Wireless sensor networks: a networking perspective
This book introduces to researchers, students, and practitioners the fundamental concepts, major issues, and state-of-the-art solutions in the networking wireless sensors, including topology control, time synchronization and node localization.
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley [u.a.]
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | This book introduces to researchers, students, and practitioners the fundamental concepts, major issues, and state-of-the-art solutions in the networking wireless sensors, including topology control, time synchronization and node localization. |
Beschreibung: | XXIX, 489 S. Ill., graph. Darst. |
ISBN: | 9780470167632 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035676233 | ||
003 | DE-604 | ||
005 | 20091120 | ||
007 | t | ||
008 | 090813s2009 ad|| |||| 00||| eng d | ||
015 | |a GBA937260 |2 dnb | ||
020 | |a 9780470167632 |c (hbk.) : £59.50 |9 978-0-470-16763-2 | ||
035 | |a (OCoLC)318674171 | ||
035 | |a (DE-599)HBZHT015914822 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-473 |a DE-11 | ||
050 | 0 | |a TK7872.D48 | |
082 | 0 | |a 004.68 |2 22 | |
084 | |a ST 200 |0 (DE-625)143611: |2 rvk | ||
245 | 1 | 0 | |a Wireless sensor networks |b a networking perspective |c ed. by Jun Zheng ... |
264 | 1 | |a Hoboken, NJ |b Wiley [u.a.] |c 2009 | |
300 | |a XXIX, 489 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a This book introduces to researchers, students, and practitioners the fundamental concepts, major issues, and state-of-the-art solutions in the networking wireless sensors, including topology control, time synchronization and node localization. | ||
650 | 7 | |a Réseaux de capteurs (technologie) |2 ram | |
650 | 7 | |a Systèmes de communication sans fil |2 ram | |
650 | 4 | |a Wireless sensor networks | |
650 | 0 | 7 | |a Drahtloses Sensorsystem |0 (DE-588)4789222-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Drahtloses Sensorsystem |0 (DE-588)4789222-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zheng, Jun |c Ph.D |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017730562&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017730562 |
Datensatz im Suchindex
_version_ | 1804139374700396544 |
---|---|
adam_text | CONTENTS
Preface
xxiii
Acknowledgments
xxv
About the Editors
xxvii
Contributors
xxix
1.
INTRODUCTION TO WIRELESS SENSOR NETWORKS
1
Jun
Zheng and Abbas Jamalipour
1.1
Overview of Wireless Sensor Networks
1
1.1.1
Network Characteristics
2
1.1.2
Network Applications
3
1.1.2.1
Environmental Monitoring
3
1.1.2.2
Military Applications
4
1.1.2.3
Health Care Applications
4
1.1.2.4
Industrial Process Control
5
1.1.2.5
Security and Surveillance
5
1.1.2.6
Home Intelligence
5
1.1.3
Network Design Objectives
6
1.1.4
Network Design Challenges
7
1.2
Technological Background
8
1.2.1
MEMS Technology
9
1.2.2
Wireless Communication Technology
9
1.2.3
Hardware and Software Platforms
10
1.2.3.1
Hardware Platforms
11
1.2.3.2
Software Platforms
11
1.2.4
Wireless Sensor Network Standards
12
1.2.4.1
The IEEE
802.15.4
Standard
12
1.2.4.2
The ZigBee Standard
13
1.2.4.3
The IEEE
1451
Standard
13
vii
V¡¡¡
CONTENTS
1.3
Features of This Book
15
1.4
Organization of This Book
15
References
16
2.
NETWORK ARCHITECTURES AND PROTOCOL STACK
19
Jun
Zheng
2.1
Introduction
19
2.2
Network Architectures for Wireless Sensor Networks
20
2.2.1
Sensor Node Structure
20
2.2.2
Network Architectures
21
2.2.2.1
Flat Architecture
22
2.2.2.2
Hierarchical Architecture
22
2.3
Classifications of Wireless Sensor Networks
24
2.4
Protocol Stack for Wireless Sensor Networks
26
2.4.1
Application Layer
28
2.4.2
Transport Layer
28
2.4.3
Network Layer
29
2.4.4
Data Link Layer
29
2.4.5
Physical Layer
30
2.5
Summary
31
References
31
3.
