Functional equations and inequalities with applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2009
|
Ausgabe: | 1. Aufl. |
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 810 S. Ill., graph. darst. 235 mm x 155 mm |
ISBN: | 9780387894911 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035674614 | ||
003 | DE-604 | ||
005 | 20090908 | ||
007 | t | ||
008 | 090812s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 09,N09,0543 |2 dnb | ||
016 | 7 | |a 992521254 |2 DE-101 | |
020 | |a 9780387894911 |c GB. : ca. EUR 139.26 (freier Pr.), ca. sfr 216.00 (freier Pr.) |9 978-0-387-89491-1 | ||
024 | 3 | |a 9780387894911 | |
028 | 5 | 2 | |a 11561309 |
035 | |a (OCoLC)495198621 | ||
035 | |a (DE-599)DNB992521254 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 |a DE-11 |a DE-898 |a DE-188 | ||
082 | 0 | |a 515.25 |2 22 | |
084 | |a SK 490 |0 (DE-625)143242: |2 rvk | ||
084 | |a SK 580 |0 (DE-625)143247: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Kannappan, Pl. |d 1936- |e Verfasser |0 (DE-588)1011157209 |4 aut | |
245 | 1 | 0 | |a Functional equations and inequalities with applications |c Pl. Kannappan |
250 | |a 1. Aufl. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2009 | |
300 | |a XXIII, 810 S. |b Ill., graph. darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics | |
650 | 7 | |a Inégalités (mathématiques) |2 ram | |
650 | 7 | |a Équations fonctionnelles |2 ram | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Inequalities (Mathematics) | |
650 | 0 | 7 | |a Funktionalgleichung |0 (DE-588)4018923-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalungleichung |0 (DE-588)4155681-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionalgleichung |0 (DE-588)4018923-5 |D s |
689 | 0 | 1 | |a Funktionalungleichung |0 (DE-588)4155681-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728838&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017728838 |
Datensatz im Suchindex
_version_ | 1804139372183814144 |
---|---|
adam_text | Contents
Preface
.........................................................
vii
1
Basic
Equations: Cauchy and Pexider Equations
.................. 1
1.1
Additive Equations
......................................... 2
1.1.1
Discontinuous Solutions
............................. 6
1.2
Algebraic Conditions
—
Derivation
............................ 7
1.2.1
More Algebraic Conditions
.......................... 11
1.3
Additive Equation on C, K , and K+
.......................... 15
1.3.1
Additive Equation on Complex Numbers
............... 15
1.3.2
More Algebraic Conditions
.......................... 17
1.4
Alternative Equations, Restricted Domains, and Conditional
Cauchy Equations
.......................................... 20
1.4.1
Alternative Equations
............................... 21
1.4.2
Restricted Domains and Conditional Cauchy Equations
... 23
1.4.3
Mikusinski s Functional Equation
..................... 24
1.5
The Other Cauchy Equations
................................. 26
1.5.1
Exponential Equation
............................... 27
1.5.2
Logarithmic Equation
............................... 29
1.5.3
Characterization of Exponential and
Logarithmic Functions
.............................. 30
1.5.4
Multiplicative Equation
.............................. 33
1.6
Some Generalizations of the Cauchy Equations
................. 34
1.6.1
Jensen s Equation
................................... 34
1.6.2
Pexider s Equations
................................. 39
1.6.3
Some Generalizations
............................... 43
1.6.4
Some Special Cases
................................. 45
1.6.5
More Generalizations
............................... 52
1.7
Extensions
................................................ 53
1.7.1
Extension of the Additive Function on
[0,1]............ 56
1.7.2
Quasiextensions
.................................... 59
1.7.3
Extension of the Pexider Equation
..................... 60
xvi Contents
1.7.4
Extension
of the Logarithmic Equation
................. 64
1.7.5
Exponential Extension
............................... 65
1.7.6
Multiplicative Extension
............................. 66
1.7.7
Extension of Derivations
............................. 67
1.7.8
Almost Everywhere Extension
........................ 67
1.8
Applications
............................................... 68
1.8.1
Economics
........................................ 68
1.8.2
Area
.............................................. 72
1.8.3
Allocation Problem: Characterization of Weighted
Arithmetic Means
.................................. 74
1.8.4
Sum of Powers of First
η
Natural Numbers and Sum of
Powers on Arithmetic Progressions
.................... 76
1.8.5
