">17</subfield><subfield code="w">(DE-604)BV012739610</subfield><subfield code="9">17</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Erlangen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017736563&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017736563</subfield></datafield></record></collection> |
id | DE-604.BV035682311 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:43:19Z |
institution | BVB |
isbn | 9789048133406 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017736563 |
oclc_num | 607109057 |
open_access_boolean | |
owner | DE-29 DE-473 DE-BY-UBG DE-19 DE-BY-UBM |
owner_facet | DE-29 DE-473 DE-BY-UBG DE-19 DE-BY-UBM |
physical | XII, 211 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Springer |
record_format | marc |
series | Argumentation Library |
series2 | Argumentation Library |
spelling | Gratton, Claude Verfasser aut Infinite Regress Arguments Claude Gratton Dordrecht [u.a.] Springer 2010 XII, 211 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Argumentation Library 17 Infinite regress Judgment (Logic) Logic Reasoning Infinitäre Logik (DE-588)4161654-6 gnd rswk-swf Erkenntnistheorie (DE-588)4070914-0 gnd rswk-swf Argument (DE-588)4273545-2 gnd rswk-swf Argument (DE-588)4273545-2 s Erkenntnistheorie (DE-588)4070914-0 s DE-604 Infinitäre Logik (DE-588)4161654-6 s Argumentation Library 17 (DE-604)BV012739610 17 Digitalisierung UB Erlangen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017736563&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gratton, Claude Infinite Regress Arguments Argumentation Library Infinite regress Judgment (Logic) Logic Reasoning Infinitäre Logik (DE-588)4161654-6 gnd Erkenntnistheorie (DE-588)4070914-0 gnd Argument (DE-588)4273545-2 gnd |
subject_GND | (DE-588)4161654-6 (DE-588)4070914-0 (DE-588)4273545-2 |
title | Infinite Regress Arguments |
title_auth | Infinite Regress Arguments |
title_exact_search | Infinite Regress Arguments |
title_full | Infinite Regress Arguments Claude Gratton |
title_fullStr | Infinite Regress Arguments Claude Gratton |
title_full_unstemmed | Infinite Regress Arguments Claude Gratton |
title_short | Infinite Regress Arguments |
title_sort | infinite regress arguments |
topic | Infinite regress Judgment (Logic) Logic Reasoning Infinitäre Logik (DE-588)4161654-6 gnd Erkenntnistheorie (DE-588)4070914-0 gnd Argument (DE-588)4273545-2 gnd |
topic_facet | Infinite regress Judgment (Logic) Logic Reasoning Infinitäre Logik Erkenntnistheorie Argument |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017736563&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV012739610 |
work_keys_str_mv | AT grattonclaude infiniteregressarguments |