MEDIUM ACCESS CONTROL
35
Jun
Zheng
3.1
Introduction
35
3.2
Fundamental MAC Protocols
36
3.2.1
Contention-Based MAC Protocols
36
3.2.2
Contention-Free MAC Protocols
38
3.3
MAC Design for Wireless Sensor Networks
39
3.3.1
Network Characteristics
39
3.3.2
Objectives of MAC Design
40
3.3.3
Energy Efficiency in MAC Design
41
3.4
MAC Protocols for Wireless Sensor Networks
42
3.4.1
Contention-Based Protocols
42
3.4.1.1
S-MAC
43
3.4.1.2
DS-MAC
46
3.4.1.3
MS-MAC
46
3.4.1.4
D-MAC
47
3.4.1.5
Sift
49
CONTENTS
IX
3.4.1.6
T-MAC
50
3.4.1.7
WiseMAC
51
3.4.1.8
CSMA Based MAC with Adaptive
Rate Control
52
3.4.2
Contention-Free Protocols
53
3.4.2.1
Traffic-Adaptive Medium Access
53
3.4.2.2
Self-Organizing Medium Access Control
55
3.4.2.3
Distributed Energy-Aware MAC
55
3.4.2.4
Implicit Prioritized MAC
56
3.4.2.5
Contention-Free Scheduling TDMA MAC
57
3.4.2.6
CDMA Sensor MAC
57
3.4.3
Hybrid
:
Protocols
58
3.4.3.1
Spatial TDMA and CSMA Preamble
Sampling
59
3.4.3.2
Z-MAC
59
3.4.3.3
Funneling-MAC
60
3.5
Summary and Future Directions
61
References
62
4.
ROUTING AND DATA DISSEMINATION
67
Sajal K. Das and
Habib M.
Ammari
4.1
Introduction
67
4.2
Fundamentals and Challenges
68
4.2.1
Fundamentals
68
4.2.1.1
Terminology
68
4.2.1.2
Energy Model
70
4.2.2
Challenges
71
4.2.2.1
Sensor Characteristics
71
4.2.2.2
Field Nature
71
4.2.2.3
Network Characteristics
72
4.2.2.4
Sensing Application Requirements
72
4.3
Taxonomy of Routing and Data Dissemination Protocols
73
4.3.1
Location Information
74
4.3.2
Network Layering and In-Network Processing
74
4.3.3
Data Centricity
75
4.3.4
Path Redundancy
75
4.3.5
Network Dynamics
76
4.3.6
Quality of Service Requirements
76
4.3.7
Network Heterogeneity
77
CONTENTS
4.4
Overview of Routing and Data Dissemination Protocols
77
4.4.1
Location-Aided Protocols
78
4.4.1.1
Geographic Adaptive Fidelity
78
4.4.1.2
Geographic and Energy-Aware Routing
80
4.4.1.3
Coordination of Power Saving with
Routing
81
4.4.1.4
Trajectory-Based Forwarding
82
4.4.1.5
Bounded Voronoi Greedy Forwarding
83
4.4.1.6
Geographic Random Forwarding
83
4.4.1.7
Minimum Energy Communication
Network
84
4.4.1.8
Small Minimum-Energy
Communication Network
87
4.4.2
Layered and In-Network Processing-Based
Protocols
87
4.4.2.1
Low-Energy Adaptive Clustering
Hierarchy
88
4.4.2.2
Power-Efficient Gathering in Sensor
Information Systems
89
4.4.2.3
Threshold Sensitive Energy Efficient
Sensor Network Protocol
90
4.4.2.4
Adaptive Periodic TEEN
92
4.4.3
Data-Centric Protocols
93
4.4.3.1
Sensor Protocols for Information
via Negotiation
93
4.4.3.2
Directed Diffusion
95
4.4.3.3
Rumor Routing
98
4.4.3.4
The Cougar Approach
98
4.4.3.5
Active Query Forwarding
100
4.4.3.6
Energy-Aware Data-Centric Routing
101
4.4.3.7
Information-Directed Routing
103
4.4.3.8
Quorum-Based Information
Dissemination
107
4.4.3.9
Home Agent-Based Information
Dissemination
108
4.4.4
Multipath-Based Protocols
109
4.4.4.1
Disjoint Paths
109
4.4.4.2
Braided Paths
110
4.4.4.3
N-to-1 Multipath Discovery
110
CONTENTS
XI
4.4.5
Mobility-Based Protocols
113
4.4.5.1
