Families of conformally covariant differential operators, Q-curvature and holography:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel ; Boston ; Berlin
Birkhäuser
2009
|
Schriftenreihe: | Progress in mathematics
Volume 275 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBM01 UBT01 UER01 UPA01 Volltext Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 469-484 |
Beschreibung: | 1 Online-Ressource (xiii, 488 Seiten) |
ISBN: | 9783764399009 |
DOI: | 10.1007/978-3-7643-9900-9 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV035677522 | ||
003 | DE-604 | ||
005 | 20230321 | ||
007 | cr|uuu---uuuuu | ||
008 | 090813s2009 |||| o||u| ||||||eng d | ||
020 | |a 9783764399009 |c Online |9 978-3-7643-9900-9 | ||
024 | 7 | |a 10.1007/978-3-7643-9900-9 |2 doi | |
035 | |a (ZDB-2-SMA)978-3-7643-9899-6 | ||
035 | |a (OCoLC)699071029 | ||
035 | |a (DE-599)DNB991266161 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-703 |a DE-29 |a DE-91 |a DE-19 |a DE-384 |a DE-83 |a DE-739 | ||
082 | 0 | |a 516.36 |2 22/ger | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Juhl, Andreas |e Verfasser |0 (DE-588)1245944657 |4 aut | |
245 | 1 | 0 | |a Families of conformally covariant differential operators, Q-curvature and holography |c Andreas Juhl |
264 | 1 | |a Basel ; Boston ; Berlin |b Birkhäuser |c 2009 | |
300 | |a 1 Online-Ressource (xiii, 488 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v Volume 275 | |
500 | |a Literaturverz. S. 469-484 | ||
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Krümmung |0 (DE-588)4128765-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | 2 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 0 | 3 | |a Krümmung |0 (DE-588)4128765-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-7643-9899-6 |
830 | 0 | |a Progress in mathematics |v Volume 275 |w (DE-604)BV035421267 |9 275 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7643-9900-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017731836&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-017731836 | ||
966 | e | |u https://doi.org/10.1007/978-3-7643-9900-9 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9900-9 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9900-9 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9900-9 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9900-9 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9900-9 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9900-9 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804139384774066176 |
---|---|
adam_text | CONTENTS PRESSICE IX 1 INTRODUCTION 1.1 HYPERBOLIC GEOMETRY AND CONFORMAL
DYNAMICS 2 1.2 AUTOMORPHIC DISTRIBUTIONS AND INTERTWINING FAMILIES 6 1.3
ASYMPTOTICALLY HYPERBOLIC EINSTEIN METRICS. CONFORMALLY COVARIANT POWERS
OF THE LAPLACIAN 9 1.4 INTERTWINING FAMILIES 11 1.5 THE RESIDUE METHOD
FOR THE HEMISPHERE 17 1.6 Q-CURVATURE, HOLOGRAPHY AND RESIDUE FAMILIES
20 1.7 FACTORIZATION OF RESIDUE FAMILIES. RECURSIVE RELATIONS 32 1.8
FAMILIES OF CONFORMALLY COVARIANT DIFFERENTIAL OPERATORS 42 1.9 CURVED
TRANSLATION AND TRACTOR FAMILIES 46 1.10 HOLOGRAPHIE DUALITY. EXTRINSIC
Q-CURVATURE. ODD ORDER Q-CURVATURE 50 1.11 REVIEW OF THE CONTENTS 55
1.12 SOME FURTHER PERSPECTIVES 58 2 SPACES, ACTIONS, REPRESENTATIONS AND
CURVATURE 2.1 LIE GROUPS, LIE ALGEBRAS, SPACES AND ACTIONS 63 2.2
STEREOGRAPHIC PROJEETION 67 2.3 POISSON TRANSFORMATIONS AND SPHERICAL
PRINEIPAL SERIES 71 2.4 THE NAYATANI METRIC 81 2.5 RIEMANNIAN CURVATURE
AND CONFORMAL CHANGE 82 3 CONFORMALLY COVARIANT POWERS OF THE LAPLACIAN,
Q-CURVATURE AND SCATTERING THEORY 3.1 GJMS-OPERATORS AND Q-CURVATURE 87
3.2 SCATTERING THEORY 91 BIBLIOGRAFISCHE INFORMATIONEN
HTTP://D-NB.INFO/991266161 DIGITALISIERT DURCH CONTENTS PANEITZ OPERATOR
AND PANEITZ CURVATURE 4.1 P , QI AND THEIR TRANSFORMATION PROPERTIES 106
4.2 THE FUNDAMENTAL IDENTITY FOR THE PANEITZ CURVATURE 108 4.3 QI AND W
4 114 INTERTWINING FAMILIES 5.1 THE ALGEBRAIC THEORY 117 5.1.1 EVEN
ORDER FAMILIES X 2 JV(A) 117 5.1.2 ODD ORDER FAMILIES E 2 JV+I(A) 127
5.1.3 PJV(A) AS HOMOMORPHISM OF VERMA MODULES 129 5.2 INDUCED FAMILIES
131 5.2.1 INDUCTION 131 5.2.2 EVEN ORDER FAMILIES: D%%( ) AND D% N { )
139 5.2.3 ODD ORDER FAMILIES: D%FR +L { ) AND D% N+1 ( ) 148 5.2.4
EIGENFUNCTIONS OF AH» AND THE FAMILIES D^A) 154 5.3 SOME LOW ORDER
EXAMPLES 161 5.4 FAMILIES FOR (R N ,S N - 1 ) 165 5.4.1 THE FAMILIES D
BN (X) 165 5.4.2 D (A), CONTENTS VII 6.18 ZUCKERMAN TRANSLATION AND
PJV(A) 360 6.19 FROM VERMA MODULES TO TRACTORS 381 6.20 SOME ELEMENTS OF
TRACTOR CALCULUS 388 6.21 THE TRACTOR FAMILIES DJ,(M, ; G; A) 403 6.22
SOME RESULTS ON TRACTOR FAMILIES 418 6.23 J AND FIALKOW S FUNDAMENTAL
FORMS 445 6.24 D 2 (G;A) AS A TRACTOR FAMILY 450 6.25 THE FAMILY
DF(M,S;G;A) 455 6.26 THEPAIR(F 3 , 3 3 ) 463 BIBLIOGRAPHY 469 INDEX 485
|
any_adam_object | 1 |
author | Juhl, Andreas |
author_GND | (DE-588)1245944657 |
author_facet | Juhl, Andreas |
author_role | aut |
author_sort | Juhl, Andreas |
author_variant | a j aj |
building | Verbundindex |
bvnumber | BV035677522 |