More Sums Using the Additive Cauchy Equation
........ 81
1.8.6
Application in Combinatorics and Genetics
............. 82
2
Matrix Equations
............................................ 85
2.1
Multiplicative Equation
..................................... 91
2.2
Cosine Matrix Equation
..................................... 98
3
Trigonometric Functional Equations
............................ 105
3.1
Mixed Trigonometric Equations
.............................. 107
3.2
Cosine Equation on Number Systems
.......................... 113
3.3
(C) on Groups and Vector Spaces
............................. 120
3.4
Solution of
(CE) on a
Non-Abelian Group
...................... 124
3.4.1
Discussion
........................................ 131
3.4.2
(C) on Abstract Spaces
.............................. 133
3.4.3
Jacobi s Elliptic Function Solution
.................... 139
3.4.4
More Characterizations in a Single Variable
............. 145
3.4.5
More on Sine Functions on a Vector Space
.............. 158
3.4.6
Sine Solution
...................................... 170
3.4.7
Characterization of the Sine
.......................... 172
3.4.8
General Trigonometric Functional Equations
—
The Addition and Subtraction Formulas
................ 174
3.4.9
Vibration of String Equation (VS)
..................... 181
3.4.10
Wilson s Equations
................................. 186
3.4.11
Analytic Solutions
.................................. 187
3.4.12
Equation
(3.72)
on Analytic Functions
................. 192
3.4.13
Some Generalizations
............................... 197
3.4.14
Levi-Civitá
Functional Equation, Convolution
Type Functional Equations, and Generalization of
Cauchy-Pexider Type and d Alembert Equations
......... 202
3.4.15
Operator-Valued Solution of (C)
...................... 203
3.4.16
Solution of Equation
(3.111)......................... 204
3.4.17
Inner Product Version of
(3.109)...................... 205
3.4.18
A Functional Equation of d Alembert s Type
............ 207
Contents xvii
3.5
Survey
—
Summary of Stetkaer
............................... 209
3.5.1
Abstract
........................................... 210
3.5.2
The Abelian Solution and Related Extensions of It
....... 210
3.5.3
d Alembert s Functional Equation
..................... 215
3.5.4
Wilson s Functional Equation
......................... 216
3.5.5
A Variant of Wilson s Functional Equation
.............. 217
3.5.6
Other Equations
.................................... 218
Quadratic Functional Equations
................................221
4.1
General Solution and Properties
.............................. 221
4.2
General Solution on a Complex Linear Space
—
Sesquilinear Solution
....................................... 225
4.3
Regular Solutions
.......................................... 228
4.4
Generalizations and Equivalent Forms of (Q)
................... 230
4.5
Equivalence to (Q)
......................................... 232
4.6
Generalizations
............................................ 234
4.7
More Generalizations
....................................... 238
4.8
Another Form of Quadratic Function
.......................... 240
4.9
Entire Functions and Quadratic Equations
...................... 241
4.10
Summary by Stetkaer
[750].................................. 244
4.10.1
The Quadratic Functional Equation
.................... 244
Characterization of Inner Product Spaces
........................247
5.1
Frécheťs
Equation
......................................... 249
5.1.1
The Parallelepiped Law
.............................. 251
5.1.2
Parallelogram Identity
............................... 253
5.1.3
More on
Frécheťs
Result
............................ 254
5.1.4
More Characterizations
.............................. 256
5.1.5
Some Generalizations
............................... 263
5.1.5.1
Solution of a Generalization of the
Fréchet
Equation
.......................... 263
5.
ł
.6
Some More Characterizations
........................ 266
5.2
Geometric Characterization
.................................. 275
5.2.1
Some Generalizations
............................... 277
5.2.2
Solution of an Equation Related to
Ptolemaic Inequality
................................ 283
5.2.3
Orthogonal Additivity and I.P.S
....................... 285
5.2.4
Diminnie Orthogonality
............................. 285
Stability
....................................................295
6.1
Stability of the Additive Equation
............................. 296
6.2
Stability
—
Multiplicative Equations
........................... 302
6.3
Stability
—
Logarithmic Function
.............................. 303
6.4
Stability
—
Trigonometric Functions
........................... 305
6.4.