Joint Mobility and Routing Protocol
113
4.4.5.2
Data MULES Based Protocol
114
4.4.5.3
Two-Tier Data Dissemination
115
4.4.5.4
Scalable Energy-Efficient Asynchronous
Dissemination
117
4.4.5.5
Dynamic Proxy Tree-Based Data
Dissemination
121
4.4.6
QoS Based Protocols
123
4.4.6.1
Trade-Off between Energy Savings and
Delay
124
4.4.6.2
Trade-Off between Energy Savings and
Robustness
125
4.4.6.3
Trade-Off between Traffic Overhead and
Reliability
127
4.4.7
Heterogeneity-Based Protocols
129
4.4.7.1
Benefits of Heterogeneity in
Wireless Sensor Networks
129
4.4.7.2
Information-Driven Sensor Query
131
4.4.7.3
Constrained
Anisotropie
Diffusion Routing
132
4.4.7.4
Cluster-Head Relay Routing
134
4.4.8
Comparisons
136
4.5
Summary and Future Directions
137
References
139
5.
BROADCASTING, MULTICASTING, AND GEOCASTING
145
Baoxian Zhang and Guoliang Xue
5.1
Introduction
145
5.2
Concepts and Major Challenges
146
5.2.1
Basic Concepts
146
5.2.2
Design Guidelines and Challenges
147
5.3
Broadcasting Mechanisms
149
5.3.1
Simple Broadcasting Mechanisms
149
5.3.1.1
Blind Broadcast
149
5.3.1.2
Probability-Based Broadcast
149
5.3.1.3
Distance-Based Broadcast
150
5.3.1.4
Area-Based Broadcast
150
5.3.1.5
Counter-Based Broadcast
150
XU CONTENTS
5.3.2
Neighborhood-Aware Broadcasting Mechanisms
150
5.3.2.1
Neighbor Elimination Strategy
151
5.3.2.2
Connected-Dominating-Set-Based
Broadcasting Strategy
151
5.3.2.3
Cluster-Based Broadcasting Strategy
152
5.3.3
Location-Aided Broadcasting Mechanisms
153
5.3.3.1
Integrated Distance and Angle-Based
Broadcast
153
5.3.3.2
Geographic Adaptive Fidelity
153
5.3.3.3
Grid-Based Routing Structure
154
5.3.4
Energy-Efficient Broadcasting Mechanisms
156
5.3.4.1
Broadcast Incremental Power
156
5.3.4.2
Near-Maximum Lifetime Broadcast
157
5.3.4.3
Min
-Нор
Maximum Residual
Energy Broadcast
157
5.3.4.4
Localized Power-Efficient Broadcast
158
5.3.5
Reliable Broadcasting Mechanisms
158
5.3.5.1
Recursive Reliable Unicast
159
5.3.5.2
Most Reliable Spanning Tree
159
5.3.5.3
Integrated Round-Robin Reliable
Unicast and Promiscuous Listening
159
5.3.5.4
Broadcast with Selective
Acknowledgments and Double Coverage
160
5.3.5.5
TDMA Based Broadcast
160
5.4
Multicasting Mechanisms
160
5.4.1
Tree-Based Multicasting Mechanisms
161
5.4.1.1
Multicast-Enabled Ad Hoc On-Demand
Distance Vector Routing
161
5.4.1.2
Centralized Power-Aware Multicast
162
5.4.1.3
Localized Power-Aware Multicast
162
5.4.2
Location-Based Multicasting Mechanisms
162
5.4.2.1
Scalable Energy-Efficient Asynchronous
Dissemination
163
5.4.2.2
Geographic Multicast Routing
163
5.4.2.3
Two-Tier Data Dissemination
163
5.5
Geocasting
Mechanisms
164
5.5.1
Nonguaranteed
Geocasting
Mechanisms
164
5.5.1.1
Unicast Routing with Area Delivery
164
5.5.1.2
Directed-Flooding-Based
Geocasting
165
5.5.1.3
Performance Comparison
165
CONTENTS
ХІІІ
5.5.2
Guaranteed
Geocasting
Mechanisms
166
5.5.2.1
Simple Flooding
166
5.5.2.2
Geocasting via
Efficient Broadcasting
166
5.5.2.3
Geocasting via
Face Routing
166
5.6
Summary and Future Directions
167
Acknowledgments
168
References
169
6.