classification_rvk | SK 620 SK 370 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)978-3-7643-9899-6 (OCoLC)699071029 (DE-599)DNB991266161 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-7643-9900-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02911nmm a2200601 cb4500</leader><controlfield tag="001">BV035677522</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230321 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">090813s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764399009</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-7643-9900-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7643-9900-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-3-7643-9899-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699071029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB991266161</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Juhl, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1245944657</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Families of conformally covariant differential operators, Q-curvature and holography</subfield><subfield code="c">Andreas Juhl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel ; Boston ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 488 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">Volume 275</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 469-484</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Krümmung</subfield><subfield code="0">(DE-588)4128765-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Krümmung</subfield><subfield code="0">(DE-588)4128765-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-7643-9899-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">Volume 275</subfield><subfield code="w">(DE-604)BV035421267</subfield><subfield code="9">275</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7643-9900-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017731836&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017731836</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9900-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9900-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9900-9</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9900-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9900-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9900-9</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9900-9</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV035677522 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:43:06Z |
institution | BVB |
isbn | 9783764399009 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017731836 |
oclc_num | 699071029 |
open_access_boolean | |
owner | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-83 DE-739 |
owner_facet | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-384 DE-83 DE-739 |
physical | 1 Online-Ressource (xiii, 488 Seiten) |
psigel | ZDB-2-SMA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Juhl, Andreas Verfasser (DE-588)1245944657 aut Families of conformally covariant differential operators, Q-curvature and holography Andreas Juhl Basel ; Boston ; Berlin Birkhäuser 2009 1 Online-Ressource (xiii, 488 Seiten) txt rdacontent c rdamedia cr rdacarrier Progress in mathematics Volume 275 Literaturverz. S. 469-484 Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Krümmung (DE-588)4128765-4 gnd rswk-swf Differentialoperator (DE-588)4012251-7 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Riemannscher Raum (DE-588)4128295-4 s Differentialoperator (DE-588)4012251-7 s Krümmung (DE-588)4128765-4 s DE-604 Erscheint auch als Druck-Ausgabe 978-3-7643-9899-6 Progress in mathematics Volume 275 (DE-604)BV035421267 275 https://doi.org/10.1007/978-3-7643-9900-9 Verlag URL des Erstveröffentlichers Volltext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017731836&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Juhl, Andreas Families of conformally covariant differential operators, Q-curvature and holography Progress in mathematics Riemannscher Raum (DE-588)4128295-4 gnd Differentialgeometrie (DE-588)4012248-7 gnd Krümmung (DE-588)4128765-4 gnd Differentialoperator (DE-588)4012251-7 gnd |
subject_GND | (DE-588)4128295-4 (DE-588)4012248-7 (DE-588)4128765-4 (DE-588)4012251-7 |
title | Families of conformally covariant differential operators, Q-curvature and holography |
title_auth | Families of conformally covariant differential operators, Q-curvature and holography |
title_exact_search | Families of conformally covariant differential operators, Q-curvature and holography |
title_full | Families of conformally covariant differential operators, Q-curvature and holography Andreas Juhl |
title_fullStr | Families of conformally covariant differential operators, Q-curvature and holography Andreas Juhl |
title_full_unstemmed | Families of conformally covariant differential operators, Q-curvature and holography Andreas Juhl |
title_short | Families of conformally covariant differential operators, Q-curvature and holography |
title_sort | families of conformally covariant differential operators q curvature and holography |
topic | Riemannscher Raum (DE-588)4128295-4 gnd Differentialgeometrie (DE-588)4012248-7 gnd Krümmung (DE-588)4128765-4 gnd Differentialoperator (DE-588)4012251-7 gnd |
topic_facet | Riemannscher Raum Differentialgeometrie Krümmung Differentialoperator |
url | https://doi.org/10.1007/978-3-7643-9900-9 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017731836&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035421267 |
work_keys_str_mv | AT juhlandreas familiesofconformallycovariantdifferentialoperatorsqcurvatureandholography |