ł
Stability for Vector-Valued Functions
.................. 315
xviii Contents
6.5
Stability of the Equation
ƒ
(x
+
y)
+
g(x
-
y)
=
h(x)k(y)
....... 318
6.6
Stability of the Sine Functional Equation
....................... 319
6.7
Stability
—
Alternative Cauchy Equation
....................... 319
6.8
Stability—Wave Equation
................................... 321
6.9
Stability
—
Polynomial Equation
.............................. 322
6.10
Stability
—
Quadratic Equation
................................ 323
7
Characterization of Polynomials
................................329
7.1
Polynomials
............................................... 329
7.2
More Characterizations of Polynomials of Degree Two
........... 332
7.3
Generalization
............................................. 336
7.3.1
First Generalization Using Derivatives
................. 336
7.3.2
Second Generalization Without Using Any
Regularity Condition
................................ 337
7.4
Another Generalization
—
Divided Difference
................... 337
7.5
Generalization of Divided Difference
.......................... 340
7.6
Problem of W.
Rudin
and a Generalization
..................... 340
7.7
Generalization of Rudin s Problem
............................ 342
7.8
Frécheťs
Result
............................................ 343
7.9
Polynomials in Several Variables
............................. 345
7.10
Quadratic Polynomials in Two Variables
....................... 346
7.11
Functional Equations on Groups
.............................. 347
7.12
Rudin s Problem on Groups
.................................. 349
7.13
Generalization
............................................. 352
8
Nondifferentiable Functions
...................................359
8.1
Weierstrass
Functions
....................................... 359
8.2
Wiinderlich s Function
...................................... 361
8.3
Takagi Functions
........................................... 361
8.4
van
der Waerden
Type Function
.............................. 362
8.5
Functional Equation Characterization of to
..................... 364
8.6
Nondifferentiability of
ω
.................................... 365
8.7
Riemann s Function
........................................ 367
8.8
Knopp
Functions
........................................... 368
8.9
Generalization
............................................. 369
9
Characterization of Groups, Loops, and Closure Conditions
........371
9.1
Notation and Definitions
.................................... 371
9.2
Closure Conditions
......................................... 372
9.3
Groups
................................................... 373
9.4
Abelian Groups
............................................ 374
9.5
Functional Equation of Identities
............................. 381
9.6
Functional Equations Arising Out of
Bol, Moufang,
and
Extra Equations
............................................ 384
9.6.1
Bol
Equation
....................................... 384
Contents xix
9.6.2 Moufang and Extra
Loops
............................ 390
9.6.3 Extra
Loop
........................................ 391
9.6.4
Characterizations...................................
391
9.6.5
Characterization of
Moufang
Loops
................... 391
9.6.6
Extra Loops
....................................... 391
9.6.7
Groups
............................................ 392
9.7
GD-groupoid
.............................................. 392
9.8
More Identities
............................................ 392
9.8.1 Entropie, Bisymmetric,
or Mediality Identity
............ 392
9.9
Left Inverse Property (l.i.p.), Crossed-Inverse
(ci.),
and
Weak Inverse Property (w.i.p.) Loops
.......................... 394
9.9.1
l.i.p. Loops
........................................ 394
9.9.2
ci.
Loops
......................................... 395
9.9.3
w.i.p. Loops
....................................... 395
9.10 Steiner
Loops
.............................................. 395
9.11
Boi Loop
and Power Associativity
............................ 398
9.12
More Functional Equations
.................................. 398
9.13
Generalized Groupoids
...................................... 400
9.13.1
Generalized Associativity
............................ 400
9.13.2
Generalized Bisymmetry
............................. 400
10
Functional Equations from Information Theory
...................403
10.1
Introduction
............................................... 403
10.2
Notation, Basic Notions, and Preliminaries
..................... 405
10.2.1
Properties, Postulates, and Axioms
.................... 406
10.2.2
Desirable Properties—Postulates
...................... 406
10.2.3
Characterization of Information Measures
.............. 409
10.2.4
Shannon Entropy and Some of Its Generalizations
....... 410
10.2a Fundamental Equation of Information
—
Axiomatic Characterizations
.........................410
1
0.2b The Fundamental Equation of Information Theory
.......412
10.2c Some Generalizations of
(FEI)........................ 418
10.2.5
General Solution of Equation
(10.21).................. 420
1
0.2d Sum Form Functional Equation (SFE) and
Its Generalizations
.................................. 424
10.2d.l Representation and Characterization
..........424
10
.2e Other Measures of Information
—
Entropy of
ТуреД
НІ.......................................
432
10.2f Directed Divergence (dd) and Inaccuracy (KI)
........... 433
10.2f.