NODE CLUSTERING
173
Chao
Zhang, Edwin
Hou,
and
Nirwan Ansari
6.1
Introduction
173
6.1.1
Wireless Sensor Network Architectures
174
6.1.1.1
Homogenous Sensor Networks
174
6.1.1.2
Heterogeneous Sensor Networks
176
6.1.1.3
Hybrid Sensor Networks
176
6.1.2
Node Clustering Structures
178
6.1.2.1
Regularly Placed Nodes Deployment
179
6.1.2.2
Randomly Distributed Nodes Deployment
179
6.2
Node Clustering Algorithms
180
6.2.1
Cluster-Head Election Algorithms
181
6.2.1.1
Lowest ID Clustering Algorithm
181
6.2.1.2
Highest Connectivity Clustering Algorithm
182
6.2.1.3
Least Cluster Change Algorithm
182
6.2.1.4
Weighted Clustering Algorithm
183
6.2.2
Node Clustering Algorithms in Ad Hoc Networks
183
6.2.2.1
Linked Cluster Algorithm
184
6.2.2.2
Max-Min D-Clustering
Algorithm
185
6.2.2.3
Mobility-Based Clustering Algorithm
187
6.3
Node Clustering Algorithms for Wireless Sensor Networks
188
6.3.1
Specialties for Clustering in Wireless Sensor
Networks
188
6.3.2
Passive Clustering for Efficient Flooding
189
6.3.3
Energy-Efficient Adaptive Clustering
193
6.3.4
Energy-Efficient Distributed Clustering
195
6.3.5
Energy-Efficient Hierarchical Clustering
196
6.3.5.1
Multitier Hierarchical Clustering
196
6.3.5.2
Energy-Efficient Hierarchical Clustering
197
6.3.5.3
Distributed Weight-Based Hierarchical
Clustering
199
XIV
CONTENTS
6.3.6
Algorithm for Cluster Establishment
201
6.3.7
Secure Clustering
203
6.4
Summary and Future Directions
208
References
209
7.
QUERY PROCESSING AND DATA AGGREGATION
215
Torsha Banerjee and
Dharma
P. Agrawal
7.1
Introduction
215
7.2
Query Processing in Wireless Sensor Networks
217
7.2.1
Query Characteristics
217
7.2.1.1
Query Operators
218
7.2.1.2
Query Classification
218
7.2.2
Challenges in Query Processing
220
7.2.3
Sensor Selection for Query Processing
221
7.2.4
Query Processing Techniques
222
7.2.4.1
Query Flooding
222
7.2.5
Snapshot Querying
225
7.2.5.1
Acquisitional Query Processing
226
7.3
Data Aggregation in Wireless Sensor Networks
229
7.3.1
Challenges in Data Aggregation
229
7.3.2
Data Aggregation Techniques
230
7.3.2.1
Energy-Efficient Data Aggregation
230
7.3.2.2
Neural-Network-Based Data Aggregation
232
7.3.2.3
Delay-Constrained Data Aggregation
233
7.3.2.4
QoS Constrained Data Aggregation
235
7.3.2.5
Data Aggregation for Range Query
237
7.3.2.6
Structure-Free Data Aggregation
237
7.4
Summary and Future Directions
239
References
240
8.
NODE LOCALIZATION
243
NayefA. Alsindi and Kaveh Pahlavan
8.1
Introduction
243
8.2
Concepts and Challenges of Node Localization Technologies
244
8.2.1
Evolution of Localization Technologies
244
8.2.2
Localization Systems
245
8.2.3
Challenges of Node Localization in Wireless Sensor
Networks
247
CONTENTS
XV
8.3
Ranging Techniques for Wireless Sensor Networks
248
8.3.1
TOA
Based Ranging
249
8.3.1.1
Direct Spread Spectrum
253
8.3.1.2
Ultra-Wideband Ranging
253
8.3.2
RSS Based Ranging
254
8.4
Wireless Localization Algorithms
257
8.4.1
Background
258
8.4.2
Geometrical
Triangulation
Techniques
258
8.4.2.1
Least-Squares Algorithm
259
8.4.2.2
Weighted Least-Squares Algorithm
260
8.4.2.3
Practical Performance Considerations
261
8.4.3
Pattern Recognition Techniques
262
8.5
Wireless Sensor Node Localization
262
8.5.1
Cooperative Localization
263
8.5.2
Centralized Localization Algorithms
267
8.5.3
Distributed Localization Algorithms
269
8.5.3.1
Multihop Network Localization
272
8.5.3.2
Recursive Position Estimation
275
8.6
Summary and Future Directions
279
References
280
9.
TIME SYNCHRONIZATION
285
Fikret Sivrikaya and
Bülent Yener
9.1
Introduction
285
9.1.1
Computer Clocks and the Synchronization Problem
286
9.1.2
Common Challenges for Synchronization Methods
287
9.2
Need for Synchronization in Wireless Sensor Networks
288
9.3
Requirements of Synchronization in Wireless Sensor
Networks
289
9.4
Synchronization Protocols for Wireless Sensor Networks
290
9.4.1
Synchronization Primitives
290
9.4.1.1
Two-Way Message Exchange
290
9.4.1.2
Reference Broadcast Synchronization
291
9.4.1.3
Tiny-Sync and Mini-Sync
292
9.4.2
Multihop Synchronization
295
9.4.2.1
Multihop RBS
295
9.4.2.2
Timing-Sync Protocol
296
9.4.2.3
Lightweight Tree-Based Synchronization
297
9.4.2.4
Flooding Time Synchronization Protocol
298
XVi
CONTENTS
9.4.3
Long-Term
Synchronization
299
9.4.3.1
Post-facto Synchronization
300
9.4.3.2
Time-Diffusion Synchronization Protocol
300
9.4.3.3
Rate Adaptive Time Synchronization
301
9.4.4
Other Protocols and Relevant Work
302
9.5
Summary and Future Directions
303
References
305
10.
ENERGY EFFICIENCY AND POWER CONTROL
307
Nikolaos A. Pantazis and Dimitrios
D. Vergados
10.1
Introduction
307
10.2
Need for Energy Efficiency and Power Control in
Wireless Sensor Networks
308
10.2.1
Power Consumption in Sensor Nodes
308
10.2.2
Power Control at Different Protocol Layers
311
10.2.3
Classification of Power Conservation Mechanisms
for Wireless Sensor Networks
313
10.3
Passive Power Conservation Mechanisms
314
10.3.1
Physical-Layer Power Conservation Mechanisms
314
10.3.1.1
Dynamic Voltage Scheduling
315
10.3.1.2
Dynamic Power Management
315
10.3.1.3
Embedded Power Supply for Low-Power
Digital Signal Processors
317
10.3.1.4
Energy-Efficient System Partitioning
317
10.3.1.5
Energy-Efficient Link Layer
318
10.3.2