1
Generalized Directed Divergence
............. 437
10.2g Sum Form Distance Measures
........................ 441
10.2h Kullback-LeiblerType Distance Measures
.............. 444
10.2i
Symmetric Distance Measures
........................ 445
10.2J Some Functional Equations
.......................... 447
10.2k Weighted Entropies
.................................448
xx Contents
10.3
Mixed Theory of Information
—
Inset Measures
................. 452
10.3.1
Characterizations
................................... 454
10.3.1.1
Characterization of Inset
Deviation Entropies
........................ 456
10.4
Applications
............................................... 462
10.4.1
Continuous Shannon Measure and Shannon-Wiener
Inset Information
................................... 462
10.4.2
Theory of Gambles
................................. 463
10.4.3
Recursive Inset Entropies of Multiplicative Type
......... 465
11
Abel Equations and Generalizations
............................469
11.1
Solutions of Abel Equations
................................. 470
11.1.1
(AFEl)—Exponential Equation f(z +
ω)
= ƒ
(z) f
(w)
.. 470
11.1.2
(AFE2)—
Iteration Equation f
(φ (χ))
=
f (x)
+ 1 ....... 472
11.1.3
(AFE3)
—
Associative, Commutative Equations
.......... 472
11.1.4
(AFE4)—
Arctan
Equation
........................... 473
11.1.5
(AFE5)—
Trig Equation
ф(х+у) = ф(х)
ƒ
(у)+ф(у)
f (x)
473
11.1.6
(AFE6)—
ψ
(x + y) = g(xy) + h(x-y)
...............473
11.1.7
(АЊЂ—фОс)
+
ф(у)
=
yf(xf(y)
+
y f (x))
...........479
11.1.8
System
of Equations (AFE8) and (AFE8a)
..............480
11.1.9
(AFE9)
and (AFE9a)
................................ 482
11.2
Generalizations and Information Measures
..................... 485
12
Regularity Conditions
—
Christensen Measurability
................493
12.1
Some General Results
....................................... 497
12.2
Applications
............................................... 500
12.3
Christensen Measurability
................................... 503
12.4
Functional Equations (Characterizing) from
Trigonometric Functions
.................................... 505
13
Difference Equations
.........................................511
13.1
Cauchy Difference
......................................... 511
13.1.1
Differences that Depend on the Product
................ 516
13.1.2
Pompeiu Functional Equation and
Its Generalizations
.................................. 523
13.1.3
Solution of the Functional Equation (13.24a)
............ 525
13.1.4
Solution of the Functional Equation (13.24b)
............ 526
13.2
Quadratic Differences
....................................... 526
13.2.1
Differences in a Prescribed Set
........................ 528
13.3
Pexider Difference
......................................... 530
13.3.1
Some Generalizations
............................... 532
13.3.2
Measurable Solutions of the Functional
Equation (13.48a)
.................................. 533
Contents xxi
14 Characterization
of
Special
Functions...........................
537
14.1
Gamma Function
........................................... 537
14.1.1
Further Properties of the Gamma Function
.............. 540
14.1.2
Definitions of the Function
Г(х)
...................... 541
14.2
Beta Function
............................................. 549
14.2.1
Integral Representation
οι β..........................
550
14.2.2
Other Special formulas
.............................. 553
14.3
Riemann s
Zeta
Function
.................................... 555
14.3.1
The Theta Function
................................. 556
14.4
Singular Functions
......................................... 557
14.4.1
Cantor-Lebesgue Singular Function
................... 558
14.4.2
Minkowski s Function
............................... 558
14.4.3
De Rham s
Function
................................ 560
15
Miscellaneous Equations
......................................563
15.1
A General Method: Method of Determinants
................... 563
15.2
Means
.................................................... 570
15.2.1
Characterizations
—
Arithmetic and
Exponential Means
................................. 575
15.2.2
Geometric Mean and the Root Mean Power
............. 576
15.2.3
Stolarsky
Mean
.................................... 579
15.3
Some Comments about the Logarithmic Function
............... 581
15.4
D Alembert s Equation Revisited
............................. 588
15.4.1
Basic d Alembert Functions
.......................... 589
15.4.2
D Alembert Groups: Examples
....................... 592
15.4.3
D Alembert Groups: Generalities
..................... 594
15.4.4
Solvable Finite d Alembert Groups
.................... 594
15.4.5
Nonsolvable Finite d Alembert Groups
................. 595
15.5
Polynomials Revisited
...................................... 597
15.6
Inner Products Revisited
..................................... 600
16
General Inequalities
..........................................607
16.1
Cauchy Functional Inequalities
............................... 607
16.2 Subadditive
and
Superadditive
Functions
....................... 610
16.3
Logarithmic Inequality
...................................... 612
16.4
Multiplicative Inequality
.................................... 614
16.5
Convexity
................................................. 614
16.6
Trigonometric Functional Inequality
........................... 617
16.7
Cosine and Sine Functional Inequalities
........................ 624
16.8