MAC Layer Power Conservation Mechanisms
318
10.3.3
Higher Layer Power Conservation Mechanisms
320
10.3.3.1
Sensor-MAC
320
10.3.3.2
Energy Efficiency Using Sleep Mode
TDMA Scheduling
321
10.3.3.3
SS-TDMA: A Self-Stabilizing MAC
323
10.3.3.4
Link Scheduling
324
10.3.3.5
Energy-Latency Trade-Offs for
Data Gathering
324
10.3.3.6
TDMA Scheduling
325
10.3.3.7
Wave Scheduling
325
10.3.3.8
Joint Optimization with Energy Constraints
326
10.3.3.9
Energy-Efficient Coordination for
Topology Maintenance
326
CONTENTS XVÜ
10.4 Active Power
Conservation
Mechanisms
327
10.4.1
MAC Layer Mechanisms
327
10.4.1.1
Multiple Access with Collision Avoidance
327
10.4.1.2
Multiple Access with Collision Avoidance
Wireless
328
10.4.1.3
Floor Acquisition Multiple Access
328
10.4.1.4
Intelligent Medium Access with Busy
Tone and Power Control
328
10.4.1.5
Power Controlled Multiple Access
329
10.4.1.6
Power Adaptation for Starvation
Avoidance
330
10.4.2
Network Layer Mechanisms
331
10.4.2.1
Minimum Cost Forwarding
332
10.4.2.2
Energy Aware Routing
332
10.4.2.3
Minimum Power Configuration
333
10.4.2.4
Cost-Effective Maximum Lifetime Routing
333
10.4.2.5
Power-Aware Sensor Selection
334
10.4.2.6
Self-Organizing Routing
335
10.4.3
Transport Layer Mechanisms
335
10.4.3.1
Experimental Study on TCP s Energy
Consumption
335
10.4.3.2
Reliable and Energy-Efficient
Transport Protocol
336
10.4.3.3
Sensor Transmission Control Protocol
336
10.5
Summary
337
References
337
11.
TRANSPORT PROTOCOLS AND QUALITY OF SERVICE
343
Chonggang Wang, Bo Li, and
Kazem Sohraby
11.1
Introduction
343
11.2
Traditional Transport Protocols
346
11.2.1
Principles of Traditional Transport Protocols
346
11.2.2
Disadvantages of TCP and
UDP
347
11.3
Transport Protocol Design for Wireless Sensor Networks
349
11.3.1
Performance Metrics
349
11.3.2
Congestion Control
351
11.3.2.1
Congestion Detection
351
11.3.2.2
Congestion Notification
351
11.3.2.3
Congestion Mitigation and Avoidance
352
XVÜi
CONTENTS
11.3.3
Loss Recovery
353
11.3.3.1
Loss Detection and Notification
353
11.3.3.2
Retransmission Recovery
354
11.3.4
Design Guidelines
355
11.4
Transport Protocols for Wireless Sensor Networks
356
11.4.1
Protocols for Congestion Control
356
11.4.1.1
Fusion
358
11.4.1.2
Congestion Detection and Avoidance
358
11.4.1.3
Congestion Control and Fairness
358
11.4.1.4
Priority-Based Congestion Control Protocol
358
11.4.1.5
Adaptive Rate Control
359
11.4.1.6
Siphon
359
11.4.1.7
Trickle
360
11.4.2
Protocols for Reliability
360
11.4.2.1
Reliable Multi-Segment Transport
362
11.4.2.2
Reliable Bursty Convergecast
362
11.4.2.3
Pump Slowly Fetch Quickly
362
11.4.2.4
GARUDA
363
11.4.3
Protocols for Congestion Control and Reliability
363
11.4.3.1
Sensor Transmission Control Protocol
364
11.4.3.2
Event-to-Sink Reliable Transport
364
11.4.4
Open Problems
365
11.5
Summary and Future Directions
366
References
366
12.
NETWORK SECURITY AND ATTACK DEFENSE
369
Yun Zhou and Yuguang Fang
12.1
Introduction
369
12.2
Confidentiality
370
12.2.1
Eavesdropping
371
12.2.2
Node Compromise
371
12.2.3
Encryption
372
12.2.4
Privacy
373
12.3
Integrity
374
12.3.1
Transmission Errors
374
12.3.2
Processing Errors
375
12.3.3
Packet Modifications
375
12.3.4
Error Control
375
12.3.5
Message Integrity Code
376
CONTENTS XIX
12.4
Authenticity
376
12.4.1
Packet Injection
376
12.4.2
Message Authentication Code
376
12.4.3
Challenge Response
377
12.4.4
Signature
377
12.4.5
Man-in-the-Middle
377
12.4.6
Authenticating Public Key
378
12.4.7
Broadcast and Multicast Authentication
380
12.5
Nonrepudiation
384
12.6
Freshness
385
12.6.1
Packet Replaying
385
12.6.2
Timestamp
386
12.7
Availability
386
12.7.1
Selective Forwarding
387
12.7.2
Radio Jamming
387
12.7.3
Multipath Routing
387
12.7.4
False Reports
388
12.7.5
Node Replication
389
12.8
Intrusion Detection
390
12.9
Key Management
391
12.9.1
Symmetric Key Management
391
12.9.1.1
Key Agreement Models
392
12.9.1.2
Random Key Material Distribution
393
12.9.1.3
Deterministic Key Material Distribution
394
12.9.1.4
Location-Based Key Material Distribution
395
12.9.1.5
Comparison of Symmetric Key Schemes
396
12.9.2
Asymmetric Key Management
398
12.9.3
Group Key Management
399
12.10
Summary
400
Acknowledgments
400
References
400
13.
SENSOR NETWORK STANDARDS
407
Stefano Chessa
13.1
Introduction
407
13.2
IEEE
802.15.4
Standard
408
13.2.1
Overview of the MAC Layer
409
13.2.2
Channel Access
410
XX
CONTENTS
13.2.2.1 Communications
with a Superframe
Structure
410
13.2.2.2 Communications
without a
Superframe Structure
411
13.2.3
Data-Transfer Models
411
13.2.3.1
Data Transfers in Beacon-Enabled
Networks
412
13.2.3.2
Data Transfers in Nonbeacon-Enabled
Networks
413
13.2.4
MAC Layer Services
414
13.2.4.1
Data Service
414
13.2.4.2
Management Service
415
13.2.5
Security
417
13.3
ZigBee Standard
418
13.3.1
Network Layer
418
13.3.1.1
Network Formation
419
13.3.1.2
Joining a Network
420
13.3.1.3
Routing
423
13.3.1.4
Route Discovery
424
13.3.2
Application Layer
426
13.3.2.1
Application Framework
426
13.3.2.2
Binding and Discovery Services
427
13.3.2.3
Application Support Sublayer
428
13.3.2.4
ZigBee Device Object
429
13.3.3
Security in ZigBee
430
13.4
Summary
430
References
431
14.
FUTURE TRENDS IN WIRELESS SENSOR NETWORKS
433
Mehmet
Can Vuran,
Dario
Pompili,
and
Tommaso Melodia
14.1
Introduction
433
14.2
Wireless Multimedia Sensor Networks
434
14.2.1
Applications of Wireless Multimedia Sensor Networks
436
14.2.2
Design of Wireless Multimedia Sensor Networks
437
14.2.3
Ultra-Wideband Technology
439
14.2.4
Cross-Layer Design
441
14.3
Wireless Sensor and Actor Networks
443
14.3.1
Applications of Wireless Sensor and Actor Networks
444
14.3.2
Sensor and Actor Coordination
445
CONTENTS
XXI
14.3.2.1
Sensor-Actor Coordination
445
14.3.2.2
Actor-Actor Coordination
447
14.4
Sensor
Network
Applications in Challenging Environments
448
14.4.1
Underwater Acoustic
Sensor Networks
448
14.4.1.1
Differences from Terrestrial Sensor
Networks
450
14.4.1.2
Factors Influencing the Design of
Underwater Protocols
450
14.4.1.3
Communication Architectures
451
14.4.2
Wireless Underground Sensor Networks
453
14.4.2.1
Experimental Setup
454
14.4.2.2
Physical Environment
455
14.4.2.3
MicaZ Wireless Sensor Motes
455
14.4.2.4
Software Design
455
14.4.2.5
Experimental Results
455
14.5
Cross-Layer Design for Wireless Sensor Networks
456
14.5.1
Cross-Layer Resource Allocation
457
14.5.1.1
Pairwise Resource Allocation
458
14.5.1.2
Joint Routing, Scheduling, and
Power Control
458
14.5.1.3
Joint Resource Allocation Based on
Dual Decomposition
459
14.5.2
Pairwise Cross-Layer Protocols
460
14.5.2.1
Transport and PHY Interactions
460
14.5.2.2
Routing and PHY Interactions
461
14.5.2.3
MAC and PHY Interactions
461
14.5.2.4
MAC and Routing Interactions
462
14.5.3
Cross-Layer Module Design
463
14.5.4
Precautionary Guidelines and Open Research
Problems
464
14.6
Summary
466
Acknowledgments
466
References
466
Index
471
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV035676233 |
callnumber-first | T - Technology |
callnumber-label | TK7872 |
callnumber-raw | TK7872.D48 |
callnumber-search | TK7872.D48 |
callnumber-sort | TK 47872 D48 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ST 200 |
ctrlnum | (OCoLC)318674171 (DE-599)HBZHT015914822 |
dewey-full | 004.68 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.68 |
dewey-search | 004.68 |