Functional Equation Concerning the Parallelogram
Identity
—
Quadratic Inequality
............................... 626
16.9
Inequalities for the Gamma and Beta Functions via some
Classical Results
........................................... 627
16.9.1
Inequalities via Chebychev s Inequality
................ 627
16.9.2
Inequalities via Holder s Inequality
.................... 632
xxii Contents
16.10
Simpson s Inequality and Applications
......................... 634
16.11
Applications for Special Means
............................... 636
16.12
Inequalities from Information Theory
.......................... 638
16.12.1
Generalization
..................................... 641
16.12.2
Application to Mixed Theory of Information
............ 644
16.12.3
Continuous Solution of the Inequality
(16.61)........... 648
16.13
Reproducing Scoring Systems
................................ 651
16.13.1
Solution of the Functional Inequality
(16.66)............ 652
16.13.2
Symmetric Reproducing Scoring Systems
.............. 654
16.13.3
A Generalization of RSS
............................. 655
16.14
More Inequalities from Information Theory
.................... 656
16.15
Inequalities from Inner Product Spaces
........................ 658
16.16
Miscellaneous Inequalities
................................... 661
16.16.1
More on Convex Functions
........................... 661
16.16.2
Inequalities for Integrals
............................. 663
16.16.3 Cauchy-Schwarz-Hölder
Inequalities
.................. 665
17
Applications
.................................................669
17.1
Binomial Expansion
........................................ 669
17.2
Scalar or Dot Product
....................................... 671
17.3
Economics
................................................ 673
17.3.1
Duopoly Model
.................................... 673
17.3.1.1
Duopoly
Modell.......................... 673
17.3.1.2
Duopoly
Modelli
......................... 675
17.3.2
Cobb-Douglas (CD) Production Function
and Quasilinearity
.................................. 677
17.3.2.1
Quasilinearity
............................. 677
17.3.2.2
Determination of all
Quasilinear,
Linearly
Homogeneous Functions
.................... 678
17.4
Business Mathematics
—
Interest
.............................. 680
17.4.1
Interest Formula
.................................... 680
17.4.2
Simple Interest
..................................... 681
17.4.3
Interest Rates
...................................... 681
17.5
Physics
................................................... 682
17.5.1
Quantum Physics
................................... 682
17.5.2
Gaussian Function
.................................. 684
17.5.3
Chebyshev Polynomials
............................. 688
17.5.3.1
Introduction
.............................. 688
17.5.3.2
Reduction to a Difference Equation
........... 689
17.5.3.3
The Universal Solution
..................... 691
17.5.3.4
Identification of the Universal Solution
........ 692
17.5.3.5
General Remarks
.......................... 693
17.6
Topology
................................................. 694
17.6.1
Integral
........................................... 697
17.6.1.1
Simpson s Rule
............................ 697
Contents xxiii
17.6.1.2
Solution
of the Functional
Equation
(17.46)........................... 699
17.6.1.3
Solution of the Functional
Equation
(17.47)........................... 699
17.6.1.4
Solution of the Main Functional
Equation
(17.44)........................... 703
17.6.2
Determinants
...................................... 708
17.7
Digital Filtering
............................................ 710
17.8
Geometry
................................................. 711
17.9
Field Homomorphisms
...................................... 713
17.10
Pythagorean Functional Equation
............................. 715
17.11
Statistics
.................................................. 717
17.11.1
Poisson
Distribution
................................ 718
17.11.1.1
Characterization of (Bivariate)
Poisson
Distributions
....................... 718
17.11.2
Normal Distribution
................................. 719
17.11.2.1
The Equation
ƒ
(x)g(y)
=
h
(ax +by)k(cx+dy)
725
17.11.2.2
The Equation f(x)g(y)
=
f[
Ысцх
+
b¡y)
... 728
¡=і
17.11.2.3
Solution of the Functional Equation
(17.72)___ 730
17.11.3
Gamma Distribution
................................ 733
17.12
Information Theory
......................................... 734
17.12.1
Bose-Einstein Entropy
............................... 734
17.12.1.1
Solution of Equations
(17.81)
and (17.81a)
.... 735
17.12.1.2
Solution of Equation (17.81b)
............... 737
17.12.2
Sums of Powers
.................................... 739
17.12.2.1
A General Result
.......................... 739
17.13
Behavioural Sciences
....................................... 745
17.13.1
A Behavioural Example
............................. 746
17.13.2
Psychophysics
..................................... 748
17.13.2.1
The Conjoint Weber Law
................... 749
17.13.3
Binocular Vision
................................... 750
17.13.3.1
The
Lüneburg
Theory of Binocular Vision
.....751
17.13.3.2
A Conjoint Representation Generalizing the
Lüneburg
Theory
.......................... 752
17.13.4
Functional Equations Resulting from
Psychophysical
Invariances
.......................... 753
List of Symbols
..................................................757
Bibliography