dewey-sort | 14.68 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01730nam a2200397 c 4500</leader><controlfield tag="001">BV035676233</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090813s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA937260</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470167632</subfield><subfield code="c">(hbk.) : £59.50</subfield><subfield code="9">978-0-470-16763-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)318674171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015914822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7872.D48</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.68</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 200</subfield><subfield code="0">(DE-625)143611:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wireless sensor networks</subfield><subfield code="b">a networking perspective</subfield><subfield code="c">ed. by Jun Zheng ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley [u.a.]</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 489 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces to researchers, students, and practitioners the fundamental concepts, major issues, and state-of-the-art solutions in the networking wireless sensors, including topology control, time synchronization and node localization.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Réseaux de capteurs (technologie)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systèmes de communication sans fil</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless sensor networks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Drahtloses Sensorsystem</subfield><subfield code="0">(DE-588)4789222-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Drahtloses Sensorsystem</subfield><subfield code="0">(DE-588)4789222-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Jun</subfield><subfield code="c">Ph.D</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017730562&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017730562</subfield></datafield></record></collection> |
id | DE-604.BV035676233 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:43:04Z |
institution | BVB |
isbn | 9780470167632 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017730562 |
oclc_num | 318674171 |
open_access_boolean | |
owner | DE-20 DE-473 DE-BY-UBG DE-11 |
owner_facet | DE-20 DE-473 DE-BY-UBG DE-11 |
physical | XXIX, 489 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley [u.a.] |
record_format | marc |
spelling | Wireless sensor networks a networking perspective ed. by Jun Zheng ... Hoboken, NJ Wiley [u.a.] 2009 XXIX, 489 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier This book introduces to researchers, students, and practitioners the fundamental concepts, major issues, and state-of-the-art solutions in the networking wireless sensors, including topology control, time synchronization and node localization. Réseaux de capteurs (technologie) ram Systèmes de communication sans fil ram Wireless sensor networks Drahtloses Sensorsystem (DE-588)4789222-5 gnd rswk-swf Drahtloses Sensorsystem (DE-588)4789222-5 s DE-604 Zheng, Jun Ph.D Sonstige oth Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017730562&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wireless sensor networks a networking perspective Réseaux de capteurs (technologie) ram Systèmes de communication sans fil ram Wireless sensor networks Drahtloses Sensorsystem (DE-588)4789222-5 gnd |
subject_GND | (DE-588)4789222-5 |
title | Wireless sensor networks a networking perspective |
title_auth | Wireless sensor networks a networking perspective |
title_exact_search | Wireless sensor networks a networking perspective |
title_full | Wireless sensor networks a networking perspective ed. by Jun Zheng ... |
title_fullStr | Wireless sensor networks a networking perspective ed. by Jun Zheng ... |
title_full_unstemmed | Wireless sensor networks a networking perspective ed. by Jun Zheng ... |
title_short | Wireless sensor networks |
title_sort | wireless sensor networks a networking perspective |
title_sub | a networking perspective |
topic | Réseaux de capteurs (technologie) ram Systèmes de communication sans fil ram Wireless sensor networks Drahtloses Sensorsystem (DE-588)4789222-5 gnd |
topic_facet | Réseaux de capteurs (technologie) Systèmes de communication sans fil Wireless sensor networks Drahtloses Sensorsystem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017730562&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhengjun wirelesssensornetworksanetworkingperspective |