....................................................759
Author Index
....................................................795
Subject Index
....................................................803
|
any_adam_object | 1 |
author | Kannappan, Pl. 1936- |
author_GND | (DE-588)1011157209 |
author_facet | Kannappan, Pl. 1936- |
author_role | aut |
author_sort | Kannappan, Pl. 1936- |
author_variant | p k pk |
building | Verbundindex |
bvnumber | BV035674614 |
classification_rvk | SK 490 SK 580 |
ctrlnum | (OCoLC)495198621 (DE-599)DNB992521254 |
dewey-full | 515.25 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.25 |
dewey-search | 515.25 |
dewey-sort | 3515.25 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. Aufl. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01956nam a2200505 c 4500</leader><controlfield tag="001">BV035674614</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090908 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090812s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N09,0543</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">992521254</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387894911</subfield><subfield code="c">GB. : ca. EUR 139.26 (freier Pr.), ca. sfr 216.00 (freier Pr.)</subfield><subfield code="9">978-0-387-89491-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387894911</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11561309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)495198621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB992521254</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.25</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 490</subfield><subfield code="0">(DE-625)143242:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 580</subfield><subfield code="0">(DE-625)143247:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kannappan, Pl.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1011157209</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional equations and inequalities with applications</subfield><subfield code="c">Pl. Kannappan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Aufl.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 810 S.</subfield><subfield code="b">Ill., graph. darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inégalités (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Équations fonctionnelles</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalungleichung</subfield><subfield code="0">(DE-588)4155681-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionalungleichung</subfield><subfield code="0">(DE-588)4155681-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728838&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017728838</subfield></datafield></record></collection> |
id | DE-604.BV035674614 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:43:02Z |
institution | BVB |
isbn | 9780387894911 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017728838 |
oclc_num | 495198621 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-898 DE-BY-UBR DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-898 DE-BY-UBR DE-188 |
physical | XXIII, 810 S. Ill., graph. darst. 235 mm x 155 mm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Kannappan, Pl. 1936- Verfasser (DE-588)1011157209 aut Functional equations and inequalities with applications Pl. Kannappan 1. Aufl. Berlin [u.a.] Springer 2009 XXIII, 810 S. Ill., graph. darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Springer Monographs in Mathematics Inégalités (mathématiques) ram Équations fonctionnelles ram Functional equations Inequalities (Mathematics) Funktionalgleichung (DE-588)4018923-5 gnd rswk-swf Funktionalungleichung (DE-588)4155681-1 gnd rswk-swf Funktionalgleichung (DE-588)4018923-5 s Funktionalungleichung (DE-588)4155681-1 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728838&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kannappan, Pl. 1936- Functional equations and inequalities with applications Inégalités (mathématiques) ram Équations fonctionnelles ram Functional equations Inequalities (Mathematics) Funktionalgleichung (DE-588)4018923-5 gnd Funktionalungleichung (DE-588)4155681-1 gnd |
subject_GND | (DE-588)4018923-5 (DE-588)4155681-1 |
title | Functional equations and inequalities with applications |
title_auth | Functional equations and inequalities with applications |
title_exact_search | Functional equations and inequalities with applications |
title_full | Functional equations and inequalities with applications Pl. Kannappan |
title_fullStr | Functional equations and inequalities with applications Pl. Kannappan |
title_full_unstemmed | Functional equations and inequalities with applications Pl. Kannappan |
title_short | Functional equations and inequalities with applications |
title_sort | functional equations and inequalities with applications |
topic | Inégalités (mathématiques) ram Équations fonctionnelles ram Functional equations Inequalities (Mathematics) Funktionalgleichung (DE-588)4018923-5 gnd Funktionalungleichung (DE-588)4155681-1 gnd |
topic_facet | Inégalités (mathématiques) Équations fonctionnelles Functional equations Inequalities (Mathematics) Funktionalgleichung Funktionalungleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728838&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kannappanpl functionalequationsandinequalitieswithapplications |